toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Schimann, H.; Ponton, S.; Hattenschwiler, S.; Ferry, B.; Lensi, R.; Domenach, A.M.; Roggy, J.C. openurl 
  Title Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: Evidence from N-15 natural abundance and microbial activities Type Journal Article
  Year 2008 Publication Soil Biology & Biochemistry Abbreviated Journal Soil Biol. Biochem.  
  Volume 40 Issue 2 Pages 487-494  
  Keywords soil; litter; nitrate; nitrification; tree rooting; N-15; Eperua falcata; Dicorynia guianensis; tropical forest  
  Abstract Previous studies in lowland tropical rainforests of French Guiana showed that, among non-N-2-fixing trees, two groups of late successional species contrasting in their leaf N-15 natural abundance coexist, suggesting two different main ways of nitrogen acquisition. Two abundant late-successional species typically co-occurring in rainforests in French Guiana, namely Eperua falcata and Dicorynia guianensis, were chosen as representative of each group. Stable isotope techniques and measurements of potentials of microbial N transformation were performed to assess to what extent leaf N-15 natural abundance of these species could be related to (i) delta N-15 signatures of soil mineral N sources and (ii) the capacity of soil to express nitrification and denitrification (both processes being directly involved in the balance between NH4+ and NO3-). Soil delta N-15-NH4+ was roughly similar to leaf delta N-15 of D. guianensis (around 3.5 parts per thousand), suggesting a preferential use of NH4+, whereas in E. falcata, leaf delta N-15 values were closer to root delta N-15-NO3- values (0.2 and -2.0 parts per thousand, respectively), suggesting a preferential use of NO3-. These differences in N source utilization were not accompanied by differences in availability in soil NO3- or in intensity of microbial functions responsible for soil N mineral evolution. However, (i) under both tree species, these functions showed clear spatial partitioning, with denitrification occurring potentially in soil and nitrification in the litter layer, and (ii) E falcata fine roots colonized the litter layer much more strongly than D. guianensis fine roots. This strongly suggests that (i) the contrasted leaf delta N-15 values found in the two late-successional species reveal distinct N acquisition strategies and (ii) the ability of roots to predominantly exploit the litter layer (E falcata) or the soil (D. guianensis) may constitute an important explanation of the observed differences. A complementarity between tree species, based on mineral N resource partitioning (itself resulting from a spatially structured location of the microbial functions responsible for the balance between NH4+ and NO3-), n thus be supposed. (c) 2007 Elsevier Ltd. All rights reserved.  
  Address [Schimann, Heidy; Ponton, Stephane; Domenach, Anne-Marie; Roggy, Jean-Christophe] UMR Ecol Forets Guyane, F-97387 Kourou, French Guiana, Email: heidy_schimann@cirad.fr  
  Corporate Author Thesis  
  Publisher PERGAMON-ELSEVIER SCIENCE LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-0717 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000251655800021 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 146  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: