toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Phillips, O.L.; van der Heijden, G.; Lewis, S.L.; Lopez-Gonzalez, G.; Aragao, L.E.O.C.; Lloyd, J.; Malhi, Y.; Monteagudo, A.; Almeida, S.; Davila, E.A.; Amaral, I.; Andelman, S.; Andrade, A.; Arroyo, L.; Aymard, G.; Baker, T.R.; Blanc, L.; Bonal, D.; de Oliveira, A.C.A.; Chao, K.J.; Cardozo, N.D.; da Costa, L.; Feldpausch, T.R.; Fisher, J.B.; Fyllas, N.M.; Freitas, M.A.; Galbraith, D.; Gloor, E.; Higuchi, N.; Honorio, E.; Jimenez, E.; Keeling, H.; Killeen, T.J.; Lovett, J.C.; Meir, P.; Mendoza, C.; Morel, A.; Vargas, P.N.; Patino, S.; Peh, K.S.H.; Cruz, A.P.; Prieto, A.; Quesada, C.A.; Ramirez, F.; Ramirez, H.; Rudas, A.; Salamao, R.; Schwarz, M.; Silva, J.; Silveira, M.; Slik, J.W.F.; Sonke, B.; Thomas, A.S.; Stropp, J.; Taplin, J.R.D.; Vasquez, R.; Vilanova, E. openurl 
  Title Drought-mortality relationships for tropical forests Type Journal Article
  Year 2010 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 187 Issue 3 Pages 631-646  
  Keywords Amazon; Borneo; drought; lags mortality; RAINFOR; trees; tropics  
  Abstract The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.  
  Address [Phillips, Oliver L.; van der Heijden, Geertje; Lewis, Simon L.; Lopez-Gonzalez, Gabriela; Lloyd, Jon; Baker, Tim R.; Chao, Kuo-Jung; Feldpausch, Ted R.; Fyllas, Nikolaos M.; Gloor, Emanuel; Honorio, Euridice; Keeling, Helen; Quesada, Carlos A.; Schwarz, Michael] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England, Email: o.phillips@leeds.ac.uk  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280122500028 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 50  
Permanent link to this record
 

 
Author Leroy, C.; Corbara, B.; Dejean, A.; Cereghino, R. openurl 
  Title Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad Type Journal Article
  Year 2009 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 183 Issue 4 Pages 1124-1133  
  Keywords Aechmea mertensii; antgardens; Camponotus femoratus; foliar structure; delta N-15; Pachycondyla goeldii; phytotelmata contents  
  Abstract Aechmea mertensii is a tank-bromeliad that roots on ant-gardens initiated by the ants Camponotus femoratus and Pachycondyla goeldii. Its leaves form compartments acting as phytotelmata that hold rainwater and provide habitats for invertebrates. In this article, we aimed to determine whether the association with either C. femoratus or P. goeldii influenced the vegetative traits of A. mertensii, invertebrate diversity and nutrient assimilation by the leaves. Transmitted light, vegetative traits and phytotelmata contents were compared between the two A. mertensii ant-gardens. Camponotus femoratus colonized partially shaded areas, whereas P. goeldii colonized exposed areas. The bromeliads' rosettes had a large canopy (C. femoratus ant-gardens), or were smaller and amphora shaped (P. goeldii ant-gardens). There were significant differences in leaf anatomy, as shaded leaves were thicker than exposed leaves. The mean volumes of water, fine particulate organic matter and detritus in C. femoratus-associated bromeliads were three to five times higher than in P. goeldii-associated bromeliads. Moreover, the highest invertebrate diversity and leaf delta N-15 values were found in C. femoratus-associated bromeliads. This study enhances our understanding of the dynamics of biodiversity, and shows how ant-plant interactions can have trophic consequences and thus influence the architecture of the interacting plant via a complex feedback loop.  
  Address [Leroy, Celine; Dejean, Alain] EcoFoG, CNRS, UMR 8172, F-97379 Kourou, France, Email: Celine.Leroy@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000268855300020 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 106  
Permanent link to this record
 

 
Author Hattenschwiler, S.; Aeschlimann, B.; Couteaux, M.M.; Roy, J.; Bonal, D. openurl 
  Title High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community Type Journal Article
  Year 2008 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 179 Issue 1 Pages 165-175  
  Keywords French Guiana; interspecific and intraspecific variation; leaf litter traits; neotropical rainforest; nitrogen; nutrient resorption; phosphorus; stoichiometry  
  Abstract Distinct ecosystem level carbon : nitrogen : phosphorus (C : N : P) stoichiometries in forest foliage have been suggested to reflect ecosystem-scale selection for physiological strategies in plant nutrient use. Here, this hypothesis was explored in a nutrient-poor lowland rainforest in French Guiana. Variation in C, N and P concentrations was evaluated in leaf litter and foliage from neighbour trees of 45 different species, and the litter concentrations of major C fractions were also measured. Litter C ranged from 45.3 to 52.4%, litter N varied threefold (0.68-2.01%), and litter P varied seven-fold (0.009-0.062%) among species. Compared with foliage, mean litter N and P concentrations decreased by 30% and 65%, respectively. Accordingly, the range in mass-based N : P shifted from 14 to 55 in foliage to 26 to 105 in litter. Resorption proficiencies indicated maximum P withdrawal in most species, but with a substantial increase in variation in litter P compared with foliage. These data suggest that constrained ecosystem-level C : N : P ratios do not preclude the evolution of highly diversified strategies of nutrient use and conservation among tropical rainforest tree species. The resulting large variation in litter quality will influence stoichiometric constraints within the decomposer food web, with potentially far-ranging consequences on nutrient dynamics and plant-soil feedbacks.  
  Address [Haettenschwiler, Stephan; Aeschlimann, Beat; Couteaux, Marie-Madeleine; Roy, Jacques] CEFE, CNRS, F-34293 Montpellier 5, France, Email: stephan.hattenschwiler@cefe.cnrs.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000256412500017 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 139  
Permanent link to this record
 

 
Author Christensen-Dalsgaard, K.K.; Fournier, M.; Ennos, A.R.; Barfod, A.S. openurl 
  Title Changes in vessel anatomy in response to mechanical loading in six species of tropical trees Type Journal Article
  Year 2007 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 176 Issue 3 Pages 610-622  
  Keywords hydraulic architecture; hydraulic-mechanical trade-off; mechanical adaptation; rooting morphology; tropical trees; vascular anatomy  
  Abstract It is well known that trees adapt their supportive tissues to changes in loading conditions, yet little is known about how the vascular anatomy is modified in this process. We investigated this by comparing more and less mechanically loaded sections in six species of tropical trees with two different rooting morphologies. We measured the strain, vessel size, frequency and area fraction and from this calculated the specific conductivity, then measured the conductivity, modulus of elasticity and yield stress. The smallest vessels and the lowest vessel frequency were found in the parts of the trees subjected to the greatest stresses or strains. The specific conductivity varied up to two orders of magnitude between mechanically loaded and mechanically unimportant parts of the root system. A trade-off between conductivity and stiffness or strength was revealed, which suggests that anatomical alterations occur in response to mechanical strain. By contrast, between-tree comparisons showed that average anatomical features for the whole tree seemed more closely related to their ecological strategy.  
  Address Univ Manchester, Fac Life Sci, Manchester M60 1QD, Lancs, England, Email: karen@cd-mail.dk  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000250275000013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 156  
Permanent link to this record
 

 
Author de Grandcourt, A.; Epron, D.; Montpied, P.; Louisanna, E.; Bereau, M.; Garbaye, J.; Guehl, J.M. openurl 
  Title Contrasting responses to mycorrhizal inoculation and phosphorus availability in seedlings of two tropical rainforest tree species Type Journal Article
  Year 2004 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 161 Issue 3 Pages 865-875  
  Keywords phosphorus; growth; efficiency; Paris-type arbuscular mycorrhizas; tropical rainforest; seedlings; Dicorynia guianensis; Eperua falcata  
  Abstract This work aimed at understanding the role of mycorrhizal status in phosphorus efficiency of tree seedlings in the tropical rainforest of French Guyana. Mycorrhizal colonization, growth, phosphorus content, net photosynthesis and root respiration were determined on three occasions during a 9-month growth period for seedlings of two co-occurring species (Dicorynia guianensis and Eperua falcata) grown at three soil phosphorus concentrations, with or without inoculation with arbuscular mycorrhizas. Seedlings of both species were unable to absorb phosphorus in the absence of mycorrhizal association. Mycorrhizal seedlings exhibited coils that are specific of Paris-type mycorrhizae. Both species benefited from the mycorrhizal symbiosis in terms of phosphorus acquisition but the growth of E. falcata seedlings was unresponsive to this mycorrhizal improvement of phosphorus status, probably because of the combination of high seed mass and P reserves, with low growth rate. The two species belong to two different functional groups regarding phosphorus acquisition, D. guianensis being an obligate mycotrophic species.  
  Address Univ Franche Comte, Lab Biol & Ecophysiol, F-25211 Montbeliard, France, Email: daniel.epron@scbiol.uhp-nancy.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING LTD Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000188646500022 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 239  
Permanent link to this record
 

 
Author Haettenschwiler, S.; Coq, S.; Barantal, S.; Handa, I.T. openurl 
  Title Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis Type Journal Article
  Year 2011 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 189 Issue 4 Pages 950-965  
  Keywords energy starvation; French Guiana; litter quality; mycorrhizas; nutrient cycling; nutrient limitation; phosphorus; soil fauna  
  Abstract Proper estimates of decomposition are essential for tropical forests, given their key role in the global carbon (C) cycle. However, the current paradigm for litter decomposition is insufficient to account for recent observations and may limit model predictions for highly diverse tropical ecosystems. In light of recent findings from a nutrient-poor Amazonian rainforest, we revisit the commonly held views that: litter traits are a mere legacy of live leaf traits; nitrogen (N) and lignin are the key litter traits controlling decomposition; and favourable climatic conditions result in rapid decomposition in tropical forests. Substantial interspecific variation in litter phosphorus (P) was found to be unrelated to variation in green leaves. Litter nutrients explained no variation in decomposition, which instead was controlled primarily by nonlignin litter C compounds at low concentrations with important soil fauna effects. Despite near-optimal climatic conditions, tropical litter decomposition proceeded more slowly than in a climatically less favourable temperate forest. We suggest that slow decomposition in the studied rainforest results from a syndrome of poor litter C quality beyond a simple lignin control, enforcing energy starvation of decomposers. We hypothesize that the litter trait syndrome in nutrient-poor tropical rainforests may have evolved to increase plant access to limiting nutrients via mycorrhizal associations.  
  Address [Haettenschwiler, Stephan; Coq, Sylvain; Barantal, Sandra; Handa, Ira Tanya] CNRS, CEFE, F-34293 Montpellier 5, France, Email: stephan.hattenschwiler@cefe.cnrs.fr  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286940500009 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 296  
Permanent link to this record
 

 
Author Fortunel, C.; Ruelle, J.; Beauchene, J.; Fine, P.V.A.; Baraloto, C. url  openurl
  Title Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients Type Journal Article
  Year 2014 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 202 Issue 1 Pages 79-94  
  Keywords Amazonian forests; Branch; Environmental gradients; Neotropical trees; Root; Wood anatomical traits; Wood density; Wood functions  
  Abstract Wood specific gravity (WSG) is a strong predictor of tree performance across environmental gradients. Yet it remains unclear how anatomical elements linked to different wood functions contribute to variation in WSG in branches and roots across tropical forests. We examined WSG and wood anatomy in white sand, clay terra firme and seasonally flooded forests in French Guiana, spanning broad environmental gradients found throughout Amazonia. We measured 15 traits relating to branches and small woody roots in 113 species representing the 15 most abundant species in each habitat and representative species from seven monophyletic lineages occurring in all habitats. Fiber traits appear to be major determinants of WSG, independent of vessel traits, in branches and roots. Fiber traits and branch and root WSG increased from seasonally flooded species to clay terra firme species and lastly to white sand species. Branch and root wood traits were strongly phylogenetically constrained. Lineages differed in wood design, but exhibited similar variation in wood structure across habitats. We conclude that tropical trees can invest differently in support and transport to respond to environmental conditions. Wind disturbance and drought stress represent significant filters driving tree distribution of Amazonian forests; hence we suggest that biophysical explanations should receive more attention. © 2013 New Phytologist Trust.  
  Address Department of Biology, University of Florida, Gainesville, FL, 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 10 March 2014; Source: Scopus; Coden: Nepha; Language of Original Document: English; Correspondence Address: Fortunel, C.; INRA, UMR Ecologie des Forêts de Guyane, BP 709, Kourou Cedex, 97387, France; email: claire.fortunel@ecofog.gf; Funding Details: DEB-0743103, NSF, National Science Foundation; Funding Details: DEB-0743800, NSF, National Science Foundation Approved no  
  Call Number EcoFoG @ webmaster @ Serial 531  
Permanent link to this record
 

 
Author Santiago, L.S.; De Guzman, M.E.; Baraloto, C.; Vogenberg, J.E.; Brodie, M.; Hérault, B.; Fortunel, C.; Bonal, D. url  doi
openurl 
  Title Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species Type Journal Article
  Year 2018 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 218 Issue 3 Pages 1015-1024  
  Keywords Amazonian forest; cavitation; drought; hydraulic conductivity; sapwood capacitance; turgor loss point; wood density; xylem; cavitation; climate change; drought; forest canopy; forest ecosystem; hydraulic conductivity; rainforest; species diversity; tree; tropical forest; vulnerability; wood; Amazonia; French Guiana; Paracou  
  Abstract Predicting responses of tropical forests to climate change-type drought is challenging because of high species diversity. Detailed characterization of tropical tree hydraulic physiology is necessary to evaluate community drought vulnerability and improve model parameterization. Here, we measured xylem hydraulic conductivity (hydraulic efficiency), xylem vulnerability curves (hydraulic safety), sapwood pressure–volume curves (drought avoidance) and wood density on emergent branches of 14 common species of Eastern Amazonian canopy trees in Paracou, French Guiana across species with the densest and lightest wood in the plot. Our objectives were to evaluate relationships among hydraulic traits to identify strategies and test the ability of easy-to-measure traits as proxies for hard-to-measure hydraulic traits. Xylem efficiency was related to capacitance, sapwood water content and turgor loss point, and other drought avoidance traits, but not to xylem safety (P50). Wood density was correlated (r = −0.57 to −0.97) with sapwood pressure–volume traits, forming an axis of hydraulic strategy variation. In contrast to drier sites where hydraulic safety plays a greater role, tropical trees in this humid tropical site varied along an axis with low wood density, high xylem efficiency and high capacitance at one end of the spectrum, and high wood density and low turgor loss point at the other.  
  Address INRA, UMR Silva, AgroParisTech, Université de Lorraine, Nancy, 54000, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :6; Export Date: 3 December 2018; Coden: Nepha; Correspondence Address: Santiago, L.S.; Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, United States; email: santiago@ucr.edu; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, FEDER 2014–2020; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, Project; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, GY0006894; Funding details: University of California, UC; Funding details: National Institute of Food and Agriculture, NIFA; Funding details: ANR-10-LABX-0025; Funding text 1: We would like to thank Benôıt Burban and Jean-Yves Goret for laboratory support, Jocelyn Cazal and Valentine Alt for skillfully climbing trees for samples, Aurelie Dourdain for database support, and Clement Stahl, John Sperry, Sean Gleason, Todd Dawson, Steve Davis, JoséLuiz Silva, Aleyda Acosta Rangel and three anonymous reviewers for comments and discussions on the data presented. The study has been supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Boenisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is currently supported by Future Earth/ bioDISCOVERY and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. We also acknowledge the University of California, Botany and Plant Sciences Department and the USDA National Institute of Food and Agriculture for support. We are grateful to the CIRAD and the GFclim project (FEDER 2014–2020, Project GY0006894) for financial support of the Paracou research station. Funding for fieldwork and data acquisition was provided by Investissement d’Avenir grants of the French ANR (CEBA: ANR-10-LABX-0025), through the ‘DRAMA’ and ‘HydroSTAT’ projects.; References: Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Hogg, E.H., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests (2010) Forest Ecology and Management, 259, pp. 660-684; Anderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., Anderegg, L.D.L., Field, C.B., The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off (2012) Proceedings of the National Academy of Sciences, USA, 109, pp. 233-237; Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., Jansen, S., Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe (2016) Proceedings of the National Academy of Sciences, USA, 113, pp. 5024-5029; Baraloto, C., Goldberg, D.E., Bonal, D., Performance trade-offs among tropical tree seedlings in contrasting microhabitats (2005) Ecology, 86, pp. 2461-2472; Baraloto, C., Hardy, O.J., Paine, C., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.A., Savolainen, V., Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities (2012) Journal of Ecology, 100, pp. 690-701; Barnard, D.M., Meinzer, F.C., Lachenbruch, B., McCulloh, K.A., Johnson, D.M., Woodruff, D.R., Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance (2011) Plant, Cell & Environment, 34, pp. 643-654; Bartlett, M.K., Scoffoni, C., Sack, L., The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis (2012) Ecology Letters, 15, pp. 393-405; Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Bonan, G.B., Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate (2010) Science, 329, pp. 834-838; Benjamini, Y., Hochberg, Y., On the adaptive control of the false discovery rate in multiple testing with independent statistics (2000) Journal of educational and Behavioral Statistics, 25, pp. 60-83; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Global Change Biology, 14, pp. 1917-1933; Bonal, D., Burban, B., Stahl, C., Wagner, F., Herault, B., The response of tropical rainforests to drought-lessons from recent research and future prospects (2016) Annals of Forest Science, 73, pp. 27-44; Borchert, R., Pockman, W.T., Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees (2005) Tree Physiology, 25, pp. 457-466; Bucci, S.J., Goldstein, G., Scholz, F.G., Meinzer, F.C., Physiological significance of hydraulic segmentation, nocturnal transpiration and capacitance in tropical trees: paradigms revisited (2016) Tropical tree physiology: adaptations and responses in a changing environment, pp. 205-225. , In, Goldstein G, Santiago LS, eds., Cham, Switzerland, Springer International; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Choat, B., Drayton, W.M., Brodersen, C., Matthews, M.A., Shackel, K.A., Wada, H., McElrone, A.J., Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species (2010) Plant, Cell & Environment, 33, pp. 1502-1512; Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Hacke, U.G., Global convergence in the vulnerability of forests to drought (2012) Nature, 491, pp. 752-755; Christoffersen, B.O., Gloor, M., Fauset, S., Fyllas, N.M., Galbraith, D.R., Baker, T.R., Kruijt, B., Binks, O.J., Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro) (2016) Geoscientific Model Development, 9, pp. 4227-4255; De Guzman, M.E., Santiago, L.S., Schnitzer, S.A., Álvarez-Cansino, L., Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species (2017) Tree Physiology, 37, pp. 1404-1414; Dray, S., Dufour, A.-B., The ade4 package: implementing the duality diagram for ecologists (2007) Journal of Statistical Software, 22, pp. 1-20; Fortunel, C., Ruelle, J., Beauchene, J., Fine, P.V.A., Baraloto, C., Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients (2014) New Phytologist, 202, pp. 79-94; Fu, R., Yin, L., Li, W.H., Arias, P.A., Dickinson, R.E., Huang, L., Chakraborty, S., Fisher, R., Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection (2013) Proceedings of the National Academy of Sciences, USA, 110, pp. 18110-18115; Gleason, S.M., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., Bhaskar, R., Cao, K.-F., Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species (2016) New Phytologist, 209, pp. 123-136; Gourlet-Fleury, S., Guehl, J.-M., Laroussinie, O., (2004) Ecology and management of a neotropical rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana, , Paris, France, Elsevier; Hacke, U.G., Sperry, J.S., Wheeler, J.K., Castro, L., Scaling of angiosperm xylem structure with safety and efficiency (2006) Tree Physiology, 26, pp. 689-701; Holtum, J.A.M., Winter, K., Elevated [CO2] and forest vegetation: more a water issue than a carbon issue? (2010) Functional Plant Biology, 37, pp. 694-702; Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L.M., Sitch, S., Fisher, R., Lomas, M., Booth, B.B.B., Simulated resilience of tropical rainforests to CO2-induced climate change (2013) Nature Geoscience, 6, pp. 268-273; Joetzjer, E., Delire, C., Douville, H., Ciais, P., Decharme, B., Fisher, R., Christoffersen, B., Ferreira, L.V., Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models (2014) Geoscientific Model Development, 7, pp. 2933-2950; Joetzjer, E., Douville, H., Delire, C., Ciais, P., Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3 (2013) Climate Dynamics, 41, pp. 2921-2936; Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., Garnier, E., Wright, I.J., TRY – a global database of plant traits (2011) Global Change Biology, 17, pp. 2905-2935; Maherali, H., Pockman, W.T., Jackson, R.B., Adaptive variation in the vulnerability of woody plants to xylem cavitation (2004) Ecology, 85, pp. 2184-2199; Manzoni, S., Vico, G., Katul, G., Palmroth, S., Jackson, R.B., Porporato, A., Hydraulic limits on maximum plant transpiration and the emergence of the safety–efficiency trade-off (2013) New Phytologist, 198, pp. 169-178; Maréchaux, I., Bartlett, M.K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., Chave, J., Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest (2015) Functional Ecology, 29, pp. 1268-1277; Martínez-Vilalta, J., Piñol, J., Beven, K., A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean (2002) Ecological Modelling, 155, pp. 127-147; Medlyn, B.E., De Kauwe, M.G., Duursma, R.A., New developments in the effort to model ecosystems under water stress (2016) New Phytologist, 212, pp. 5-7; Meinzer, F.C., Goldstein, G., Scaling up from leaves to whole plants and canopies for photosynthetic gas exchange (1996) Tropical forest plant ecophysiology, pp. 114-138. , In, Mulkey SS, Chazdon RL, Smith AP, eds., New York, NY, USA, Chapman & Hall; Meinzer, F.C., James, S.A., Goldstein, G., Woodruff, D., Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees (2003) Plant, Cell & Environment, 26, pp. 1147-1155; Meinzer, F.C., Johnson, D.M., Lachenbruch, B., McCulloh, K.A., Woodruff, D.R., Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance (2009) Functional Ecology, 23, pp. 922-930; Meinzer, F.C., Woodruff, D.R., Domec, J.C., Goldstein, G., Campanello, P.I., Gatti, M.G., Villalobos-Vega, R., Coordination of leaf and stem water transport properties in tropical forest trees (2008) Oecologia, 156, pp. 31-41; Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J., Hölttä, T., Coordination of physiological traits involved in drought-induced mortality of woody plants (2015) New Phytologist, 208, pp. 396-409; Morris, H., Plavcova, L., Cvecko, P., Fichtler, E., Gillingham, M.A.F., Martinez-Cabrera, H.I., McGlinn, D.J., Zieminska, K., A global analysis of parenchyma tissue fractions in secondary xylem of seed plants (2016) New Phytologist, 209, pp. 1553-1565; Phillips, O.L., van der Heijden, G., Lewis, S.L., Lopez-Gonzalez, G., Aragao, L., Lloyd, J., Malhi, Y., Davila, E.A., Drought-mortality relationships for tropical forests (2010) New Phytologist, 187, pp. 631-646; Pike, N., Using false discovery rates for multiple comparisons in ecology and evolution (2011) Methods in Ecology and Evolution, 2, pp. 278-282; Pivovaroff, A.L., Pasquini, S.C., De Guzman, M.E., Alstad, K.P., Stemke, J., Santiago, L.S., Multiple strategies for drought survival among woody plant species (2016) Functional Ecology, 30, pp. 517-526; Pockman, W.T., Sperry, J.S., Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation (2000) American Journal of Botany, 87, pp. 1287-1299; Preston, K.A., Cornwell, W.K., DeNoyer, J.L., Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms (2006) New Phytologist, 170, pp. 807-818; (2015) R: a language and environment for statistical computing, , Vienna, Austria, R Core Development Team; Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., Hagen, S., Benchmark map of forest carbon stocks in tropical regions across three continents (2011) Proceedings of the National Academy of Sciences, USA, 108, pp. 9899-9904; Sack, L., Pasquet-Kok, J., (2011) Leaf pressure–volume curve parameters, , http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Leaf+pressure-volume+curve+parameters, [WWW document] URL, [accessed 9 August 2016] In Prometheus Wiki; Santiago, L.S., Bonal, D., De Guzman, M.E., Ávila-Lovera, E., Drought survival strategies of tropical trees (2016) Tropical tree physiology: adaptations and responses in a changing environment, pp. 243-258. , In, Goldstein G, Santiago LS, eds., Cham, Switzerland, Springer International; Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., Jones, T., Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees (2004) Oecologia, 140, pp. 543-550; Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees (2007) Plant, Cell & Environment, 30, pp. 236-248; Scholz, F., Phillips, N., Bucci, S., Meinzer, F., Goldstein, G., Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size (2011) Size- and age-related changes in tree structure and function, pp. 341-361. , In, Meinzer FC, Lachenbruch B, Dawson TE, eds., Dordrecht, the Netherlands, Springer; Sperry, J.S., Donnelly, J.R., Tyree, M.T., A method for measuring hydraulic conductivity and embolism in xylem (1988) Plant, Cell & Environment, 11, pp. 35-40; Sperry, J.S., Meinzer, F.C., McCulloh, K.A., Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees (2008) Plant, Cell & Environment, 31, pp. 632-645; ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F., Castellanos, H., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Taiz, L., Zeiger, E., Møller, I.M., Murphy, A., (2015) Plant physiology and development, , Sunderland, MA, USA, Sinauer Associates; Tyree, M., Negative turgor pressure in plant cells: fact or fallacy? (1976) Canadian Journal of Botany, 54, pp. 2738-2746; Tyree, M.T., Davis, S.D., Cochard, H., Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? (1994) IAWA Journal, 15, pp. 335-360; Tyree, M.T., Ewers, F.W., The hydraulic architecture of trees and other woody plants (1991) New Phytologist, 119, pp. 345-360; Webb, C.O., Donoghue, M.J., Phylomatic: tree assembly for applied phylogenetics (2005) Molecular Ecology Notes, 5, pp. 181-183; Wheeler, J.K., Sperry, J.S., Hacke, U.G., Hoang, N., Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport (2005) Plant, Cell & Environment, 28, pp. 800-812; Xu, C., McDowell, N.G., Sevanto, S., Fisher, R.A., Our limited ability to predict vegetation dynamics under water stress (2013) New Phytologist, 200, pp. 298-300; Xu, X.T., Medvigy, D., Powers, J.S., Becknell, J.M., Guan, K.Y., Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests (2016) New Phytologist, 212, pp. 80-95; Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., Reich, P.B., Three keys to the radiation of angiosperms into freezing environments (2014) Nature, 506, pp. 89-92; Zanne, A.E., Westoby, M., Falster, D.S., Ackerly, D.D., Loarie, S.R., Arnold, S.E.J., Coomes, D.A., Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity (2010) American Journal of Botany, 97, pp. 207-215 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 842  
Permanent link to this record
 

 
Author Levionnois, S.; Ziegler, C.; Jansen, S.; Calvet, E.; Coste, S.; Stahl, C.; Salmon, C.; Delzon, S.; Guichard, C.; Heuret, P. doi  openurl
  Title Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees Type Journal Article
  Year 2020 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 228 Issue 2 Pages 512-524  
  Keywords drought-induced embolism resistance; hydraulic segmentation; leaf-specific conductivity; stem–leaf transition; tropical trees; vulnerability segmentation; air bubble; hydraulic conductivity; leaf; Neotropical Region; rainforest; tropical forest; vulnerability; xylem  
  Abstract Hydraulic segmentation at the stem–leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf–stem transition at the whole-plant level, including both xylem and outer xylem tissue. © 2020 The Authors. New Phytologist © 2020 New Phytologist Trust  
  Address Univ. Bordeaux, INRAE, BIOGECO, Pessac, F-33615, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 952  
Permanent link to this record
 

 
Author Fortunel, C.; Stahl, C.; Heuret, P.; Nicolini, E.; Baraloto, C. doi  openurl
  Title Disentangling the effects of environment and ontogeny on tree functional dimensions for congeneric species in tropical forests Type Journal Article
  Year 2020 Publication New Phytologist Abbreviated Journal (down) New Phytol.  
  Volume 226 Issue 2 Pages 385-395  
  Keywords chemistry; developmental stage; habitats; Micropholis; morphology; physiology; plant traits; seasons; developmental stage; ecosystem function; forest ecosystem; habitat selection; habitat structure; nutrient availability; ontogeny; physiological response; soil water; taxonomy; tropical forest; Amazonia  
  Abstract Soil water and nutrient availability are key drivers of tree species distribution and forest ecosystem functioning, with strong species differences in water and nutrient use. Despite growing evidence for intraspecific trait differences, it remains unclear under which circumstances the effects of environmental gradients trump those of ontogeny and taxonomy on important functional dimensions related to resource use, particularly in tropical forests. Here, we explore how physiological, chemical, and morphological traits related to resource use vary between life stages in four species within the genus Micropholis that is widespread in lowland Amazonia. Specifically, we evaluate how environment, developmental stage, and taxonomy contribute to single-trait variation and multidimensional functional strategies. We find that environment, developmental stage, and taxonomy differentially contribute to functional dimensions. Habitats and seasons shape physiological and chemical traits related to water and nutrient use, whereas developmental stage and taxonomic identity impact morphological traits –especially those related to the leaf economics spectrum. Our findings suggest that combining environment, ontogeny, and taxonomy allows for a better understanding of important functional dimensions in tropical trees and highlights the need for integrating tree physiological and chemical traits with classically used morphological traits to improve predictions of tropical forests’ responses to environmental change. © 2019 The Authors New Phytologist © 2019 New Phytologist Trust  
  Address Department of Biological Sciences, Florida International University, Miami, FL 33133, United States  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 977  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: