toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Scotti, I.; Gugerli, F.; Pastorelli, R.; Sebastiani, F.; Vendramin, G.G. openurl 
  Title Maternally and paternally inherited molecular markers elucidate population patterns and inferred dispersal processes on a small scale within a subalpine stand of Norway spruce (Picea abies [L.] Karst.) Type Journal Article
  Year 2008 Publication Forest Ecology and Management Abbreviated Journal For. Ecol. Manage.  
  Volume 255 Issue 11 Pages 3806-3812  
  Keywords chloroplast microsatellites; mitochondrial minisatellites; pollen/seed dispersal; demography; spatial autocorrelation  
  Abstract The within-population spatial structure of genetic diversity is shaped by demographic processes, including historical accidents such as forest perturbations. Information drawn from the analysis of the spatial distribution of genetic diversity is therefore inherently linked to demographic-historical processes that ultimately determine the fate of populations. All adult trees and saplings in a 1.4-ha plot within a mixed Norway spruce (Picea abies [L.] Karst) stand were characterised by means of chloroplast (paternally inherited) markers, and a large sub-sample of these were genotyped at mitochondrial (maternally inherited) molecular markers. These data were used to analyse the spatial distribution of genetic variation and to compare the patterns corresponding to the two marker types. The plot presented non-homogeneous local stem density in the younger cohorts, and the indirect effect of this source of variation on the spatial genetic structure was investigated. Results suggest that (i) spatially limited seed dispersal induced patchiness in genotype distribution, while pollen flow had a homogenising effect; (ii) deviations from random spatial structure were stronger in the demographically most stable portions of the stand, while they were weaker where sudden bursts of regeneration occurred; (iii) spatially overlapping adult and sapling cohorts displayed the same spatial genetic structure (stronger on stable areas, weaker in portions of the stand undergoing events of intense regeneration), which was substantiated by the influence of local demographic processes. Regeneration dynamics as modulated by demography thus influences the distribution of genetic diversity within the stand both in the younger life stages and in the adult population. (C) 2008 Elsevier B.V. All rights reserved.  
  Address [Scotti, I.] INRA, UMR 0745, ECOFOG, F-97387 Kourou, France, Email: ivan.scotti@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher ELSEVIER SCIENCE BV Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-1127 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000257019100019 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 137  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: