toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fu, T.; Touboul, D.; Della-Negra, S.; Houel, E.; Amusant, N.; Duplais, C.; Fisher, G.L.; Brunelle, A. url  doi
openurl 
  Title Tandem Mass Spectrometry Imaging and in Situ Characterization of Bioactive Wood Metabolites in Amazonian Tree Species Sextonia rubra Type Journal Article
  Year 2018 Publication Analytical Chemistry Abbreviated Journal Anal. Chem.  
  Volume (down) 90 Issue 12 Pages 7535-7543  
  Keywords  
  Abstract Driven by a necessity for confident molecular identification at high spatial resolution, a new time-of-flight secondary ion mass spectrometry (TOF-SIMS) tandem mass spectrometry (tandem MS) imaging instrument has been recently developed. In this paper, the superior MS/MS spectrometry and imaging capability of this new tool is shown for natural product study. For the first time, via in situ analysis of the bioactive metabolites rubrynolide and rubrenolide in Amazonian tree species Sextonia rubra (Lauraceae), we were able both to analyze and to image by tandem MS the molecular products of natural biosynthesis. Despite the low abundance of the metabolites in the wood sample(s), efficient MS/MS analysis of these γ-lactone compounds was achieved, providing high confidence in the identification and localization. In addition, tandem MS imaging minimized the mass interferences and revealed specific localization of these metabolites primarily in the ray parenchyma cells but also in certain oil cells and, further, revealed the presence of previously unidentified γ-lactone, paving the way for future studies in biosynthesis.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1021/acs.analchem.8b01157 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 834  
Permanent link to this record
 

 
Author Bonhomme, Camille ; Céréghino, Régis ; Carrias, Jean-François ; Compin, Arthur ; Corbara, Bruno ; Jassey, Vincent E.J. ; Leflaive, Joséphine ; Farjalla, Vinicius F. ; Marino, Nicholas A.C. ; Rota, Thibault ; Srivastava, Diane S. ; Leroy, Celine doi  openurl
  Title In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a neotropical ecosystem Type Journal Article
  Year 2021 Publication Journal of Animal Ecology Abbreviated Journal  
  Volume (down) 90 Issue 9 Pages 2015-2026  
  Keywords  
  Abstract While future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in ‘naïve’ Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events. We used rainshelters above rainwater-filled bromeliads of French Guiana to emulate a gradient of drought intensity (from 1 to 3.6 times the current number of consecutive days without rainfall), and we analysed the post-drought dynamics of the taxonomic and functional community structure of aquatic invertebrates to these treatments when immigration is excluded (by netting bromeliads) or permitted (no nets). Drought intensity negatively affected invertebrate community resistance, but had a positive influence on community recovery during the post-drought phase. After droughts of 1 to 1.4 times the current intensities, the overall invertebrate abundance recovered within invertebrate life cycle durations (up to 2 months). Shifts in taxonomic composition were more important after longer droughts, but overall, community composition showed recovery towards baseline states. The non-random patterns of changes in functional community structure indicated that deterministic processes like environmental filtering of traits drive community re-assembly patterns after a drought event. Community resilience mostly relied on in situ tolerance-resistance traits. A rescue effect of immigration after a drought event was weak and mostly apparent under extreme droughts. Under climate change scenarios of drought intensification in Neotropical regions, community and ecosystem resilience could primarily depend on the persistence of suitable habitats and on the resistance traits of species, while metacommunity dynamics could make a minor contribution to ecosystem recovery. Climate change adaptation should thus aim at identifying and preserving local conditions that foster in situ resistance and the buffering effects of habitat features.  
  Address  
  Corporate Author Thesis  
  Publisher British Ecological Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1012  
Permanent link to this record
 

 
Author Dejean, A.; Delabie, J.H.C.; Cerdan, P.; Gibernau, M.; Corbara, B. url  openurl
  Title Are myrmecophytes always better protected against herbivores than other plants? Type Journal Article
  Year 2006 Publication Biological Journal of the Linnean Society Abbreviated Journal Biol. J. Linn. Soc.  
  Volume (down) 89 Issue 1 Pages 91-98  
  Keywords Ant-plant mutualism; Azteca; Maieta; Myrmecophytes; Plant protection; Tococa; ant; defoliation; field method; mutualism; myrmecophyte; plant-herbivore interaction; Azteca; Azteca bequaerti; Clidemia; Crematogaster laevis; Formicidae; Maieta; Maieta guianensis; Pheidole minutula; Tococa; Tococa guianensis  
  Abstract The present field study compared the degree of defoliation of three Guianian melastome, two myrmecophytes (i.e. plants sheltering ants in hollow structures) and Clidemia sp., a nonmyrmecophytic plant serving as a control. Maieta guianensis Aubl. hosted mostly Pheidole minutula Mayr whatever the area, whereas Tococa guianensis Aubl. hosted mostly Azteca bequaerti Wheeler along streams and Crematogaster laevis Mayr or Azteca sp. 1 in the understory where it never blossomed. Only Tococa, when sheltering A. bequaerti in what can be considered as a truly mutualistic relationship, showed significantly less defoliation than control plants. In the other associations, the difference was not significant, but P. minutula is mutualistic with Maieta because it furnishes some protection (exclusion experiments) plus nutrients (previous studies). When devoid of ants, Tococa showed significantly greater defoliation than control plants; therefore, it was deduced that Tococa probably lacks certain antidefoliator metabolites that control plants possess (both Tococa and control plants are protected by ground-nesting, plant-foraging ants, which is termed 'general myrmecological protection'). Consequently, plant-ants other than A. bequaerti probably also protect Tococa slightly, thus compensating for this deficiency and permitting it to live in the understory until treefall gaps provide the conditions necessary for seed production. © 2006 The Linnean Society of London.  
  Address Laboratoire de Psychologie Sociale de la Cognition (UMR CNRS 6024), Université Blaise Pascal, 34 avenue Carnot, 63037 Clermont-Ferrand Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00244066 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 9; Export Date: 22 October 2011; Source: Scopus; Coden: Bjlsb; doi: 10.1111/j.1095-8312.2006.00660.x; Language of Original Document: English; Correspondence Address: Dejean, A.; Laboratoire d'Evolution et Diversité Biologique (UMR CNRS 5174), Université Toulouse III, Bâtiment 4R3, 118 route de Narbonne, 31062 Toulouse Cedex, France; email: dejean@cict.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 355  
Permanent link to this record
 

 
Author Baraloto, C.; Morneau, F.; Bonal, D.; Blanc, L.; Ferry, B. openurl 
  Title Seasonal water stress tolerance and habitat associations within four neotropical tree genera Type Journal Article
  Year 2007 Publication Ecology Abbreviated Journal Ecology  
  Volume (down) 88 Issue 2 Pages 478-489  
  Keywords drought tolerance; French Guiana; photosynthetic capacity; phylogenetically independent contrast; relative growth rate; seasonally flooded forest; specific leaf area; torus translation method; tropical forest  
  Abstract We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera ( Myristicaceae), Symphonia ( Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings ( stems >= 150 cm in height and < 10 cm diameter at breast height [dbh]) and trees ( stems >= 10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas ( where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modi. cation of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.  
  Address INRA, UMR Ecol Forets Guyane, Kourou, French Guiana, Email: baraloto@botany.ufl.edu  
  Corporate Author Thesis  
  Publisher ECOLOGICAL SOC AMER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000245668400021 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 165  
Permanent link to this record
 

 
Author Touchard, A.; Labrière, N.; Roux, O.; Petitclerc, F.; Orivel, J.; Escoubas, P.; Koh, J.M.S.; Nicholson, G.M.; Dejean, A. url  openurl
  Title Venom toxicity and composition in three Pseudomyrmex ant species having different nesting modes Type Journal Article
  Year 2014 Publication Toxicon Abbreviated Journal Toxicon  
  Volume (down) 88 Issue Pages 67-76  
  Keywords Ant venoms; Ants; Arboreal and ground-nesting ants; Evolution; Peptides; Pseudomyrmex; ant venom; acute toxicity; animal experiment; ant; article; biochemical composition; controlled study; disulfide bond; high performance liquid chromatography; lethality; matrix assisted laser desorption ionization time of flight mass spectrometry; molecular weight; myrmecophyte; nesting; nonhuman; predator prey interaction; priority journal; Pseudomyrmex gracilis; Pseudomyrmex penetrator; Pseudomyrmex termitarius; species diversity; toxin analysis  
  Abstract We aimed to determine whether the nesting habits of ants have influenced their venom toxicity and composition. We focused on the genus Pseudomyrmex (Pseudomyrmecinae) comprising terrestrial and arboreal species, and, among the latter, plant-ants that are obligate inhabitants of myrmecophytes (i.e., plants sheltering ants in hollow structures). Contrary to our hypothesis, the venom of the ground-dwelling species, Pseudomyrmex termitarius, was as efficacious in paralyzing prey as the venoms of the arboreal and the plant-ant species, Pseudomyrmexpenetrator and Pseudomyrmexgracilis. The lethal potency of P. termitarius venom was equipotent with that of P. gracilis whereas the venom of P. penetrator was less potent. The MALDI-TOF MS analysis of each HPLC fraction of the venoms showed that P. termitarius venom is composed of 87 linear peptides, while both P. gracilis and P. penetrator venoms (23 and 26 peptides, respectively) possess peptides with disulfide bonds. Furthermore, P. penetrator venom contains three hetero- and homodimeric peptides consisting of two short peptidic chains linked together by two interchain disulfide bonds. The large number of peptides in P. termitarius venom is likely related to the large diversity of potential prey plus the antibacterial peptides required for nesting in the ground. Whereas predation involves only the prey and predator, P. penetrator venom has evolved in an environment where trees, defoliating insects, browsing mammals and ants live in equilibrium, likely explaining the diversity of the peptide structures. © 2014 Elsevier Ltd. All rights reserved.  
  Address Laboratoire Écologie Fonctionnelle et Environnement, 118 Route de Narbonne, 31062 Toulouse, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18793150 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 July 2014; Coden: Toxia; Correspondence Address: Labrière, N.; CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou cedex, France Approved no  
  Call Number EcoFoG @ webmaster @ Serial 553  
Permanent link to this record
 

 
Author Baraloto, C.; Goldberg, D.E.; Bonal, D. openurl 
  Title Performance trade-offs among tropical tree seedlings in contrasting microhabitats Type Journal Article
  Year 2005 Publication Ecology Abbreviated Journal Ecology  
  Volume (down) 86 Issue 9 Pages 2461-2472  
  Keywords canopy gaps; French Guiana; regeneration niche; relative growth rate; seed size; shade tolerance; soil moisture; tropical forest  
  Abstract We investigated performance trade-offs among seedlings of nine tropical tree species during a -five-year field experiment. Seedlings were grown in eight microhabitat types composed of paired gap and shaded understory sites in each of four soil types. We defined performance trade-offs relevant to coexistence as significant pairwise rank reversals for species performance between contrasting situations, of which we characterize three types: microhabitat, fitness component, and ontogenetic. Only 2 of 36 species pairs exhibited microhabitat trade-offs or reversed rankings for survival or relative growth rate (RGR) among microhabitats, and only one species pair reversed performance ranks among soil types. We found stronger evidence for rank reversals between fitness components (survival and RGR), particularly in gap vs. understory environments, suggesting a general trade-off between shade tolerance (survival in shade) and gap establishment (RGR in gaps). Third, the most frequent rank reversals between species pairs occurred between early and later ontogenetic stages, especially between fitness components in contrasting microhabitats. Overall, 15 of 36 pairs of potentially competing species exhibited some type of seedling performance trade-off, two species pairs never outperformed one another, and for 19 species pairs one species was a consistent better performer. We suggest that ontogenetic trade-offs, in concert with microhabitat and fitness component trade-offs, may contribute to species coexistence of long-lived organisms such as tropical trees.  
  Address Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA, Email: baraloto.c@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher ECOLOGICAL SOC AMER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000231373600021 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 252  
Permanent link to this record
 

 
Author Dejean, A.; Lachaud, J.P. openurl 
  Title The hunting behavior of the African ponerine ant Pachycondyla pachyderma Type Journal Article
  Year 2011 Publication Behavioural Processes Abbreviated Journal Behav. Processes  
  Volume (down) 86 Issue 2 Pages 169-173  
  Keywords Hunting behavior; Feeding specialization; Behavioral flexibility; Ponerine ants; Pachycondyla; Myriapoda  
  Abstract The hunting behavior of the African ponerine ant Pachycondyla pachyderma, a semi-specialized centipede predator, appears well adapted to this kind of prey and shows a graded complexity according to the difficulty it has in overwhelming prey. Small prey (5-to-8-mm-long termites) were detected by contact and seized by the thorax while larger prey (>= 30-mm-long centipedes) were frequently detected from a distance and seized by the anterior-most part of their body. Termites and 30-mm-long lithobiomorph centipedes were not always stung, whereas stinging and even repeated stinging was needed for 50-mm-long geophilomorphs and scolopendromorphs. Moreover, overwhelming wide and heavy scolopendromorphs, which have better defensive abilities, involved the use of additional behaviors allowing the workers to capture them safely: venom spreading, and a peculiar stinging posture, the “fatal embrace”. Here the workers seize scolopendromorphs by an antenna or by one of their first legs, wrap themselves around the prey while maintaining their grip with their mandibles and legs, and slowly inject venom into the prey's ventral surface. Workers retrieve small prey solitarily while, for large geophilomorphs and scolopendromorphs, nestmates can be recruited at short range or even at long range through tandem running. (C) 2010 Elsevier B.V. All rights reserved.  
  Address [Dejean, Alain] CNRS, Ecol Forets Guyane UMR CNRS 8172, F-97379 Kourou, France, Email: alain.dejean@wanadoo.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0376-6357 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287984900001 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 301  
Permanent link to this record
 

 
Author Trzcinski, M.K.; Srivastava, D.S.; Corbara, B.; Dezerald, O.; Leroy, C.; Carrias, J.-F.; Dejean, A.; Céréghino, R.; Rudolf, V. doi  openurl
  Title The effects of food web structure on ecosystem function exceeds those of precipitation Type Journal Article
  Year 2016 Publication Journal of Animal Ecology Abbreviated Journal Journal of Animal Ecology  
  Volume (down) 85 Issue 5 Pages 1147-1160  
  Keywords bromeliad; climate change; community interactions; drought; ecosystem function; French Guiana; invertebrates; micro-organisms; phytotelmata; precipitation  
  Abstract Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder–microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder–microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder–microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society  
  Address Boulevard de la Lironde, IRD, botAnique et bioinforMatique de l'Architecture des Plantes (UMR-IRD 123), TA A-51/PS2, Montpellier Cedex 5, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 685  
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Herault, B.; Fine, P.V.A.; Vedel, V.; Lupoli, R.; Mesones, I.; Baraloto, C. doi  openurl
  Title Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests Type Journal Article
  Year 2016 Publication Journal of Animal Ecology Abbreviated Journal Journal of Animal Ecology  
  Volume (down) 85 Issue 1 Pages 227-239  
  Keywords Amazon; Arthropod community; Environmental filtering; Forest habitat; French Guiana; Functional composition; Mass sampling; Peru; Trophic cascades  
  Abstract Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2016 British Ecological Society.  
  Address International Center for Tropical Botany, Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 17 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 731  
Permanent link to this record
 

 
Author Courtois, E.A.; Baraloto, C.; Timothy Paine, C.E.; Petronelli, P.; Blandinieres, P.-A.; Stien, D.; Houel, E.; Bessiere, J.-M.; Chave, J. doi  openurl
  Title Differences in volatile terpene composition between the bark and leaves of tropical tree species Type Journal Article
  Year 2012 Publication Phytochemistry Abbreviated Journal Phytochemistry  
  Volume (down) 82 Issue Pages 81-88  
  Keywords French Guiana; Herbivory; Optimal defense theory; Secondary metabolites; Wood  
  Abstract Volatile terpenes are among the most diverse class of defensive compounds in plants, and they are implicated in both direct and indirect defense against herbivores. In terpenes, both the quantity and the diversity of compounds appear to increase the efficiency of defense as a diverse blend of compounds provides a more efficient protection against a broader range of herbivores and limits the chances that an enemy evolves resistance. Theory predicts that plant defensive compounds should be allocated differentially among tissues according to the value of the tissue, its cost of construction and the herbivore pressure on it. We collected volatile terpenes from bark and leaves of 178 individual tree belonging to 55 angiosperm species in French Guiana and compare the kind, amount, and diversity of compounds in these tissues. We hypothesized that in woody plants, the outermost part of the trunk should hold a more diverse blend of volatile terpenes. Additionally, as herbivore communities associated with the leaves is different to the one associated with the bark, we also hypothesized that terpene blends should be distinct in the bark vs. the leaves of a given species. We found that the mixture of volatile terpenes released by bark is different and more diverse than that released by leaves, both in monoterpenes and sesquiterpenes. This supports our hypothesis and further suggests that the emission of terpenes by the bark should be more important for trunk defense than previously thought.  
  Address Station d'Écologie Expérimentale du CNRS Moulis, USR 2936, 2 route du CNRS, 09200 Moulis, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00319422 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 4 September 2012; Source: Scopus; Coden: Pytca; doi: 10.1016/j.phytochem.2012.07.003; Language of Original Document: English; Correspondence Address: Courtois, E.A.; Station d'Écologie Expérimentale du CNRS Moulis, USR 2936, 2 route du CNRS, 09200 Moulis, France; email: courtoiselodie@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 425  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: