toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Peguero, Guille ; Ferrin, Miquel ; Sardans, Jordi ; Verbruggen, Erik ; Ramirez-Rojas , Irène ; Van Langenhove, Leandro ; Verryckt, Lore T. ; Murienne, Jérôme ; Iribar, Amaia ; Zinger, Lucie ; Grau, Oriol ; Orivel, Jérome ; Stahl, Clement ; Courtois, Elodie A. ; Asensio, Dolores ; Gargallo-Garriga, Albert ; Llusia, Joan ; Margalef, Olga ; Ogaya, Roma ; Richter, Andreas ; Janssens, Ivan A. ; Penuelas, Josep doi  openurl
  Title Decay of similitary across tropical forest communities: integrating spatial distance with soil nutrients Type Journal Article
  Year 2021 Publication Ecology Abbreviated Journal  
  Volume 103 Issue 2 Pages e03599  
  Keywords  
  Abstract Understanding the mechanisms that drive the change of biotic assemblages over space and time is the main quest of community ecology. Assessing the relative importance of dispersal and environmental species selection in a range of organismic sizes and motilities has been a fruitful strategy. A consensus for whether spatial and environmental distances operate similarly across spatial scales and taxa, however, has yet to emerge. We used censuses of four major groups of organisms (soil bacteria, fungi, ground insects, and trees) at two observation scales (1-m2 sampling point vs. 2,500-m2 plots) in a topographically standardized sampling design replicated in two tropical rainforests with contrasting relationships between spatial distance and nutrient availability. We modeled the decay of assemblage similarity for each taxon set and site to assess the relative contributions of spatial distance and nutrient availability distance. Then, we evaluated the potentially structuring effect of tree composition over all other taxa. The similarity of nutrient content in the litter and topsoil had a stronger and more consistent selective effect than did dispersal limitation, particularly for bacteria, fungi, and trees at the plot level. Ground insects, the only group assessed with the capacity of active dispersal, had the highest species turnover and the flattest nonsignificant distance−decay relationship, suggesting that neither dispersal limitation nor nutrient availability were fundamental drivers of their community assembly at this scale of analysis. Only the fungal communities at one of our study sites were clearly coordinated with tree composition. The spatial distance at the smallest scale was more important than nutrient selection for the bacteria, fungi, and insects. The lower initial similarity and the moderate variation in composition identified by these distance-decay models, however, suggested that the effects of stochastic sampling were important at this smaller spatial scale. Our results highlight the importance of nutrients as one of the main environmental drivers of rainforest communities irrespective of organismic or propagule size and how the overriding effect of the analytical scale influences the interpretation, leading to the perception of greater importance of dispersal limitation and ecological drift over selection associated with environmental niches at decreasing observation scales.  
  Address  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1022  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: