toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Brousseau, L.; Bonal, D.; Cigna, J.; Scotti, I. url  openurl
  Title Highly local environmental variability promotes intrapopulation divergence of quantitative traits: An example from tropical rain forest trees Type Journal Article
  Year 2013 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 112 Issue 6 Pages 1169-1179  
  Keywords common garden experiment; E. grandiflora; ecological traits; Eperua falcata; habitat mosaics; intrapopulation divergence; maternal family inheritance  
  Abstract Background and AimsIn habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.MethodsPhenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.Key ResultsIn both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. Conclusions The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation. © 2013 The Author. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.  
  Address Université de Lorraine, UMR 1137 Ecologie et Ecophysiologie Forestières, Vandœuvre-lès-Nancy, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 October 2013; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mct176; Language of Original Document: English; Correspondence Address: Scotti, I.; INRA, UMR Ecologie des Forêts de Guyane, Campus Agronomique, BP 709, 97387 Kourou cedex, French Guiana; email: ivan.scotti@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 505  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: