toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Paine, C.E.T.; Stahl, C.; Courtois, E.A.; Patino, S.; Sarmiento, C.; Baraloto, C. openurl 
  Title Functional explanations for variation in bark thickness in tropical rain forest trees Type Journal Article
  Year 2010 Publication Functional Ecology Abbreviated Journal Funct. Ecol.  
  Volume 24 Issue 6 Pages (down) 1202-1210  
  Keywords bark thickness; fire ecology; flexural rigidity; herbivore defence; periderm; rhytidome; trunk respiration  
  Abstract P>1. The complex structure of tree bark reflects its many functions, which include structural support as well as defence against fire, pests and pathogens. Thick bark, however, might limit respiration by the living tissues of the trunk. Nevertheless, little research has addressed community-level variation in bark thickness, and to the best of our knowledge, no one has tested multiple hypotheses to explain variation in bark thickness. 2. We conducted an extensive survey of bark thickness within and among species of trees in the tropical rain forests of French Guiana. Trunk bark thickness increased by 1 center dot 2 mm per 10 cm increase in stem diameter, and varied widely at all taxonomic levels. Mean trunk bark thickness was 4 center dot 5 mm (range: 0 center dot 5-29 mm), which was less that found in two Amazonian rain forests in previous studies. This survey of bark thickness should be of use for forest management since tree survival through fire is strongly predicted by bark thickness. 3. We combined the survey data with multiple datasets to test several functional hypotheses proposed to explain variation in bark thickness. We found bark to provide an average of 10% of the flexural rigidity of tree stems, which was substantially less than that found in the only other study of bark stiffness. Bark thickness was uncorrelated with species' association with fire-prone habitats, suggesting that the influence of fire on bark thickness does not extend into moist Forests. There was also little evidence that bark thickness is affected by its function as a defence against herbivory. Nor was there evidence that thick bark limits trunk respiration. 4. A re-analysis of previously collected anatomical data indicated that variation in rhytidome (non-conducting outer bark) thickness explains much of the variation in overall bark thickness. As rhytidome is primarily involved in protecting the living tissues of the trunk, we suggest that bark thickness is driven mostly by its defensive function. 5. Functional explanations for the variation in bark thickness were not clear-cut. Nevertheless, this study provides a foundation for further investigation of the functional bases of bark in tropical trees.  
  Address [Paine, Charles Eliot Timothy] ENGREF, UMR Ecol Forets Guyane, F-97387 Kourou, France, Email: timothy.paine@ieu.uzh.ch  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284589400005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 15  
Permanent link to this record
 

 
Author Wagner, F.; Herault, B.; Stahl, C.; Bonal, D.; Rossi, V. openurl 
  Title Modeling water availability for trees in tropical forests Type Journal Article
  Year 2011 Publication Agricultural and Forest Meteorology Abbreviated Journal Agric. For. Meteorol.  
  Volume 151 Issue 9 Pages (down) 1202-1213  
  Keywords Water balance model; Amazonian rainforest; Time domain reflectometer; Bayesian inference; Tree drought stress  
  Abstract Modeling soil water availability for tropical trees is a prerequisite to predicting the future impact of climate change on tropical forests. In this paper we develop a discrete-time deterministic water balance model adapted to tropical rainforest climates, and we validate it on a large dataset that includes micrometeorological and soil parameters along a topographic gradient in a lowland forest of French Guiana. The model computes daily water fluxes (rainfall interception, drainage, tree transpiration and soil plus understorey evapotranspiration) and soil water content using three input variables: daily precipitation, potential evapotranspiration and solar radiation. A novel statistical approach is employed that uses Time Domain Reflectometer (TDR) soil moisture data to estimate water content at permanent wilting point and at field capacity, and root distribution. Inaccuracy of the TDR probes and other sources of uncertainty are taken into account by model calibration through a Bayesian framework. Model daily output includes relative extractable water, REW, i.e. the daily available water standardized by potential available water. The model succeeds in capturing temporal variations in REW regardless of topographic context. The low Root Mean Square Error of Predictions suggests that the model captures the most important drivers of soil water dynamics, i.e. water refilling and root water extraction. Our model thus provides a useful tool to explore the response of tropical forests to climate scenarios of changing rainfall regime and intensity. (C) 2011 Elsevier B.V. All rights reserved.  
  Address [Wagner, F; Herault, B] Univ Antilles Guyane, UMR Ecol Forets Guyane, F-97387 Kourou, France, Email: fabien.wagner@ecofog.gf  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294032000005 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 337  
Permanent link to this record
 

 
Author Leroy, Celine ; Maes, Arthur QuyManh ; Louisanna, Eliane ; Schimann, Heidy ; Séjalon-Delmas, Nathalie doi  openurl
  Title Taxonomic, phylogenetic and functional diversity of rootassociated fungi in bromeliads: effects of host identity, life forms and nutritional modes Type Journal Article
  Year 2021 Publication New Phytologist Abbreviated Journal  
  Volume 231 Issue 3 Pages (down) 1195-1209  
  Keywords  
  Abstract Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown.
We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds.
We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes.
Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.
 
  Address  
  Corporate Author Thesis  
  Publisher New Phytologist Foundation Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1061  
Permanent link to this record
 

 
Author Vleminckx, Jason ; Fortunel, Claire ; Valverde-Barrantes, Oscar ; Paine, C.E. Timothy ; Engel, Julien ; Petronelli, Pascal ; Dourdain, Aurélie K. ; Guevara, Juan ; Béroujon, Solène ; Baraloto, Christophier doi  openurl
  Title Resolving whole-plant economics from leaf, stem and root traits of 1467 Amazonian tree species Type Journal Article
  Year 2021 Publication Oikos Abbreviated Journal  
  Volume 130 Issue 7 Pages (down) 1193-1208  
  Keywords  
  Abstract It remains unclear how evolutionary and ecological processes have shaped the wide variety of plant life strategies, especially in highly diverse ecosystems like tropical forests. Some evidence suggests that species have diversified across a gradient of ecological strategies, with different plant tissues converging to optimize resource use across environmental gradients. Alternative hypotheses propose that species have diversified following independent selection on different tissues, resulting in a decoupling of trait syndromes across organs. To shed light on the subject, we assembled an unprecedented dataset combining 19 leaf, stem and root traits for 1467 tropical tree species inventoried across 71 0.1-ha plots spanning broad environmental gradients in French Guiana. Nearly 50% of the overall functional heterogeneity was expressed along four orthogonal dimensions, after accounting for phylogenetic dependences among species. The first dimension related to fine root functioning, while the second and third dimensions depicted two decoupled leaf economics spectra, and the fourth dimension encompassed a wood economics spectrum. Traits involved in orthogonal functional strategies, five leaf traits in particular but also trunk bark thickness, were consistently associated with a same gradient of soil texture and nutrient availability. Root traits did not show any significant association with edaphic variation, possibly because of the prevailing influence of other factors (mycorrhizal symbiosis, phylogenetic constraints). Our study emphasises the existence of multiple functional dimensions that allow tropical tree species to optimize their performance in a given environment, bringing new insights into the debate around the presence of a whole plant economic spectrum in tropical forest tree communities. It also emphasizes the key role that soil heterogeneity plays in shaping tree species assembly. The extent to which different organs are decoupled and respond to environmental gradients may also help to improve our predictions of species distribution changes in responses to habitat modification and environmental changes.  
  Address  
  Corporate Author Thesis  
  Publisher Nordic Society OIKOS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1030  
Permanent link to this record
 

 
Author Stahl, C.; Herault, B.; Rossi, V.; Burban, B.; Bréchet, C.; Bonal, D. url  openurl
  Title Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? Type Journal Article
  Year 2013 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 173 Issue 4 Pages (down) 1191-1201  
  Keywords Deuterium; Oxygen; Root; Soil water; Tropical rainforest  
  Abstract Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address INRA, UMR EEF 1137, 54280 Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00298549 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 6 December 2013; Source: Scopus; Coden: Oecob; doi: 10.1007/s00442-013-2724-6; Language of Original Document: English; Correspondence Address: Bonal, D.; INRA, UMR EEF 1137, 54280 Champenoux, France; email: bonal@nancy.inra.fr; References: Améglio, T., Archer, P., Cohen, M., Valancogne, C., Daudet, F.A., Dayau, S., Cruiziat, P., Significance and limits in the use of predawn leaf water potential for tree irrigation (1999) Plant Soil, 207, pp. 155-167; Baraloto, C., Morneau, F., Bonal, D., Blanc, L., Ferry, B., Seasonal water stress tolerance and habitat associations within four Neotropical tree genera (2007) Ecology, 88, pp. 478-489; Bonal, D., Barigah, T.S., Granier, A., Guehl, J.-M., Late-stage canopy tree species with extremely low delta C-13 and high stomatal sensitivity to seasonal soil drought in the tropical rainforest of French Guiana (2000) Plant Cell Environ, 23, pp. 445-459; Bonal, D., Atger, C., Barigah, T.S., Ferhi, A., Guehl, J.-M., Ferry, B., Water acquisition patterns of two wet tropical canopy tree species of French Guiana as inferred from H218O extraction profiles (2000) Ann For Sci, 57, pp. 717-724; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob Chang Biol, 14, pp. 1917-1933; Cao, K.F., Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture (2000) J Trop Ecol, 16, pp. 101-116; Carvalheiro, K.O., Nepstad, D.C., Deep soil heterogeneity and fine root distribution in forests and pastures of eastern Amazonia (1996) Plant Soil, 182, pp. 279-285; Chmura, D.J., Anderson, P.D., Howe, G.T., Harrington, C.A., Halofsky, J.E., Peterson, D.L., Shaw, D.C., Brad St Claire, J., Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management (2011) For Ecol Manage, 261, pp. 1121-1142; da Rocha, H.R., Goulden, M.L., Miller, S.D., Menton, M.C., Pinto, L.D.V.O., de Freitas, H.C., e Silva Figueira, A.M., Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia (2004) Ecol Appl, 14, pp. 22-32; Davidson, E., Lefebvre, P.A., Brando, P.M., Ray, D.M., Trumbore, S.E., Solorzano, L.A., Ferreira, J.N., Nepstad, D.C., Carbon inputs and water uptake in deep soils of an eastern Amazon forest (2011) For Sci, 57, pp. 51-58; Engelbrecht, B.M.J., Kursar, T.A., Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants (2003) Oecologia, 136, pp. 383-393; Engelbrecht, B.M.J., Wright, S.J., De Steven, D., Survival and ecophysiology of tree seedlings during El Nino drought in a tropical moist forest in Panama (2002) J Trop Ecol, 18, pp. 569-579; Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L., Meir, P., Evidence from Amazonian forests is consistent with isohydric control of leaf water potential (2006) Plant Cell Environ, 29, pp. 151-165; Goulden, M.L., Miller, S.D., da Rocha, H.R., Menton, M.C., De Freitas, H.C., Silva Figueira, A.M.E., De Sousa, C.A.D., Diel and seasonal patterns of tropical forest CO2 exchange (2004) Ecol Appl, 14, pp. 42-54; Gourlet-Fleury, S., Ferry, B., Molino, J.F., Petronelli, P., Schmitt, L., Experimental plots: key features (2004) Ecology and management of a Neotropical Rainforest, pp. 3-60. , In: Gourlet-Fleury S, Guehl JM, Laroussinie O (eds) Lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, Paris; Huc, R., Ferhi, A., Guehl, J.M., Pioneer and late stage tropical rainforest tree species (French Guyana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential (1994) Oecologia, 99, pp. 297-305; Hutyra, L.R., Munger, J.W., Saleska, S., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J Geophys Res, 112, pp. G03008. , doi:10.1029/2006JG000365; Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E., Schulze, E.D., A global analysis of root distributions for terrestrial biomes (1996) Oecologia, 108, pp. 389-411; Jobbagy, E.G., Jackson, R.B., The distribution of soil nutrients with depth: global patterns and the imprint of plants (2001) Biogeochemistry, 53, pp. 51-77; Kozlowski, T.T., Pallardy, S.G., Acclimation and adaptive responses of woody plants to environmental stresses (2002) Bot Rev, 68, pp. 270-334; Malhi, Y., Wright, J., Spatial patterns and recent trends in the climate of tropical rainforest regions (2004) Phil Trans R Soc Lond B, 359, pp. 311-329; Markewitz, D., Devine, S., Davidson, E.A., Brando, P., Nepstad, D.C., Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake (2010) New Phytol, 187, pp. 592-607; Meinzer, F.C., Andrade, J.L., Goldstein, G., Holbrook, N.M., Cavelier, J., Wright, S.J., Partitioning of soil water among trees in a seasonally dry tropical forest (1999) Oecologia, 121, pp. 293-301; Merbold, L., Ardo, J., Arneth, A., Scholes, R.J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Kutsch, W.L., Precipitation as driver of carbon fluxes in 11 African ecosystems (2009) Biogeosciences, 6, pp. 1027-1041; Moreira, M., Sternberg, L., Nepstad, D., Vertical patterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon: an isotopic approach (2000) Plant Soil, 222, pp. 95-107; Nepstad, D.C., De Carvalho, C.R., Davidson, E.A., Jipp, P.H., Lefebvre, P.A., Negreiros, G.H., Da Silva, E.D., Vieira, S., The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures (1994) Nature, 372, pp. 666-669; Oliveira, R., Dawson, T., Burgess, S., Nepstad, D., Hydraulic redistribution in three Amazonian trees (2005) Oecologia, 145, pp. 354-363; Poorter, L., Markesteijn, L., Seedling traits determine drought tolerance of tropical tree species (2008) Biotropica, 40, pp. 321-331; (2010) R: A Language and Environment for Statistical Computing, , R Development Core Team, Vienna: R Foundation for Statistical Computing; Romero-Saltos, H., LdSL, S., Moreira, M.Z., Nepstad, D.C., Rainfall exclusion in an eastern Amazonian forest alters soil water movement and depth of water uptake (2005) Am J Bot, 92, pp. 443-455; Sobrado, M.A., Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest (1997) Acta Oecol, 18, pp. 383-391; Stahl, C., Burban, B., Bompy, F., Jolin, Z.B., Sermage, J., Bonal, D., Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana (2010) J Trop Ecol, 26, pp. 393-405; Stahl, C., Burban, B., Goret, J.-Y., Bonal, D., Seasonal variations in stem CO2 efflux in the Neotropical rainforest of French Guiana (2011) Ann For Sci, 68, pp. 771-782; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees (2013) Biotropia, 45, pp. 155-164; Sternberg, L., Green, L., Moreira, M.Z., Nepstad, D.C., Martinelli, L.A., Victoria, R., Root distribution in an Amazonian seasonal forest (1998) Plant Soil, 205, pp. 45-50; Sternberg, L., Moreira, M., Nepstad, D.C., Uptake of water by lateral roots of small trees in an Amazonian tropical forest (2002) Plant Soil, 238, pp. 151-158; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agric For Meteorol, 151, pp. 1202-1213; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Hérault, B., Water availability is the main climate driver of Neotropical tree growth (2012) PLoS ONE, 7, pp. e34074; Wang, G., Alo, C., Mei, R., Sun, S., Droughts, hydraulic redistribution, and their impact on vegetation composition in the Amazon forest (2011) Plant Ecol, 212, pp. 663-673; Williams, M., Malhi, Y., Nobre, A.D., Rastetter, E.B., Grace, J., Pereira, M.G.P., Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rainforest: a modelling analysis (1998) Plant Cell Environ, 21, pp. 953-968; Yavitt, J.B., Wright, S.J., Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama (2001) Biotropica, 33, pp. 421-434; Zapater, M., Hossann, C., Bréda, N., Bréchet, C., Bonal, D., Granier, A., Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling (2011) Trees Struct Funct, 25, pp. 885-894; Zhang, Y., Tan, Z., Song, Q., Yu, G., Sun, X., Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest (2010) Atmos Environ, 44, pp. 3886-3893 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 514  
Permanent link to this record
 

 
Author Verryckt, L.T.; Ellsworth, D.S.; Vicca, S.; Van Langenhove, L.; Peñuelas, J.; Ciais, P.; Posada, J.M.; Stahl, C.; Coste, S.; Courtois, E.A.; Obersteiner, M.; Chave, J.; Janssens, I.A. doi  openurl
  Title Can light-saturated photosynthesis in lowland tropical forests be estimated by one light level? Type Journal Article
  Year 2020 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 52 Issue 6 Pages (down) 1183-1193  
  Keywords canopy architecture; interspecific variation; light intensity; lowland environment; parameter estimation; photon flux density; photosynthesis; saturation; tropical forest; French Guiana  
  Abstract Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1. © 2020 The Association for Tropical Biology and Conservation  
  Address UMR 5174, Laboratoire Evolution et Diversité Biologique, CNRS, Université Paul Sabatier, Toulouse, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 948  
Permanent link to this record
 

 
Author Duplais, C.; Papon, N.; Courdavault, V. doi  openurl
  Title Tracking the Origin and Evolution of Plant Metabolites Type Journal Article
  Year 2020 Publication Trends in Plant Science Abbreviated Journal Trends Plant Sci.  
  Volume 25 Issue 12 Pages (down) 1182-1184  
  Keywords enzyme evolution; iridoids; Lamiaceae; nepetalactone; plant metabolites  
  Abstract Iridoids are monoterpenes that are produced by various plants as chemical defense molecules. Lichman et al. recently described the timeline of molecular events that underpin the re-emergence of iridoid biosynthesis in an independent lineage of aromatic plants (catnip). This study represents a benchmark for studying enzyme and metabolite evolution in different clades across the tree of life. © 2020 Elsevier Ltd  
  Address Biomolécules et Biotechnologies Végétales (BBV) EA 2106, Université de Tours, Tours, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13601385 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 937  
Permanent link to this record
 

 
Author Brousseau, L.; Bonal, D.; Cigna, J.; Scotti, I. url  openurl
  Title Highly local environmental variability promotes intrapopulation divergence of quantitative traits: An example from tropical rain forest trees Type Journal Article
  Year 2013 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 112 Issue 6 Pages (down) 1169-1179  
  Keywords common garden experiment; E. grandiflora; ecological traits; Eperua falcata; habitat mosaics; intrapopulation divergence; maternal family inheritance  
  Abstract Background and AimsIn habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.MethodsPhenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.Key ResultsIn both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. Conclusions The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation. © 2013 The Author. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.  
  Address Université de Lorraine, UMR 1137 Ecologie et Ecophysiologie Forestières, Vandœuvre-lès-Nancy, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 October 2013; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mct176; Language of Original Document: English; Correspondence Address: Scotti, I.; INRA, UMR Ecologie des Forêts de Guyane, Campus Agronomique, BP 709, 97387 Kourou cedex, French Guiana; email: ivan.scotti@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 505  
Permanent link to this record
 

 
Author Franklin, J.; Andrade, R.; Daniels, M.L.; Fairbairn, P.; Fandino, M.C.; Gillespie, T.W.; González, G.; Gonzalez, O.; Imbert, D.; Kapos, V.; Kelly, D.L.; Marcano-Vega, H.; Meléndez-Ackerman, E.J.; McLaren, K.P.; McDonald, M.A.; Ripplinger, J.; Rojas-Sandoval, J.; Ross, M.S.; Ruiz, J.; Steadman, D.W.; Tanner, E.V.J.; Terrill, I.; Vennetier, M. pdf  url
doi  openurl
  Title Geographical ecology of dry forest tree communities in the West Indies Type Journal Article
  Year 2018 Publication Journal of Biogeography Abbreviated Journal J Biogeogr  
  Volume 45 Issue 5 Pages (down) 1168-1181  
  Keywords beta diversity; Caribbean; community composition; seasonally dry tropical forest; species turnover; tropical dry forest; West Indies  
  Abstract Abstract Aim Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West Indies) is floristically distinct from Neotropical SDTF in Central and South America. We evaluate whether tree species composition was associated with climatic gradients or geographical distance. Turnover (dissimilarity) in species composition of different islands or among more distant sites would suggest communities structured by speciation and dispersal limitations. A nested pattern would be consistent with a steep resource gradient. Correlation of species composition with climatic variation would suggest communities structured by broad-scale environmental filtering. Location The West Indies (The Bahamas, Cuba, Hispaniola, Jamaica, Puerto Rico, US Virgin Islands, Guadeloupe, Martinique, St. Lucia), Providencia (Colombia), south Florida (USA) and Florida Keys (USA). Taxon Seed plants?woody taxa (primarily trees). Methods We compiled 572 plots from 23 surveys conducted between 1969 and 2016. Hierarchical clustering of species in plots, and indicator species analysis for the resulting groups of sites, identified geographical patterns of turnover in species composition. Nonparametric analysis of variance, applied to principal components of bioclimatic variables, determined the degree of covariation in climate with location. Nestedness versus turnover in species composition was evaluated using beta diversity partitioning. Generalized dissimilarity modelling partitioned the effect of climate versus geographical distance on species composition. Results Despite a set of commonly occurring species, SDTF tree community composition was distinct among islands and was characterized by spatial turnover on climatic gradients that covaried with geographical gradients. Greater Antillean islands were characterized by endemic indicator species. Northern subtropical areas supported distinct, rather than nested, SDTF communities in spite of low levels of endemism. Main conclusions The SDTF species composition was correlated with climatic variation. SDTF on large Greater Antillean islands (Hispaniola, Jamaica and Cuba) was characterized by endemic species, consistent with their geological history and the biogeography of plant lineages. These results suggest that both environmental filtering and speciation shape Caribbean SDTF tree communities.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0305-0270 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/jbi.13198 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 846  
Permanent link to this record
 

 
Author Coutand, C.; Fournier, M.; Moulia, B. openurl 
  Title The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation Type Journal Article
  Year 2007 Publication Plant Physiology Abbreviated Journal Plant Physiol.  
  Volume 144 Issue 2 Pages (down) 1166-1180  
  Keywords  
  Abstract In tree trunks, the motor of gravitropism involves radial growth and differentiation of reaction wood (Archer, 1986). The first aim of this study was to quantify the kinematics of gravitropic response in young poplar (Populus nigra x Populus deltoides, 'I4551') by measuring the kinematics of curvature fields along trunks. Three phases were identified, including latency, upward curving, and an anticipative autotropic decurving, which has been overlooked in research on trees. The biological and mechanical bases of these processes were investigated by assessing the biomechanical model of Fournier et al. (1994). Its application at two different time spans of integration made it possible to test hypotheses on maturation, separating the effects of radial growth and cross section size from those of wood prestressing. A significant correlation between trunk curvature and Fournier's model integrated over the growing season was found, but only explained 32% of the total variance. Moreover, over a week's time period, the model failed due to a clear out phasing of the kinetics of radial growth and curvature that the model does not take into account. This demonstrates a key role of the relative kinetics of radial growth and the maturation process during gravitropism. Moreover, the degree of maturation strains appears to differ in the tension woods produced during the upward curving and decurving phases. Cell wall maturation seems to be regulated to achieve control over the degree of prestressing of tension wood, providing effective control of trunk shape.  
  Address Univ Clermont Ferrand, Inst Natl Recherche Agronom, Physiol Integree Arbre Fruitier, Unite Mixte Recherche 547, F-63100 Clermont Ferrand, France, Email: coutand@clermont.inra.fr  
  Corporate Author Thesis  
  Publisher AMER SOC PLANT BIOLOGISTS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-0889 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000247075000055 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 162  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: