toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Trzcinski, M.K.; Srivastava, D.S.; Corbara, B.; Dezerald, O.; Leroy, C.; Carrias, J.-F.; Dejean, A.; Céréghino, R.; Rudolf, V. doi  openurl
  Title The effects of food web structure on ecosystem function exceeds those of precipitation Type Journal Article
  Year 2016 Publication Journal of Animal Ecology Abbreviated Journal Journal of Animal Ecology  
  Volume 85 Issue 5 Pages 1147-1160  
  Keywords bromeliad; climate change; community interactions; drought; ecosystem function; French Guiana; invertebrates; micro-organisms; phytotelmata; precipitation  
  Abstract Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder–microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder–microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder–microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society  
  Address Boulevard de la Lironde, IRD, botAnique et bioinforMatique de l'Architecture des Plantes (UMR-IRD 123), TA A-51/PS2, Montpellier Cedex 5, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 685  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: