toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Piponiot, C.; Derroire, G.; Descroix, L.; Mazzei, L.; Rutishauser, E.; Sist, P.; Hérault, B. doi  openurl
  Title Assessing timber volume recovery after disturbance in tropical forests – A new modelling framework Type Journal Article
  Year 2018 Publication Ecological Modelling Abbreviated Journal  
  Volume 384 Issue Pages 353-369  
  Keywords Disturbance; Ecosystem modelling; Recovery; Sustainability; Tropical forest management  
  Abstract One third of contemporary tropical forests is designated by national forest services for timber production. Tropical forests are also increasingly affected by anthropogenic disturbances. However, there is still much uncertainty around the capacity of tropical forests to recover their timber volume after logging as well as other disturbances such as fires, large blow-downs and extreme droughts, and thus on the long-term sustainability of logging. We developed an original Bayesian hierarchical model of Volume Dynamics with Differential Equations (VDDE) to infer the dynamic of timber volumes as the result of two ecosystem processes: volume gains from tree growth and volume losses from tree mortality. Both processes are expressed as explicit functions of the forest maturity, i.e. the overall successional stage of the forest that primarily depends on the frequency and severity of the disturbances that the forest has undergone. As a case study, the VDDE model was calibrated with data from Paracou, a long-term disturbance experiment in a neotropical forest where over 56 ha of permanent forest plots were logged with different intensities and censused for 31 years. With this model, we could predict timber recovery at Paracou at the end of a cutting cycle depending on the logging intensity, the rotation cycle length, and the proportion of commercial volume. The VDDE modelling framework developed presents three main advantages: (i) it can be calibrated with large tree inventories which are widely available from national forest inventories or logging concession management plans and are easy to measure, both on the field and with remote sensing; (ii) it depends on only a few input parameters, which can be an advantage in tropical regions where data availability is scarce; (iii) the modelling framework is flexible enough to explicitly include the effect of other types of disturbances (both natural and anthropogenic: e.g. blow-downs, fires and climate change) on the forest maturity, and thus to predict future timber provision in the tropics in a context of global changes. © 2018 Elsevier B.V.  
  Address INPHB (Institut National Polytechnique Félix Houphouet Boigny), Yamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 813  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: