toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Farjalla, V.F.; González, A.L.; Céréghino, R.; Dezerald, O.; Marino, N.A.C.; Piccoli, G.C.O.; Richardson, B.A.; Richardson, M.J.; Romero, G.Q.; Srivastava, D.S. doi  openurl
  Title Terrestrial support of aquatic food webs depends on light inputs: A geographically-replicated test using tank bromeliads Type Journal Article
  Year 2016 Publication Ecology Abbreviated Journal Ecology  
  Volume 97 Issue 8 Pages 2147-2156  
  Keywords Allochthonous carbon; Allochthony; Aquatic food webs; Autochthonous carbon; Autochthony; Natural microcosms; Stable isotopic analysis; Tank bromeliads; Tropics  
  Abstract Food webs of freshwater ecosystems can be subsidized by allochthonous resources. However, it is still unknown which environmental factors regulate the relative consumption of allochthonous resources in relation to autochthonous resources. Here, we evaluated the importance of allochthonous resources (litterfall) for the aquatic food webs in Neotropical tank bromeliads, a naturally replicated aquatic microcosm. Aquatic invertebrates were sampled in more than 100 bromeliads within either open or shaded habitats and within five geographically distinct sites located in four different countries. Using stable isotope analyses, we determined that allochthonous sources comprised 74% (±17%) of the food resources of aquatic invertebrates. However, the allochthonous contribution to aquatic invertebrates strongly decreased from shaded to open habitats, as light incidence increased in the tanks. The density of detritus in the tanks had no impact on the importance of allochthonous sources to aquatic invertebrates. This overall pattern held for all invertebrates, irrespective of the taxonomic or functional group to which they belonged. We concluded that, over a broad geographic range, aquatic food webs of tank bromeliads are mostly allochthonous-based, but the relative importance of allochthonous subsidies decreases when light incidence favors autochthonous primary production. These results suggest that, for other freshwater systems, some of the between-study variation in the importance of allochthonous subsidies may similarly be driven by the relative availability of autochthonous resources. © 2016 by the Ecological Society of America.  
  Address Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas-SP, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 687  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: