toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Rodríguez Pérez, H.; Borrel, G.; Leroy, C.; Carrias, J.-F.; Corbara, B.; Srivastava, D.S.; Céréghino, R. url  doi
openurl 
  Title Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition Type Journal Article
  Year 2018 Publication Oecologia Abbreviated Journal  
  Volume 187 Issue 1 Pages 267-279  
  Keywords  
  Abstract Future climate scenarios forecast a 10–50% decline in rainfall in Eastern Amazonia. Altered precipitation patterns may change important ecosystem functions like decomposition through either changes in physical and chemical processes or shifts in the activity and/or composition of species. We experimentally manipulated hydroperiods (length of wet:dry cycles) in a tank bromeliad ecosystem to examine impacts on leaf litter decomposition. Gross loss of litter mass over 112 days was greatest in continuously submersed litter, lowest in continuously dry litter, and intermediate over a range of hydroperiods ranging from eight cycles of 7 wet:7 dry days to one cycle of 56 wet:56 dry days. The resilience of litter mass loss to hydroperiod length is due to a shift from biologically assisted decomposition (mostly microbial) at short wet:dry hydroperiods to physicochemical release of dissolved organic matter at longer wet:dry hydroperiods. Biologically assisted decomposition was maximized at wet:dry hydroperiods falling within the range of ambient conditions (12–22 consecutive dry days) but then declined under prolonged wet:dry hydroperiods (28 and 56 dry days. Fungal:bacterial ratios showed a similar pattern as biologically assisted decomposition to hydroperiod length. Our results suggest that microbial communities confer functional resilience to altered hydroperiod in tank bromeliad ecosystems. We predict a substantial decrease in biological activity relevant to decomposition under climate scenarios that increase consecutive dry days by 1.6- to 3.2-fold in our study area, whereas decreased frequency of dry periods will tend to increase the physicochemical component of decomposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1939 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Rodríguez Pérez2018 Serial 850  
Permanent link to this record
 

 
Author Chang, S.-S.; Quignard, F.; Clair, B. url  doi
openurl 
  Title The effect of sectioning and ultrasonication on the mesoporosity of poplar tension wood Type Journal Article
  Year 2017 Publication Wood Science and Technology Abbreviated Journal  
  Volume 51 Issue 3 Pages 507-516  
  Keywords  
  Abstract Increasing interest in understanding tension stress generation in tension wood with fibres having a gelatinous layer (G-layer) has focused attention on the specific role of this layer. To distinguish its contribution from those of other wall layers, the G-layer of wood sections was isolated by ultrasonication. The aim of this study was to assess the effect of sectioning and of the ultrasonic treatment on the mesoporosity of tension wood using nitrogen adsorption–desorption analysis. The results showed that the process of isolating the G-layer using ultrasonication strongly affects its mesoporosity. Most damage was found to occur during sectioning rather than as a result of the 15-min ultrasonic treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-5225 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Chang2017 Serial 782  
Permanent link to this record
 

 
Author Mayer, V.E.; Lauth, J.; Orivel, J. pdf  url
doi  openurl
  Title Convergent structure and function of mycelial galleries in two unrelated Neotropical plant-ants Type Journal Article
  Year 2017 Publication Insectes Sociaux Abbreviated Journal  
  Volume 64 Issue 3 Pages 365-371  
  Keywords  
  Abstract The construction process and use of galleries by Azteca brevis (Myrmicinae: Dolichoderinae) inhabiting Tetrathylacium macrophyllum (Salicaceae) were compared with Allomerus decemarticulatus (Myrmicinae: Solenopsidini) galleries on Hirtella physophora (Chrysobalanaceae). Though the two ant species are phylogenetically distant, the gallery structure seems to be surprisingly similar and structurally convergent: both are pierced with numerous holes and both ant species use Chaetothyrialean fungi to strengthen the gallery walls. Al. decemarticulatus is known to use the galleries for prey capture and whether this is also the case for Az. brevis was tested in field experiments. We placed Atta workers as potential prey/threat on the galleries and recorded the behaviour of both ant species. We found considerable behavioural differences between them: Al. decemarticulatus was quicker and more efficient at capture than was Az. brevis. While most Atta workers were captured after the first 5 min by Al. decemarticulatus, significantly fewer were captured by Az. brevis even after 20 min. Moreover, the captured Atta were sometimes simply discarded and not taken to the nest by Az. brevis. As a consequence, the major function of the galleries built by Az. brevis may, therefore, be defense against intruders in contrast to Al. decemarticulatus which uses them mainly for prey capture. This may be due to a higher need for protein in Al. decemarticulatus compared to coccid-raising Az. brevis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-9098 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Mayer2017 Serial 784  
Permanent link to this record
 

 
Author Ghislain, B.; Engel, J.; Clair, B.; Donaldson, L.; Baas, P. url  doi
openurl 
  Title Diversity of anatomical structure of tension wood among 242 tropical tree species Type Journal Article
  Year 2019 Publication IAWA Journal Abbreviated Journal  
  Volume 40 Issue 4 Pages 765-784  
  Keywords  
  Abstract Angiosperm trees produce tension wood to actively control their vertical position. Tension wood has often been characterised by the presence of an unlignified inner fibre wall layer called the G-layer. Using this definition, previous reports indicate that only one-third of all tree species have tension wood with G-layers. Here we aim to (i) describe the large diversity of tension wood anatomy in tropical tree species, taking advantage of the recent understanding of tension wood anatomy and (ii) explore any link between this diversity and other ecological traits of the species. We sampled tension wood and normal wood in 432 trees from 242 species in French Guiana. The samples were observed using safranin and astra blue staining combined with optical microscopy. Species were assigned to four anatomical groups depending on the presence/absence of G-layers, and their degree of lignification. The groups were analysed for functional traits including wood density and light preferences. Eighty-six% of the species had G-layers in their tension wood which was lignified in most species, with various patterns of lignification. Only a few species did not have G-layers. We found significantly more species with lignified G-layers among shade-tolerant and shade-demanding species as well as species with a high wood density. Our results bring up-to-date the incidence of species with/without G-layers in the tropical lowland forest where lignified G-layers are the most common anatomy of tension wood. Species without G-layers may share a common mechanism with the bark motor taking over the wood motor. We discuss the functional role of lignin in the G-layer.  
  Address  
  Corporate Author Thesis  
  Publisher Brill Place of Publication Leiden, The Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 903  
Permanent link to this record
 

 
Author Bossu, J.; Beauchene, J.; Estevez, Y.; Duplais, C.; Clair, B. pdf  url
openurl 
  Title New insights on wood dimensional stability influenced by secondary metabolites: The case of a fast-growing tropical species Bagassa guianensis aubl Type Journal Article
  Year 2016 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 11 Issue 3 Pages e0150777  
  Keywords  
  Abstract Challenging evaluation of tropical forest biodiversity requires the reporting of taxonomic diversity but also the systematic characterization of wood properties in order to discover new promising species for timber industry. Among wood properties, the dimensional stability is regarded as a major technological characteristic to validate whether a wood species is adapted to commercial uses. Cell structure and organization are known to influence the drying shrinkage making wood density and microfibrils angle markers of choice to predict wood dimensional stability. On the contrary the role of wood extractive content remains unclear. This work focuses on the fast-growing tropical species Bagassa guianensis and we report herein a correlation between heartwood drying shrinkage and extractive content. Chemical extractions and shrinkage experiments were performed on separate wood twin samples to better evaluate correctly how secondary metabolites influence the wood shrinkage behaviour. Extractive content were qualitatively and quantitatively analysed using HPLC and NMR spectroscopy. We found that B guianensis heartwood has a homogeneous low shrinkage along its radius that could not be explained only by its basic density. In fact the low drying shrinkage is correlated to the high extractive content and a corrected model to improve the prediction of wood dimensional stability is presented. Additionally NMR experiments conducted on sapwood and heartwood extracts demonstrate that secondary metabolites biosynthesis occurs in sapwood thus revealing B. guianensis as a Juglans-Type heartwood formation. This work demonstrates that B. guianensis, a fast-growing species associated with high durability and high dimensional stability, is a good candidate for lumber production and commercial purposes. © 2016 Bossu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.  
  Address Cirad, UMR EcoFoG, AgroParisTech, CNRS, INRA, Université des Antilles, Université de Guyane, Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 April 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 673  
Permanent link to this record
 

 
Author Roussel, J.-R.; Clair, B. url  openurl
  Title Evidence of the late lignification of the G-layer in Simarouba tension wood, to assist understanding how non-G-layer species produce tensile stress Type Journal Article
  Year 2015 Publication Tree Physiology Abbreviated Journal Tree Physiology  
  Volume 35 Issue 12 Pages 1366-1377  
  Keywords maturation stress generation; ontogeny; Simarouba amara Aubl.; tension wood cell wall; tree biomechanics  
  Abstract To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees – a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells. © 2015 The Author 2015. Published by Oxford University Press. All rights reserved.  
  Address CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 701, Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 March 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 672  
Permanent link to this record
 

 
Author Bonal, D.; Burban, B.; Stahl, C.; Wagner, F.; Herault, B. url  openurl
  Title The response of tropical rainforests to drought—lessons from recent research and future prospects Type Journal Article
  Year 2016 Publication Annals of Forest Science Abbreviated Journal Annals of Forest Science  
  Volume 73 Issue 1 Pages 27-44  
  Keywords Carbon; Climate; Drought; Global change; Growth; Mortality; Soil; Tropical; Water  
  Abstract Key message: We review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. Context: Tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex. Aims: Herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. Results: This review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. Conclusion: The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. © 2015, INRA and Springer-Verlag France.  
  Address National Institute for Space Research (INPE), São José dos Campos, SP, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 7 March 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 669  
Permanent link to this record
 

 
Author Scotti, I.; González-Martínez, S.C.; Budde, K.B.; Lalague, H. url  openurl
  Title Fifty years of genetic studies: what to make of the large amounts of variation found within populations? Type Journal Article
  Year 2016 Publication Annals of Forest Science Abbreviated Journal Annals of Forest Science  
  Volume 73 Issue 1 Pages 69-75  
  Keywords Intra-specific variation; Microgeography; Natural selection; Population genomics  
  Abstract  
  Address INRA, UMR745 Ecologie des Forêts de Guyane, Campus Agronomique, Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 7 March 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 667  
Permanent link to this record
 

 
Author Amusant, N.; Digeon, A.; Descroix, L.; Bruneau, O.; Bezard, V.; Beauchene, J. url  openurl
  Title Planting rosewood for sustainable essential oil production: Influence of surrounding forest and seed provenance on tree growth and essential oil yields Type Journal Article
  Year 2015 Publication Bois et Forets des Tropiques Abbreviated Journal Bois et Forets des Tropiques  
  Volume 326 Issue 4 Pages 57-65  
  Keywords Aniba rosaeodora Ducke; Dendrometric traits; Essential oil yield; French Guiana; Light effect; Plantation; Rosewood; Seed provenance  
  Abstract Essential oil from the Amazonian rosewood tree (Aniba rosaeodora Ducke) is valued as an important aromatic ingredient in luxury perfumes. Due to over-harvesting in recent decades, rosewood is now listed as an endangered species. Rosewood tree planting is now considered a viable alternative to logging as it can support both reforestation and sustainable agriculture thanks to sales of the essential oil extracted. We planted 605 rosewood trees in French Guiana from two seeds of local provenance, in a 5 445 m2 plot surrounded by primary forest. Nine years after planting, we assessed the effect of the position of the tree relative to the surrounding forest and of the seed provenance on dendrometric traits (height, circumference, above ground woody biomass) and hence on the yield of essential oil. Measurements were made on 99 trees. Average growth rates for the young trees were 0.7 m/year in height, 2.5 cm/year in stem circumference and 990.5 kg dry mass/ha/year in aboveground biomass, while essential oil yields ranged from 0.6% to 3.6% with a mean of 2.1%. The position of the tree relative to the surrounding forest was the main factor affecting tree growth and essential oil production: trees located close to the surrounding forest were significantly smaller and accumulated less essential oil due to the reduced availability of light. Seed provenance had less effect on dendrometric traits and essential oil yields. In conclusion, although planting practices will need to be adapted to avoid the edge effects of proximity to the forest, short-rotation cultivation of rosewood trees could be the optimum and most economically attractive system for the production of essential oil.  
  Address Office National des Forêts (ONF), Département R and D, Pôle de Cayenne, Réserve de Montabo, BP 87002, Cayenne Cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 7 March 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 670  
Permanent link to this record
 

 
Author Thibaut, B.; Denaud, L.; Collet, R.; Marchal, R.; Beauchene, J.; Mothe, F.; Méausoone, P.-J.; Martin, P.; Larricq, P.; Eyma, F. url  openurl
  Title Wood machining with a focus on French research in the last 50 years Type Journal Article
  Year 2016 Publication Annals of Forest Science Abbreviated Journal Annals of Forest Science  
  Volume 73 Issue 1 Pages 163-184  
  Keywords Primary conversion; Secondary processing; Surface quality; Tool wear  
  Abstract Key message: Wood machining is compulsory both for timber separation and the surfacing of wooden objects. The anisotropy, cellular nature and multi-scale level organisation of wood make its cutting complicated to study. During the last 50 years, most of the wood machining subjects were covered by French teams. Context: Woodcutting is a very old technology but scientific research is scarce on the subject. In the last 50 years, much work on basic mechanisms as well as on industrial processes has been done in France. Aims: The specific nature of wood introduces strong differences between wood and metal cutting processes. The paper focuses on French teams’ contributions. Results: The basic aspects of the tool–material interaction for different basic modes in woodcutting are highlighted. In primary conversion such as sawing, veneer cutting or green wood chipping, huge progress comes from automation and the possibility of linking the process to log and product quality through new sensors. In secondary processing, much has been done on the links between the cutting process, surface qualification and the properties of these surfaces for further processing, such as gluing or coating. Tool wear depends on the cutting process, timber quality and species. Trade-offs are required in tool technology and coating technologies may improve tool life. Conclusion: A large amount of knowledge and innovation has come from 50 years of worldwide research effort, with France being particularly active in this period. The transfer of skills from metals cutting industry was often a key, but much is needed to move closer to both metal cutting sector and woodcutting skills among craftsmen. © 2015, INRA and Springer-Verlag France.  
  Address ICA, Université Paul Sabatier Toulouse III, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 7 March 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 668  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: