|   | 
Details
   web
Records
Author (down) Valverde-Barrantes, Oscar J. ; Authier, Louise ; Schimann, Heidy ; Baraloto, Christophier
Title Root anatomy helps to reconcile observed root trait syndromes in tropical tree species Type Journal Article
Year 2021 Publication American Journal of Botany Abbreviated Journal
Volume 108 Issue 5 Pages 744-755
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Botanical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1056
Permanent link to this record
 

 
Author (down) Vacher, Corinne ; Castagneyrol, Bastien ; Jousselin, Emmanuelle ; Schimann, Heidy
Title Trees and Insects Have Microbiomes: Consequences for Forest Health and Management Type Journal Article
Year 2021 Publication Current Forestry Reports Abbreviated Journal
Volume 7 Issue 2 Pages 81-96
Keywords
Abstract Purpose of Review Forest research has shown for a long time that microorganisms influence tree-insect interactions, but the complexity of microbial communities, as well as the holobiont nature of both trees and insect herbivores, has only recently been taken fully into account by forest entomologists and ecologists. In this article, we review recent findings on the effects of tree-insect-microbiome interactions on the health of tree individuals and discuss whether and how knowledge about tree and insect microbiomes could be integrated into forest health management strategies. We then examine the effects tree-insect-microbiome interactions on forest biodiversity and regeneration, highlighting gaps in our knowledge at the ecosystem scale. Recent Findings Multiple studies show that herbivore damage in forest ecosystems is clearly influenced by tripartite interactions between trees, insects and their microbiomes. Recent research on the plant microbiome indicates that microbiomes of planted trees could be managed at several stages of production, from seed orchards to mature forests, to improve the resistance of forest plantations to insect pests. Therefore, the tree microbiome could potentially be fully integrated into forest health management strategies. To achieve this aim, future studies will have to combine, as has long been done in forest research, holistic goals with reductionist approaches. Efforts should be made to improve our understanding of how microbial fluxes between trees and insects determine the health of forest ecosystems, and to decipher the underlying mechanisms, through the development of experimental systems in which microbial communities can be manipulated. Knowledge about tree-insect-microbiome interactions should then be integrated into spatial models of forest dynamics to move from small-scale mechanisms to forest ecosystem-scale predictions.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1059
Permanent link to this record
 

 
Author (down) Urbina, Ifigenia ; Grau, Oriol ; Sardans, Jordi ; Margalef, Olga ; Peguero, Guillermo ; Asensio, Dolores ; Llusia, Joan ; Ogaya, Roma ; Gargallo-Garriga, Albert ; Van Langenhove, Leandro ; Verryckt, Lore T. ; Courtois, Elodie A. ; Stahl, Clement ; Soong, Jennifer L. ; Chave, Jérome ; Hérault, Bruno ; Janssens, Ivan A. ; Sayer, Emma ; Penuelas, Josep
Title High foliar K and P resorption efficiencies in old-growth tropical forests growing on nutrient-poor soils Type Journal Article
Year 2021 Publication Ecology and Evolution Abbreviated Journal
Volume 11 Issue 13 Pages 8969-8982
Keywords
Abstract Resorption is the active withdrawal of nutrients before leaf abscission. This mechanism represents an important strategy to maintain efficient nutrient cycling; however, resorption is poorly characterized in old-growth tropical forests growing in nutrient-poor soils. We investigated nutrient resorption from leaves in 39 tree species in two tropical forests on the Guiana Shield, French Guiana, to investigate whether resorption efficiencies varied with soil nutrient, seasonality, and species traits. The stocks of P in leaves, litter, and soil were low at both sites, indicating potential P limitation of the forests. Accordingly, mean resorption efficiencies were higher for P (35.9%) and potassium (K; 44.6%) than for nitrogen (N; 10.3%). K resorption was higher in the wet (70.2%) than in the dry (41.7%) season. P resorption increased slightly with decreasing total soil P; and N and P resorptions were positively related to their foliar concentrations. We conclude that nutrient resorption is a key plant nutrition strategy in these old-growth tropical forests, that trees with high foliar nutrient concentration reabsorb more nutrient, and that nutrients resorption in leaves, except P, are quite decoupled from nutrients in the soil. Seasonality and biochemical limitation played a role in the resorption of nutrients in leaves, but species-specific requirements obscured general tendencies at stand and ecosystem level.
Address
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1011
Permanent link to this record
 

 
Author (down) Urbina, I.; Grau, O.; Sardans, J.; Ninot, J.M.; Peñuelas, J.
Title Encroachment of shrubs into subalpine grasslands in the Pyrenees changes the plant-soil stoichiometry spectrum Type Journal Article
Year 2020 Publication Plant and Soil Abbreviated Journal Plant Soil
Volume 448 Issue 1-2 Pages 37-53
Keywords Nutrient stocks; Plant strategy; Plant-soil stoichiometry; Shrub encroachment; Subalpine grassland succession; aboveground biomass; biogeochemical cycle; carbon sequestration; ectomycorrhiza; fungus; grass; nitrogen; nutrient uptake; shrub; soil-vegetation interaction; stoichiometry; subalpine environment; succession; Europe; Pyrenees; Fungi
Abstract Aims: Shrub encroachment has been reported over a large proportion of the subalpine grasslands across Europe and is expected to have an important impact on the biogeochemical cycle of these ecosystems. We investigated the stoichiometric changes in the plant-soil system along the succession (e.g. increase in encroachment from unencroached grassland to mature shrubland) at two contrasting sites in the Pyrenees. Methods: We analyzed the chemical composition (C, N,15N, P, K, Ca, Mg and Fe) in the soil and in the aboveground plant compartments (leaves, leaf-litter and stems) of the main herbaceous species and shrubs at three contrasting stages of the succession: unencroached grassland, young shrubland and mature shrubland. Results: The plant-soil stoichiometry spectrum differed between the successional stages. Shrub encroachment generally increased the concentration of C and Ca and the C:N ratio and often reduced to concentrations of N, P and K in the leaves and leaf-litter, while several soil nutrient concentrations (N, P, K Ca and Mg) decreased. The stocks of C, N, P, Ca, and Mg in the total aboveground biomass increased with encroachment. Conclusions: Shrub encroachment favored the dominance of long-lived species with low concentrations of N and P in the plant-soil compartments, high C:nutrient ratios in the aboveground biomass and increase the uptake of N through ericoid or ectomycorrhizal fungi. We highlight the role of shrubs in the sequestration of C and nutrients through the allocation to the aboveground biomass. The changes in plant-soil elemental composition and stocks suggest a slowdown of the biogeochemical cycles in the subalpine mountain areas where shrub encroachment occurred. © 2020, Springer Nature Switzerland AG.
Address Biodiversity Research Institute (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, Spain
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032079x (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 983
Permanent link to this record
 

 
Author (down) Tysklind, N.; Etienne, M.-P.; Scotti-Saintagne, C.; Tinaut, A.; Casalis, M.; Troispoux, V.; Cazal, S.-O.; Brousseau, L.; Ferry, B.; Scotti, I.
Title Microgeographic local adaptation and ecotype distributions: The role of selective processes on early life-history traits in sympatric, ecologically divergent Symphonia populations Type Journal Article
Year 2020 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution
Volume 10 Issue 19 Pages 10735-10753
Keywords determinants of plant community diversity and structure; evolutionary ecology; landscape ecology; local adaptation; Neotropical forest; plant development and life-history traits; reciprocal transplantation experiments; Symphonia
Abstract Trees are characterized by the large number of seeds they produce. Although most of those seeds will never germinate, plenty will. Of those which germinate, many die young, and eventually, only a minute fraction will grow to adult stage and reproduce. Is this just a random process? Do variations in germination and survival at very young stages rely on variations in adaptations to microgeographic heterogeneity? and do these processes matter at all in determining tree species distribution and abundance?. We have studied these questions with the Neotropical Symphonia tree species. In the Guiana shield, Symphonia are represented by at least two sympatric taxa or ecotypes, Symphonia globulifera found almost exclusively in bottomlands, and a yet undescribed more generalist taxon/ecotype, Symphonia sp1. A reciprocal transplantation experiment (510 seeds, 16 conditions) was set up and followed over the course of 6 years to evaluate the survival and performance of individuals from different ecotypes and provenances. Germination, survival, growth, and herbivory showed signs of local adaptation, with some combinations of ecotypes and provenances growing faster and surviving better in their own habitat or provenance region. S. globulifera was strongly penalized when planted outside its home habitat but showed the fastest growth rates when planted in its home habitat, suggesting it is a specialist of a high-risk high-gain strategy. Conversely, S. sp1 behaved as a generalist, performing well in a variety of environments. The differential performance of seeds and seedlings in the different habitats matches the known distribution of both ecotypes, indicating that environmental filtering at the very early stages can be a key determinant of tree species distributions, even at the microgeographic level and among very closely related taxa. Furthermore, such differential performance also contributes to explain, in part, the maintenance of the different Symphonia ecotypes living in intimate sympatry despite occasional gene flow. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd
Address UMR AMAP, IRD, Cirad, CNRS, INRAE, Université Montpellier, Montpellier, France
Corporate Author Thesis
Publisher John Wiley and Sons Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20457758 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 951
Permanent link to this record
 

 
Author (down) Tysklind, N.; Blanc-Jolivet, C.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; García-Dávila, C.R.; Sebbenn, A.M.; Caron, H.; Troispoux, V.; Guichoux, E.; Degen, B.
Title Development of nuclear and plastid SNP and INDEL markers for population genetic studies and timber traceability of Carapa species Type Journal Article
Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.
Volume 11 Issue 3 Pages 337-339
Keywords Carapa guianensis; Carapa surinamensis; DNA-fingerprints; Geographical origin; MassARRAY; MiSeq; RADSeq; Tropical timber
Abstract Low coverage MiSeq genome sequencing and restriction associated DNA sequencing (RADseq) were used to identify nuclear and plastid SNP and INDEL genetic markers in Carapa guianensis. 261 genetic markers including 237 nuclear SNPs, 22 plastid SNPs, and 2 plastid INDELs are described based on 96 genotyped individuals from French Guiana, Brazil, Peru, and Bolivia. The best 117 SNPs for identifying population structure and performing individual assignment are assembled into four multiplexes for MassARRAY genotyping.
Address BIOGECO, INRA, University Bordeaux, Cestas, 33610, France
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 18777252 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 909
Permanent link to this record
 

 
Author (down) Turcotte, M.M.; Thomsen, C.J.M.; Broadhead, G.T.; Fine, P.V.A.; Godfrey, R.M.; Lamarre, G.P.A.; Meyer, S.T.; Richards, L.A.; Johnson, M.T.J.
Title Percentage leaf herbivory across vascular plant species Type Journal Article
Year 2014 Publication Ecology Abbreviated Journal Ecology
Volume 95 Issue 3 Pages 788-788
Keywords
Abstract Herbivory is viewed as a major driver of plant evolution and the most important energy pathway from plants to higher trophic levels. Therefore, understanding patterns of herbivory on plants remains a key focus in evolution and ecology. The evolutionary impacts of leaf herbivory include altering plant fitness, local adaptation, the evolution of defenses, and the diversification of plants as well as natural enemies. Leaf herbivory also impacts ecological processes such as plant productivity, community composition, and ecosystem nutrient cycling. Understanding the impact of herbivory on these ecological and evolutionary processes requires species-specific, as opposed to community-level, measures of herbivory. In addition, species-specific data enables the use of modern comparative methods to account for phylogenetic non-independence. Although hundreds of studies have measured natural rates of leaf consumption, we are unaware of any accessible compilation of these data. We created such a data set to provide the raw data needed to test general hypotheses relating to plant?herbivore interactions and to test the influence of biotic and abiotic factors on herbivory rates across large spatial scales. A large repository will make this endeavor more efficient and robust. In total, we compiled 2641 population-level measures for either annual or daily rates of leaf herbivory across 1145 species of vascular plants collected from 189 studies. All damage measures represent natural occurrences of herbivory that span numerous angiosperm, gymnosperm, and fern species. To enable researchers to explore the causes of variation in herbivory and how these might interact, we added information about the study sites including: geolocation, climate classification, habitat descriptions (e.g., seashore, grassland, forest, agricultural fields), and plant trait information concerning growth form and duration (e.g., annual vs. perennial). We also included extensive details of the methodology used to measure leaf damage, including seasons and months of sampling, age of leaves, and the method used to estimate percentage area missing. We anticipate that these data will make it possible to test important hypotheses in the plant?herbivore literature, including the plant apparency hypothesis, the latitudinal-herbivory defense hypothesis, the resource availability hypothesis, and the macroevolutionary escalation of defense hypothesis.
Address
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-9658 ISBN Medium
Area Expedition Conference
Notes doi: 10.1890/13-1741.1 Approved no
Call Number EcoFoG @ webmaster @ Serial 575
Permanent link to this record
 

 
Author (down) Trzcinski, M.K.; Srivastava, D.S.; Corbara, B.; Dezerald, O.; Leroy, C.; Carrias, J.-F.; Dejean, A.; Céréghino, R.; Rudolf, V.
Title The effects of food web structure on ecosystem function exceeds those of precipitation Type Journal Article
Year 2016 Publication Journal of Animal Ecology Abbreviated Journal Journal of Animal Ecology
Volume 85 Issue 5 Pages 1147-1160
Keywords bromeliad; climate change; community interactions; drought; ecosystem function; French Guiana; invertebrates; micro-organisms; phytotelmata; precipitation
Abstract Ecosystems are being stressed by climate change, but few studies have tested food web responses to changes in precipitation patterns and the consequences to ecosystem function. Fewer still have considered whether results from one geographic region can be applied to other regions, given the degree of community change over large biogeographic gradients. We assembled, in one field site, three types of macroinvertebrate communities within water-filled bromeliads. Two represented food webs containing both a fast filter feeder–microbial and slow detritivore energy channels found in Costa Rica and Puerto Rico, and one represented the structurally simpler food webs in French Guiana, which only contained the fast filter feeder–microbial channel. We manipulated the amount and distribution of rain entering bromeliads and examined how food web structure mediated ecosystem responses to changes in the quantity and temporal distribution of precipitation. Food web structure affected the survival of functional groups in general and ecosystem functions such as decomposition and the production of fine particulate organic matter. Ecosystem processes were more affected by decreased precipitation than were the abundance of micro-organisms and metazoans. In our experiments, the sensitivity of the ecosystem to precipitation change was primarily revealed in the food web dominated by the single filter feeder–microbial channel because other top-down and bottom-up processes were weak or absent. Our results show stronger effects of food web structure than precipitation change per se on the functioning of bromeliad ecosystems. Consequently, we predict that ecosystem function in bromeliads throughout the Americas will be more sensitive to changes in the distribution of species, rather than to the direct effects caused by changes in precipitation. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society
Address Boulevard de la Lironde, IRD, botAnique et bioinforMatique de l'Architecture des Plantes (UMR-IRD 123), TA A-51/PS2, Montpellier Cedex 5, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 1 September 2016 Approved no
Call Number EcoFoG @ webmaster @ Serial 685
Permanent link to this record
 

 
Author (down) Tritsch, I.; Gond, V.; Oszwald, J.; Davy, D.; Grenand, P.
Title Territorial dynamics in the wayãpi and teko amerindian communities of the middle oyapock, camopi, French Guiana Type Journal Article
Year 2012 Publication Bois et Forets des Tropiques Abbreviated Journal Bois Forets Tropiques
Volume 66 Issue 311 Pages 49-61
Keywords Amerindian populations; French Guiana; Protected area; Slash-and-burn cultivation; System of natural resource use; Territorial management
Abstract Amerindian populations have been experiencing major socio-economic changes for several decades, in a context of rapid demographic growth. This article addresses the ways in which the Amerindian populations of French Guiana have adapted their land use and natural resource management systems to cope with the pressures exerted on their lands and lifestyles. The aim was to investigate the resilience of their systems for land and natural resource use. The concentration of Amerindian habitats around the town of Camopi, which is linked to the availability of health and school infrastructure and to efforts to promote a sedentary lifestyle, is a factor of increasing natural resource scarcity and social alienation. The system is adapting by fragmenting the Amerindian habitat into peripheral villages and extending farmlands along rivers to access to more space. These villages replicate patterns of spatial organisation that are similar to those found in traditional Wayãpi and Teko villages, except that habitation is sedentary, as families hope to have their villages equipped with at lEast drinking water and electrification. Habitat fragmentation is spatially limited by the time taken for daily journeys to school, and therefore by school bus services (dugout), which means that land use is effectively conditioned by services and infrasrtucture. Other living quarters are maintained at a distance from the village, so that the habitat is bi-local: families have a main home where services and infrastructure are available, and a secondary itinerant home further away, which is chosen according to the quality of farmland, the hunting yield of hunting resources, the history of the location and family networks. These distant homes are kept up by spending income from social assistance on transport. It's thus shown that these Amerindian systems for land and natural resource uses are highly adaptable, in that their sustainability is guaranteed by the reconstruction of a circular pattern of mobility in accordance with the intensity of resource use.
Address Ird Observatoire Hommes-Milieux Oyapock, Cnrs Guyane, 2, avenue Gustave Charlery, 97300 Cayenne, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006579x (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 17 April 2013; Source: Scopus; Language of Original Document: French; Correspondence Address: Tritsch, I.; Université des Antilles et de la Guyane/Cirad, Umr Écologie des forêts de Guyane, Campus agronomique de Kourou, 97310 Kourou, France Approved no
Call Number EcoFoG @ webmaster @ Serial 482
Permanent link to this record
 

 
Author (down) Tremolieres, M.; Noel, V.; Herault, B.
Title Phosphorus and nitrogen allocation in Allium ursinum on an alluvial floodplain (Eastern France). Is there an effect of flooding history? Type Journal Article
Year 2009 Publication Plant and Soil Abbreviated Journal Plant Soil
Volume 324 Issue 1-2 Pages 279-289
Keywords Allium ursinum; Flooding history; Nitrogen; Nutrient bioavailability; Phosphorus; Rhine
Abstract The change in phosphorus and nitrogen content in a common geophyte spring species, Allium ursinum, is studied in alluvial forests in relation to three flooding histories related to river regulation: (1) annually flooded, (2) unflooded for 30 years, and (3) unflooded for 200 years. Flood suppression leads to a reduction of available P soil content as well as decreasing the biomass and the amount of phosphorus in plants, but has no significant effect on N plant content. Plant N:P ratio increases with the suppression of floods and is primarily driven by soil N:P ratios, in turn markedly linked to the total nitrogen in the soil. We highlighted a lower nutrient accumulation in leaves during plant growth in unflooded forests. Overall, our results suggest that P was the main limiting factor in unflooded forests while nitrogen was the main limiting factor in annually flooded forests. Flood suppression strongly affects the morphology and nutrient uptake by Allium ursinum and thus nutrient cycling in riverine forests.
Address [Tremolieres, Michele; Noel, Valerie] Inst Bot, LHYGES, UMR 7517, F-67083 Strasbourg, France, Email: michele.tremolieres@bota-ulp.u-strasbg.fr
Corporate Author Thesis
Publisher SPRINGER Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032-079X ISBN Medium
Area Expedition Conference
Notes ISI:000271028800020 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 99
Permanent link to this record