|
Van Langenhove, L., Depaepe, T., Verryckt, L. T., Fuchslueger, L., Donald, J., Leroy, C., et al. (2021). Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest. Sci. Total Environ., 754(142202).
Abstract: Biological nitrogen fixation (BNF) is a fundamental part of nitrogen cycling in tropical forests, yet little is known about the contribution made by free-living nitrogen fixers inhabiting the often-extensive forest canopy. We used the acetylene reduction assay, calibrated with 15N2, to measure free-living BNF on forest canopy leaves, vascular epiphytes, bryophytes and canopy soil, as well as on the forest floor in leaf litter and soil. We used a combination of calculated and published component densities to upscale free-living BNF rates to the forest level. We found that bryophytes and leaves situated in the canopy in particular displayed high mass-based rates of free-living BNF. Additionally, we calculated that nearly 2 kg of nitrogen enters the forest ecosystem through free-living BNF every year, 40% of which was fixed by the various canopy components. Our results reveal that in the studied tropical lowland forest a large part of the nitrogen input through free-living BNF stems from the canopy, but also that the total nitrogen inputs by free-living BNF are lower than previously thought and comparable to the inputs of reactive nitrogen by atmospheric deposition. © 2020 Elsevier B.V.
Keywords: 15n2; Bryophytes; Canopy soil; Epiphytes; Leaves; Litter; Terrestrial LIDAR; Ecosystems; Forestry; Meteorological problems; Plants (botany); Soils; Tropics; Acetylene reduction assays; Atmospheric depositions; Biological nitrogen fixations; Component density; Forest ecosystem; Nitrogen cycling; Reactive nitrogen; Tropical forest; Nitrogen fixation; acetylene; nitrogen; bryophyte; comparative study; epiphyte; forest canopy; forest soil; leaf; lidar; litter; lowland environment; nitrogen cycle; nitrogen fixation; soil nitrogen; tropical forest; Article; biological nitrogen fixation; canopy; epiphyte; leaf litter; moss; nitrogen fixation; nonhuman; plant leaf; priority journal; reduction (chemistry); soil; tropical rain forest; ecosystem; forest; tree; tropic climate; bryophytes; Ecosystem; Forests; Nitrogen; Nitrogen Fixation; Soil; Trees; Tropical Climate
|
|
Zinger, L., Donald, J., Brosse, S., Gonzalez, M. A., Iribar, A., Leroy, C., et al. (2020). Advances and prospects of environmental DNA in neotropical rainforests. Adv. Ecol. Res., 62, 331–373.
Abstract: The rainforests of the Neotropics shelter a vast diversity of plant, animal and microscopic species that provide critical ecosystem goods and services for both local and worldwide populations. These environments face a major crisis due to increased deforestation, pollution, and climate change, emphasizing the need for more effective conservation efforts. The adequate monitoring of these ecosystems has proven a complex and time consuming endeavour, which depends on ever dwindling taxonomic expertise. To date, many species remain undiscovered, let alone described, with otherwise limited information regarding known species population distributions and densities. Overcoming these knowledge shortfalls and practical limitations is becoming increasingly possible through techniques based on environmental DNA (eDNA), i.e., DNA that can be obtained from environmental samples (e.g. tissues, soil, sediment, water, etc.). When coupled with high-throughput sequencing, these techniques now enable realistic, cost-effective, and standardisable biodiversity assessments. This opens up enormous opportunities for advancing our understanding of complex and species-rich tropical communities, but also in facilitating large-scale biomonitoring programs in the neotropics. In this review, we provide a brief introduction to eDNA methods, and an overview of their current and potential uses in both terrestrial and aquatic ecosystems of neotropical rainforests. We also discuss the limits and challenges of these methods for our understanding and monitoring of biodiversity, as well as future research and applied perspectives of these techniques in neotropical rainforests, and beyond. © 2020 Elsevier Ltd
Keywords: Biomonitoring; Conservation biology; DNA metabarcoding; eDNA; Environmental genomics; Neotropics; Rainforests
|
|
Ziegler, C., Dusenge, M. E., Nyirambangutse, B., Zibera, E., Wallin, G., & Uddling, J. (2020). Contrasting Dependencies of Photosynthetic Capacity on Leaf Nitrogen in Early- and Late-Successional Tropical Montane Tree Species. Front. Plant Sci., 11, 500479.
Abstract: Differences in photosynthetic capacity among tree species and tree functional types are currently assumed to be largely driven by variation in leaf nutrient content, particularly nitrogen (N). However, recent studies indicate that leaf N content is often a poor predictor of variation in photosynthetic capacity in tropical trees. In this study, we explored the relative importance of area-based total leaf N content (Ntot) and within-leaf N allocation to photosynthetic capacity versus light-harvesting in controlling the variation in photosynthetic capacity (i.e. Vcmax, Jmax) among mature trees of 12 species belonging to either early (ES) or late successional (LS) groups growing in a tropical montane rainforest in Rwanda, Central Africa. Photosynthetic capacity at a common leaf temperature of 25˚C (i.e. maximum rates of Rubisco carboxylation, Vcmax25 and of electron transport, Jmax25) was higher in ES than in LS species (+ 58% and 68% for Vcmax25 and Jmax25, respectively). While Ntot did not significantly differ between successional groups, the photosynthetic dependency on Ntot was markedly different. In ES species, Vcmax25 was strongly and positively related to Ntot but this was not the case in LS species. However, there was no significant trade-off between relative leaf N investments in compounds maximizing photosynthetic capacity versus compounds maximizing light harvesting. Both leaf dark respiration at 25˚C (+ 33%) and, more surprisingly, apparent photosynthetic quantum yield (+ 35%) was higher in ES than in LS species. Moreover, Rd25 was positively related to Ntot for both ES and LS species. Our results imply that efforts to quantify carbon fluxes of tropical montane rainforests would be improved if they considered contrasting within-leaf N allocation and photosynthetic Ntot dependencies between species with different successional strategies. © Copyright © 2020 Ziegler, Dusenge, Nyirambangutse, Zibera, Wallin and Uddling.
Keywords: allocation; early successional; late successional; nitrogen; photosynthesis; tropical montane forests
|
|
Vleminckx, J., Bauman, D., Demanet, M., Hardy, O. J., Doucet, J. - L., & Drouet, T. (2020). Past human disturbances and soil fertility both influence the distribution of light-demanding tree species in a Central African tropical forest. J. Veg. Sci., 31(3), 440–453.
Abstract: Questions: In vast areas of Central African forests, the upper canopy is presently dominated by light-demanding tree species. Here, we confront three hypotheses to explain this dominance: (a) these species have expanded their distribution because of widespread past slash-and-burn activities, as suggested by important charcoal amounts recorded in the soils of the region; (b) their abundance is rather explained by soil properties, as this guild establishes preferentially on favourable physico-chemical conditions for rapid growth; (c) soil properties have been substantially influenced by past human disturbances and those two effects cannot be disentangled. Location: Pallisco-CIFM logging concession, southeastern Cameroon (300,000 ha). Methods: We quantified soil charcoal abundance and measured ten soil variables at the basis of 60 target trees that belonged to a list of three long-living pioneer light-demanding (LLP) and four shade-bearer (SB) species. We identified all stems with a diameter at breast height (DBH) ≥ 20 cm within a distance of 15 m around each target tree. Species were characterised by their wood-specific gravity (WSG), which reflected their light requirement. Multiple regression models were used to quantify and test the relative effects of charcoal abundance and soil variables on the mean WSG of the 60 tree communities, as well as the abundance of three guilds: LLP, SB, and non-pioneer light demanders (NPLD). Results: The mean WSG was the only response variable significantly explained by soil variables and charcoal abundance combined. It was significantly negatively associated with soil calcium and Mg content and with charcoal abundance, with soil and charcoal influencing the mean WSG independently. Conclusion: Our study provides evidence that past human disturbances and soil fertility have independently promoted the establishment of light-demanding species in western Central African forests, thereby shedding light on tree community assembly rules in these ecosystems which remain considerably understudied compared to the tropical forests of other continents. © 2020 International Association for Vegetation Science
Keywords: light-demanding species; moist tropical forests; past human disturbances; shade-bearer species; soil charcoal abundance; soil properties; tree community assemblages; wood-specific gravity; anthropogenic effect; forest canopy; forest ecosystem; shifting cultivation; soil fertility; soil property; tree; tropical forest; Cameroon
|
|
Verryckt, L. T., Van Langenhove, L., Ciais, P., Courtois, E. A., Vicca, S., Peñuelas, J., et al. (2020). Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest. Biotropica, 52(4), 608–615.
Abstract: Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions. © 2020 The Association for Tropical Biology and Conservation
Keywords: branch cutting; canopy physiology; French Guiana; gas exchange; photosynthesis; rainforest; stomatal conductance; ecological modeling; environmental conditions; forest canopy; leaf; measurement method; photosynthesis; tree; tropical forest; Gruidae
|
|
|