toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Stahl, C.; Herault, B.; Rossi, V.; Burban, B.; Bréchet, C.; Bonal, D. url  openurl
  Title Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? Type Journal Article
  Year 2013 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 173 Issue 4 Pages 1191-1201  
  Keywords Deuterium; Oxygen; Root; Soil water; Tropical rainforest  
  Abstract Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address INRA, UMR EEF 1137, 54280 Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00298549 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 6 December 2013; Source: Scopus; Coden: Oecob; doi: 10.1007/s00442-013-2724-6; Language of Original Document: English; Correspondence Address: Bonal, D.; INRA, UMR EEF 1137, 54280 Champenoux, France; email: bonal@nancy.inra.fr; References: Améglio, T., Archer, P., Cohen, M., Valancogne, C., Daudet, F.A., Dayau, S., Cruiziat, P., Significance and limits in the use of predawn leaf water potential for tree irrigation (1999) Plant Soil, 207, pp. 155-167; Baraloto, C., Morneau, F., Bonal, D., Blanc, L., Ferry, B., Seasonal water stress tolerance and habitat associations within four Neotropical tree genera (2007) Ecology, 88, pp. 478-489; Bonal, D., Barigah, T.S., Granier, A., Guehl, J.-M., Late-stage canopy tree species with extremely low delta C-13 and high stomatal sensitivity to seasonal soil drought in the tropical rainforest of French Guiana (2000) Plant Cell Environ, 23, pp. 445-459; Bonal, D., Atger, C., Barigah, T.S., Ferhi, A., Guehl, J.-M., Ferry, B., Water acquisition patterns of two wet tropical canopy tree species of French Guiana as inferred from H218O extraction profiles (2000) Ann For Sci, 57, pp. 717-724; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob Chang Biol, 14, pp. 1917-1933; Cao, K.F., Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture (2000) J Trop Ecol, 16, pp. 101-116; Carvalheiro, K.O., Nepstad, D.C., Deep soil heterogeneity and fine root distribution in forests and pastures of eastern Amazonia (1996) Plant Soil, 182, pp. 279-285; Chmura, D.J., Anderson, P.D., Howe, G.T., Harrington, C.A., Halofsky, J.E., Peterson, D.L., Shaw, D.C., Brad St Claire, J., Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management (2011) For Ecol Manage, 261, pp. 1121-1142; da Rocha, H.R., Goulden, M.L., Miller, S.D., Menton, M.C., Pinto, L.D.V.O., de Freitas, H.C., e Silva Figueira, A.M., Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia (2004) Ecol Appl, 14, pp. 22-32; Davidson, E., Lefebvre, P.A., Brando, P.M., Ray, D.M., Trumbore, S.E., Solorzano, L.A., Ferreira, J.N., Nepstad, D.C., Carbon inputs and water uptake in deep soils of an eastern Amazon forest (2011) For Sci, 57, pp. 51-58; Engelbrecht, B.M.J., Kursar, T.A., Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants (2003) Oecologia, 136, pp. 383-393; Engelbrecht, B.M.J., Wright, S.J., De Steven, D., Survival and ecophysiology of tree seedlings during El Nino drought in a tropical moist forest in Panama (2002) J Trop Ecol, 18, pp. 569-579; Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L., Meir, P., Evidence from Amazonian forests is consistent with isohydric control of leaf water potential (2006) Plant Cell Environ, 29, pp. 151-165; Goulden, M.L., Miller, S.D., da Rocha, H.R., Menton, M.C., De Freitas, H.C., Silva Figueira, A.M.E., De Sousa, C.A.D., Diel and seasonal patterns of tropical forest CO2 exchange (2004) Ecol Appl, 14, pp. 42-54; Gourlet-Fleury, S., Ferry, B., Molino, J.F., Petronelli, P., Schmitt, L., Experimental plots: key features (2004) Ecology and management of a Neotropical Rainforest, pp. 3-60. , In: Gourlet-Fleury S, Guehl JM, Laroussinie O (eds) Lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, Paris; Huc, R., Ferhi, A., Guehl, J.M., Pioneer and late stage tropical rainforest tree species (French Guyana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential (1994) Oecologia, 99, pp. 297-305; Hutyra, L.R., Munger, J.W., Saleska, S., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J Geophys Res, 112, pp. G03008. , doi:10.1029/2006JG000365; Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E., Schulze, E.D., A global analysis of root distributions for terrestrial biomes (1996) Oecologia, 108, pp. 389-411; Jobbagy, E.G., Jackson, R.B., The distribution of soil nutrients with depth: global patterns and the imprint of plants (2001) Biogeochemistry, 53, pp. 51-77; Kozlowski, T.T., Pallardy, S.G., Acclimation and adaptive responses of woody plants to environmental stresses (2002) Bot Rev, 68, pp. 270-334; Malhi, Y., Wright, J., Spatial patterns and recent trends in the climate of tropical rainforest regions (2004) Phil Trans R Soc Lond B, 359, pp. 311-329; Markewitz, D., Devine, S., Davidson, E.A., Brando, P., Nepstad, D.C., Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake (2010) New Phytol, 187, pp. 592-607; Meinzer, F.C., Andrade, J.L., Goldstein, G., Holbrook, N.M., Cavelier, J., Wright, S.J., Partitioning of soil water among trees in a seasonally dry tropical forest (1999) Oecologia, 121, pp. 293-301; Merbold, L., Ardo, J., Arneth, A., Scholes, R.J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Kutsch, W.L., Precipitation as driver of carbon fluxes in 11 African ecosystems (2009) Biogeosciences, 6, pp. 1027-1041; Moreira, M., Sternberg, L., Nepstad, D., Vertical patterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon: an isotopic approach (2000) Plant Soil, 222, pp. 95-107; Nepstad, D.C., De Carvalho, C.R., Davidson, E.A., Jipp, P.H., Lefebvre, P.A., Negreiros, G.H., Da Silva, E.D., Vieira, S., The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures (1994) Nature, 372, pp. 666-669; Oliveira, R., Dawson, T., Burgess, S., Nepstad, D., Hydraulic redistribution in three Amazonian trees (2005) Oecologia, 145, pp. 354-363; Poorter, L., Markesteijn, L., Seedling traits determine drought tolerance of tropical tree species (2008) Biotropica, 40, pp. 321-331; (2010) R: A Language and Environment for Statistical Computing, , R Development Core Team, Vienna: R Foundation for Statistical Computing; Romero-Saltos, H., LdSL, S., Moreira, M.Z., Nepstad, D.C., Rainfall exclusion in an eastern Amazonian forest alters soil water movement and depth of water uptake (2005) Am J Bot, 92, pp. 443-455; Sobrado, M.A., Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest (1997) Acta Oecol, 18, pp. 383-391; Stahl, C., Burban, B., Bompy, F., Jolin, Z.B., Sermage, J., Bonal, D., Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana (2010) J Trop Ecol, 26, pp. 393-405; Stahl, C., Burban, B., Goret, J.-Y., Bonal, D., Seasonal variations in stem CO2 efflux in the Neotropical rainforest of French Guiana (2011) Ann For Sci, 68, pp. 771-782; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees (2013) Biotropia, 45, pp. 155-164; Sternberg, L., Green, L., Moreira, M.Z., Nepstad, D.C., Martinelli, L.A., Victoria, R., Root distribution in an Amazonian seasonal forest (1998) Plant Soil, 205, pp. 45-50; Sternberg, L., Moreira, M., Nepstad, D.C., Uptake of water by lateral roots of small trees in an Amazonian tropical forest (2002) Plant Soil, 238, pp. 151-158; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agric For Meteorol, 151, pp. 1202-1213; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Hérault, B., Water availability is the main climate driver of Neotropical tree growth (2012) PLoS ONE, 7, pp. e34074; Wang, G., Alo, C., Mei, R., Sun, S., Droughts, hydraulic redistribution, and their impact on vegetation composition in the Amazon forest (2011) Plant Ecol, 212, pp. 663-673; Williams, M., Malhi, Y., Nobre, A.D., Rastetter, E.B., Grace, J., Pereira, M.G.P., Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rainforest: a modelling analysis (1998) Plant Cell Environ, 21, pp. 953-968; Yavitt, J.B., Wright, S.J., Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama (2001) Biotropica, 33, pp. 421-434; Zapater, M., Hossann, C., Bréda, N., Bréchet, C., Bonal, D., Granier, A., Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling (2011) Trees Struct Funct, 25, pp. 885-894; Zhang, Y., Tan, Z., Song, Q., Yu, G., Sun, X., Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest (2010) Atmos Environ, 44, pp. 3886-3893 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 514  
Permanent link to this record
 

 
Author Casella, T.M.; Eparvier, V.; Mandavid, H.; Bendelac, A.; Odonne, G.; Dayan, L.; Duplais, C.; Espindola, L.S.; Stien, D. url  openurl
  Title Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402 Type Journal Article
  Year 2013 Publication Phytochemistry Abbreviated Journal Phytochemistry  
  Volume 96 Issue Pages 370-377  
  Keywords Antimicrobials; Cytotoxic metabolites; Functional chemodiversity; Leaf endophytes; Lewia; Pyrrocidine C  
  Abstract Because of the symbiotic nature of endophytes, this survey aims to investigate the probability of discovering antibacterial, antifungal and cytotoxic activities in leaf endophytic microbes. We isolated 138 cultivable microbes (121 fungi, 3 bacteria and 14 unidentified or unknown microbes) from 24 plant species, a significant relative proportion of which exhibited antifungal and cytotoxic potential against Candida albicans ATCC 10213 and the human cell lines KB (uterine cervical carcinoma), MDA-MB-435 (melanoma), and MRC5 (normal human lung fibroblasts). Three active fungal extracts were fractionated, resulting in the isolation of eight compounds. Seven had been described in the literature including the following: acremonisol A, semicochliodinol A, cochliodinol, griseofulvin, pyrenocin A, novae zelandin A and alterperylenol. A previously unreported compound named pyrrocidine C was isolated from Lewia infectoria SNB-GTC2402 and identified by spectroscopic analysis. As in pyrrocidines A and B, this compound is a cis-substituted decahydrofluorene with a quaternary carbon at C-5 and opposite stereochemistry at C-8 corresponding to C-6 of pyrrocidines A and B.© 2013 Elsevier Ltd. All rights reserved.  
  Address CNRS Guyane, USR 3456, 2 Avenue Gustave Charlery, 97300 Cayenne, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00319422 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 6 December 2013; Source: Scopus; Coden: Pytca; doi: 10.1016/j.phytochem.2013.10.004; Language of Original Document: English; Correspondence Address: Espindola, L.S.; Laboratório de Farmacognosia, Universidade de Brasília, Brasília, DF, Brazil; email: darvenne@unb.br; References: Arnold, A.E., Mejia, L.C., Kyllo, D., Rojas, E.I., Maynard, Z., Robbins, N., Herre, E.A., Fungal endophytes limit pathogen damage in a tropical tree (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (26), pp. 15649-15654. , DOI 10.1073/pnas.2533483100; Asahina, A., Tada, Y., Nakamura, K., Tamaki, K., Colchicine and griseofulvin inhibit VCAM-1 expression on human vascular endothelial cells – Evidence for the association of VCAM-1 expression with microtubules (2001) Journal of Dermatological Science, 25 (1), pp. 1-9. , DOI 10.1016/S0923-1811(00)00097-9, PII S0923181100000979; Bacon, C.W., White, J.F., (2000) Microbial Endophytes, , Marcel Dekker Inc. New York; Brewer, D., Jerram, W.A., Meiler, D., Taylor, A., The toxicity of cochliodinol, an antibiotic metabolite of Chaetomium spp (1970) Can. J. Microbiol., 16, pp. 433-440; Cafeu, M.C., Silva, G.H., Teles, H.L., Bolzani, V.D.S., Araujo, A.R., Young, M.C.M., Pfenning, L.H., Antifungal compounds of Xylaria sp., an endophytic fungus isolated from Palicourea marcgravii (Rubiaceae) (2005) Quimica Nova, 28 (6), pp. 991-995. , http://www.scielo.br/pdf/qn/v28n6/26827.pdf; Chooi, Y.-H., Cacho, R., Tang, Y., Identification of the viridicatumtoxin and Griseofulvin gene clusters from Pennicillium aethiopicum (2010) Chem. Biol., 17, pp. 483-494; Christensen, K.B., Van Klink, J.W., Weavers, R.T., Larsen, T.O., Andersen, B., Phipps, R.K., Novel chemotaxonomic markers of the Alternaria infectoria species-group (2005) Journal of Agricultural and Food Chemistry, 53 (24), pp. 9431-9435. , DOI 10.1021/jf0513213; Clay, K., Holah, J., Fungal endophyte symbiosis and plant diversity in successional fields (1999) Science, 285 (5434), pp. 1742-1744. , DOI 10.1126/science.285.5434.1742; Debbab, A., Hassan, A.A., Edrada-Ebel, R.A., Müller, W.E.G., Mosaddak, M., Hakiki, A., Ebel, R., Proksch, P., Bioactive secondary metabolites from the endophytic fungus Chaetomium sp. Isolated from Salvia officinalis growing in Morocco (2009) Biotechnol. Agron. Soc. Environ., 13, pp. 229-234; Fredenhagen, A., Petersen, F., Tintelnot-Blomley, M., Rosel, J., Mett, H., Hug, P., Semicochliodinol A and B: Inhibitors of HIV-1 protease and EGF-R protein tyrosine kinase related to asterriquinones produced by the fungus Chrysosporium merdarium (1997) Journal of Antibiotics, 50 (5), pp. 395-401; He, H., Yang, H.Y., Bigelis, R., Solum, E.H., Greenstein, M., Carter, G.T., Pyrrocidines A and B, new antibiotics produced by a filamentous fungus (2002) Tetrahedron Letters, 43 (9), pp. 1633-1636. , DOI 10.1016/S0040-4039(02)00099-0, PII S0040403902000990; Ichihara, A., Murakami, K., Sakamura, S., Synthesis of pyrenocines A, B and pyrenochaetic acid A (1987) Tetrahedron, 43, pp. 5245-5250; Isaka, M., Rugseree, N., Maithip, P., Kongsaeree, P., Prabpai, S., Thebtaranonth, Y., Hirsutellones A-E, antimycobacterial alkaloids from the insect pathogenic fungus Hirsutella nivea BCC 2594 (2005) Tetrahedron, 61 (23), pp. 5577-5583. , DOI 10.1016/j.tet.2005.03.099, PII S0040402005005843; Jones, K.E., Patel, N.G., Levy, M.A., Storeygard, A., Balk, D., Gittleman, J.L., Daszak, P., Global trends in emerging infectious diseases (2008) Nature, 451 (7181), pp. 990-993. , DOI 10.1038/nature06536, PII NATURE06536; Kingsland, S.R., Barrow, R.A., Identification of chaetoviridin e from a cultured microfungus, Chaetomium sp. and structural reassignment of chaetoviridins B and D (2009) Aust. J. Chem., 62, pp. 269-274; Lee, J.S., Ko, K.S., Jung, H.S., Phylogenetic analysis of Xylaria based on nuclear ribosomal ITS1-5.8S-ITS2 sequences (2000) FEMS Microbiology Letters, 187 (1), pp. 89-93. , DOI 10.1016/S0378-1097(00)00181-6, PII S0378109700001816; Li, X.-W., Eara, A., Nay, B., Hirsutellones and beyond: Figuring out the biological and synthetic logics toward chemical complexity in fungal PKS-NRPS compounds (2013) Nat. Prod. Rep., 30, pp. 765-782; Mousa, W.K., Raizada, M.N., The diversity of anti-microbial secondary metabolites produced by fungal endophytes: An interdisciplinary perspective (2013) Front. Microbiol., 4 (65), pp. 1-18; Nebel, G., Dragsted, J., Vanclay, J.K., Structure and floristic composition of flood plain forests in the Peruvian Amazon II. The understorey of restinga forests (2001) Forest Ecology and Management, 150 (1-2), pp. 59-77. , DOI 10.1016/S0378-1127(00)00681-2, PII S0378112700006812; Nirma, C., Eparvier, V., Stien, D., Antifungal agents from Pseudallescheria boydii SNB-CN73 isolated from a Nasutitermes sp termite (2013) J. Nat. Prod., 76, pp. 988-991; Okuno, T., Natsume, I., Sawai, K., Structure of antifungal and phytotoxic pigments produced by Alternaria Sps (1983) Tetrahedron Letters, 24 (50), pp. 5653-5656. , DOI 10.1016/S0040-4039(00)94165-0; Pontius, A., Mohamed, I., Krick, A., Kehraus, S., Konig, G.M., Aromatic polyketides from marine algicolous fungi (2008) Journal of Natural Products, 71 (2), pp. 272-274. , DOI 10.1021/np0704710; Priest, F., Systematics and ecology of Bacillus (1993) Bacillus Subtilis and Other Gram-positive Bacteria, Biochemistry, Physiology, and Molecular Genetics, pp. 3-16. , A.L. Sonenshein, J.A. Hoch, R. Losick, ASM Press Washington; Rodrigues, A.M.S., Theodoro, P.N.E.T., Basset, C., Silva, M.R.R., Beauchêne, J., Espindola, L.S., Stien, D., Search for antifungal compounds from the wood of durable tropical trees (2010) J. Nat. Prod., 73, pp. 1706-1707; Rosenblueth, M., Martinez-Romero, E., Bacterial endophytes and their interactions with hosts (2006) Molecular Plant-Microbe Interactions, 19 (8), pp. 827-837. , DOI 10.1094/MPMI-19-0827; Strobel, G.A., Endophytes as sources of bioactive products (2003) Microbes and Infection, 5 (6), pp. 535-544. , DOI 10.1016/S1286-4579(03)00073-X; Tempête, C., Werner, G.H., Favre, F., Rojas, A., Langlois, N., In vitro cytostatic activity of 9-demethoxyporothramycin B (1995) Eur. J. Med. Chem., 30, pp. 647-650; Weber, R.W.S., Stenger, E., Meffert, A., Hahn, M., Brefeldin A production by Phoma medicaginis in dead pre-colonized plant tissue: A strategy for habitat conquest? (2004) Mycological Research, 108 (6), pp. 662-671. , DOI 10.1017/S0953756204000243; White, T.J., Bruns, T., Lee, S., Taylor, J., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics (1990) PCR Protocols. A Guide to Methods and Applications, pp. 315-322. , M.A. Innis, D.H. Gelfand, J.J. Shinsky, T.J. White, Academic Press San Diego; Zhang, Z., Schwartz, S., Wagner, L., Miller, W., A greedy algorithm for aligning DNA sequences (2000) Journal of Computational Biology, 7 (1-2), pp. 203-214. , DOI 10.1089/10665270050081478; Zhang, X.X., Li, C.J., Nan, Z.B., Matthew, C., Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators (2011) Weed Res., 52, pp. 70-78 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 515  
Permanent link to this record
 

 
Author Dezerald, O.; Talaga, S.; Leroy, C.; Carrias, J.-F.; Corbara, B.; Dejean, A.; Céréghino, R. url  doi
openurl 
  Title Environmental determinants of macroinvertebrate diversity in small water bodies: Insights from tank-bromeliads Type Journal Article
  Year 2014 Publication Hydrobiologia Abbreviated Journal Hydrobiologia  
  Volume 723 Issue 1 Pages 77-86  
  Keywords Freshwater biodiversity; Linear mixed effect modelling; Microcosms; Phytotelmata; Ponds  
  Abstract The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits. © 2013 Springer Science+Business Media Dordrecht.  
  Address CNRS, EcoLab (UMR-CNRS 5245), 118 Route de Narbonne, 31062 Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00188158 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 517  
Permanent link to this record
 

 
Author Clair, B.; Alteyrac, J.; Gronvold, A.; Espejo, J.; Chanson, B.; Alméras, T. pdf  url
openurl 
  Title Patterns of longitudinal and tangential maturation stresses in Eucalyptus nitens plantation trees Type Journal Article
  Year 2013 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 70 Issue 8 Pages 801-811  
  Keywords Eucalyptus nitens; G-layer; Longitudinal maturation stress; Maturation strain; Tangential maturation stress; Tension wood  
  Abstract Context: Tree orientation is controlled by asymmetric mechanical stresses set during wood maturation. The magnitude of maturation stress differs between longitudinal and tangential directions, and between normal and tension woods. Aims: We aimed at evaluating patterns of maturation stress on eucalypt plantation trees and their relation with growth, with a focus on tangential stress evaluation. Methods: Released maturation strains along longitudinal and tangential directions were measured around the circumference of 29 Eucalyptus nitens trees, including both straight and leaning trees. Results: Most trees produced asymmetric patterns of longitudinal maturation strain, but more than half of the maturation strain variability occurred between trees. Many trees produced high longitudinal tensile stress all around their circumference. High longitudinal tensile stress was not systematically associated with the presence of gelatinous layer. The average magnitude of released longitudinal maturation strain was found negatively correlated to the growth rate. A methodology is proposed to ensure reliable evaluation of released maturation strain in both longitudinal and tangential directions. Tangential strain evaluated with this method was lower than previously reported. Conclusion: The stress was always tensile along the longitudinal direction and compressive along the tangential direction, and their respective magnitude was positively correlated. This correlation does not result from a Poisson effect but may be related to the mechanism of maturation stress generation. © 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com.  
  Address Facultad de Ciencias Forestales, Universidad de Concepcion, Ciudad Universitaria, Concepcion, Chile  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 December 2013; Source: Scopus; Coden: Afosf; doi: 10.1007/s13595-013-0318-4; Language of Original Document: English; Correspondence Address: Clair, B.; CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 701, 97387 Kourou, French Guiana; email: bruno.clair@univ-montp2.fr; Funding Details: ANR-12-BS09-0004, French National Research Agency; References: Alméras, T., Fournier, M., Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction (2009) J Theor Biol, 256, pp. 370-381. , 19013473 10.1016/j.jtbi.2008.10.011; Alméras, T., Thibaut, A., Gril, J., Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees (2005) Trees, 19, pp. 457-467. , 10.1007/s00468-005-0407-6; Archer, R.R., (1986) Growth Stresses and Strains in Trees, , Springer Verlag Berlin/Heidelberg/New York; Archer, R.R., On the origin of growth stresses in trees. Part 1: Micro mechanics of the developing cambial cell wall. Wood Sci (1987) Technol., 21, pp. 139-154; Baillères, H., Chanson, B., Fournier, M., Tollier, M.T., Monties, B., Structure, composition chimique et retraits de maturation du bois chez les clones d' Eucalyptus (1995) Ann Sci for, 52, pp. 157-172. , 10.1051/forest:19950206; Bergman, R., Cai, Z., Carll, C.G., Clausen, C.A., Ma, D., Falk, R.H., Frihart, C.R., Star, (2010) Wood Handbook: Wood As An Engineering Material, , U.S. Department of Agriculture, Forest Service, Forest Products Laboratory., Washington D.C. (USA)/Madison, WI, (USA); Biechele, T., Nutto, L., Becker, G., Growth strain in Eucalyptus nitens at different stages of development (2009) Silva Fennica, 43, pp. 669-679; Bonser, R.H.C., Ennos, A.R., Measurement of prestrain in trees:implications for the determination of safety factors (1998) Funct Ecol, 12, pp. 971-974. , 10.1046/j.1365-2435.1998.00279.x; Boyd, J.D., Tree growth stresses – Part I: Growth stress evaluation (1950) Austr. J. Sci. Res. Series B, Biological Sciences, 3, pp. 270-293; Boyd, J.D., Tree growth stresses – Part II: The development of shakes and other visual failure in timber (1950) Aust. J. App. Sci., 1, pp. 296-312; Clair, B., Alméras, T., Sugiyama, J., Compression stress in opposite wood of angiosperms: Observations in chestnut, mani and poplar (2006) Ann for Sci, 63, pp. 507-510. , 10.1051/forest:2006032; Clair, B., Ruelle, J., Beauchêne, J., Prevost, M.F., Fournier, M., Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurence and efficiency of G-layer (2006) IAWA J, 27, pp. 329-338; Clair, B., Ruelle, J., Thibaut, B., Relationship between growth stress, mechano-physical properties and proportion of fibre with gelatinous layer in Chestnut (Castanea sativa Mill.) (2003) Holzforschung, 57, pp. 189-195. , 1:CAS:528:DC%2BD3sXjs1ensr8%3D; Coutand, C., Fournier, M., Moulia, B., The gravitropic response of poplar trunks: Key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation (2007) Plant Physiol, 144, pp. 1166-1180. , 17468227 10.1104/pp.106.088153 1:CAS:528:DC%2BD2sXmvValtbg%3D; Fang, C.-H., Clair, B., Gril, J., Liu, S.-Q., Growth stresses are highly controlled by the amount of G-layer in poplar tension wood (2008) IAWA J, 29, pp. 237-246. , 10.1163/22941932-90000183; Ferrand, J.C., Study of growth stresses. 1. Measurement method on increment cores (1982) Ann Sci for, 39, pp. 109-142. , 10.1051/forest:19820201 (in French with English summary); Ferrand, J.C., Study of growth stresses. 2. Variations in the forest of growth stresses of beech (Fagus sylvatica) (1982) Ann Sci for, 39, pp. 187-218. , 10.1051/forest:19820301 (in French with English summary); Ferrand, J.C., Study of growth stresses. 3. Eucalyptus dedegatensis and Eucalyptus nitens – Influence of sylviculture and site index (1982) Ann Sci for, 39, pp. 355-378. , 10.1051/forest:19820402 (in French with English summary); Fournier, M., Chanson, B., Thibaut, B., Guitard, D., Measurement of residual growth strains at the stem surface. Observations of different species (1994) Ann. For. Sci., 51, pp. 249-266. , 10.1051/forest:19940305 (in French with English summary); Gerard, J., Bailleres, H., Fournier, M., Thibaut, B., Wood quality in plantation Eucalyptus – A study of variation in three reference properties (1995) Bois For. Trop, 245, pp. 101-110. , (in French with English summary); Giordano, G., Curro, P., Ghisi, G., Contribution of internal stresses in wood of Eucalyptus (1969) Wood Sci Technol, 3, pp. 1-13. , 10.1007/BF00349980; Jacobs, M.R., The fibre tension of woody stems, with special reference to the genus Eucalyptus (1938) Bull. Com. For. Bur, 22, p. 37; Jacobs, M.R., (1945) The Growth Stresses of Woody Stems, , Commonwealth Forestry Bureau Canberra, Australia; Jullien, D., Laghdir, A., Gril, J., Modelling log-end cracks due to growth stresses: Calculation of the elastic energy release rate (2003) Holzforschung, 57, pp. 407-414. , 10.1515/HF.2003.060 1:CAS:528:DC%2BD3sXntFeksrk%3D; Jullien, D., Gril, J., Growth strain assessment at the periphery of small-diameter trees using the two-grooves method: Influence of operating parameters estimated by numerical simulations (2008) Wood Sci. Technol., 42, pp. 551-565. , 10.1007/s00226-008-0202-9 1:CAS:528:DC%2BD1cXhtVOiu7jL; Jullien, D., Widmann, R., Loup, C., Thibaut, B., Relationship between tree morphology and growth stress in mature European beech stands (2013) Ann for Sci, 68, pp. 681-688; Kubler, H., Studies on growth stresses in trees – Part I: The origin of growth stresses and the stresses in transverse direction (1959) Holz Als Roh- Und Werkstoff, 17, pp. 1-9. , 10.1007/BF02608827; Kubler, H., Growth stresses in trees and related wood properties (1987) For. Abst., 48, pp. 131-189; Moulia, B., Coutand, C., Lenne, C., Posture control and skeletal mechanical acclimation in terrestrial plants: Implications for mechanical modelling of plant architecture (2006) Am J Bot, 93, pp. 1477-1489. , 21642095 10.3732/ajb.93.10.1477; Nicholson, J., A rapid method for estimating the longitudinal growth stress in logs (1971) Wood Sci. Technol., 5, pp. 40-48. , 10.1007/BF00363119; Nicholson, J.E., Growth stress differences in Eucalypts (1973) For Sci, 19, pp. 169-174; Okuyama, T., Sasaki, Y., Kikata, Y., Kawai, N., The seasonal change in growth stress in the tree trunk (1981) Mokuzai Gakkaishi, 27, pp. 350-355; Okuyama, T., Yamamoto, H., Yoshida, M., Hattori, Y., Archer, R.R., Growth stresses in tension wood: Role of microfibrils and lignification (1994) Ann for Sci, 51, pp. 291-300. , 10.1051/forest:19940308; Onaka, F., Studies on compression and tension wood (traduction) (1949) Wood Res, 1, pp. 1-88. , traduction n.p; Sasaki, Y., Okuyama, T., Kikata, Y., The evolution process of the growth stress in the tree. The surface stresses on the tree (1978) Mokuzai Gakkaishi, 24, pp. 140-157. , (in Japenese with English summary); Scurfield, G., Histochemistry of reaction wood cell walls in two species of Eucalyptus and in Tristania Conferta R (1972) Br. Aust. J. Bot., 20, pp. 9-26. , 10.1071/BT9720009 1:CAS:528:DyaE38XltFWksLk%3D; Yamamoto, H., Generation mechanism of growth stresses in wood cell walls: Roles of lignin deposition and cellulose microfibril during cell wall maturation (1998) Wood Sci. Technol., 32, pp. 171-182. , 1:CAS:528:DyaK1cXktlKhsb0%3D; Yamamoto, H., Abe, K., Arakawa, Y., Okuyama, T., Gril, J., Role of the gelatinous layer on the origin of the physical properties of the tension wood of Acer sieboldianum (2005) Wood Sci. Technol., 51, pp. 222-233. , 10.1007/s10086-004-0639-x 1:CAS:528:DC%2BD2MXpslOqurs%3D; Yamamoto, H., Yoshida, M., Okuyama, T., Growth stress controls negative gravitropism in woody plant stems (2002) Planta, 216, pp. 280-292. , 12447542 10.1007/s00425-002-0846-x 1:CAS:528:DC%2BD3sXktFOiug%3D%3D; Yang, J.L., Waugh, G., Growth stress, its measurement and effects (2001) Autr. For., 64, pp. 127-135; Yoshida, M., Ohta, H., Yamamoto, H., Okuyama, T., Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn (2002) Trees, 16, pp. 457-464. , 10.1007/s00468-002-0186-2 1:CAS:528:DC%2BD38XosFWltro%3D; Yoshida, M., Okuyama, T., Techniques for measuring growth stress (2002) Holzforschung, 56, pp. 461-467. , 10.1515/HF.2002.071 1:CAS:528:DC%2BD38XovVaru7c%3D Approved no  
  Call Number EcoFoG @ webmaster @ Serial 519  
Permanent link to this record
 

 
Author Fortunel, C.; Paine, C.E.T.; Fine, P.V.A.; Kraft, N.J.B.; Baraloto, C. url  openurl
  Title Environmental factors predict community functional composition in Amazonian forests Type Journal Article
  Year 2014 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 102 Issue 1 Pages 145-155  
  Keywords Amazonian landscape; Climatic and soil gradients; Determinants of plant community diversity and structure; Environmental filtering; Functional traits; Tree communities; Tropical forests  
  Abstract The consequences of biodiversity loss for ecosystem services largely depend on the functional identities of extirpated species. However, poor descriptions of spatial patterns of community functional composition across landscapes hamper accurate predictions, particularly in highly diverse tropical regions. Therefore, understanding how community functional composition varies across environmental gradients remains an important challenge. We sampled 15 functional traits in 800 Neotropical tree species across 13 forest plots representative of the broad climatic and soil gradients encompassed by three widespread lowland forest habitats (terra firme forests on clay-rich soils, seasonally flooded forests and white-sand forests) at opposite ends of Amazonia (Peru and French Guiana). We combined univariate and multivariate approaches to test the magnitude and predictability of environmental filtering on community leaf and wood functional composition. Directional shifts in community functional composition correlated with environmental changes across the 13 plots, with denser leaves, stems and roots in forests occurring in environments with limited water and soil-nutrient availability. Critically, these relationships allowed us to accurately predict the functional composition of 61 additional forest plots from environmental data alone. Synthesis. Environmental filtering consistently shapes the functional composition of highly diverse tropical forests at large scales across the terra firme, seasonally flooded and white-sand forests of lowland Amazonia. Environmental factors drive and allow the prediction of variation in community functional composition among habitat types in Amazonian forests. © 2013 British Ecological Society.  
  Address Department of Biology, University of Florida, Gainesville, FL, 32611, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220477 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 31 December 2013; Source: Scopus; Coden: Jecoa; doi: 10.1111/1365-2745.12160; Language of Original Document: English; Correspondence Address: Fortunel, C.; INRA, UMR Ecologie des Forêts de Guyane, BP 709, Kourou Cedex, 97387, France; email: claire.fortunel@ecofog.gf; Funding Details: DEB-0743103/0743800, NSF, National Science Foundation; References: Agrawal, A.A., Fishbein, M., Plant defense syndromes (2006) Ecology, 87, pp. S132-S149; Anderson, L.O., Malhi, Y., Ladle, R.J., Aragao, L., Shimabukuro, Y., Phillips, O.L., Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia (2009) Biogeosciences, 6, pp. 1883-1902; Asner, G.P., Alencar, A., Drought impacts on the Amazon forest: the remote sensing perspective (2010) New Phytologist, 187, pp. 569-578; Asner, G.P., Loarie, S.R., Heyder, U., Combined effects of climate and land-use change on the future of humid tropical forests (2010) Conservation Letters, 3, pp. 395-403; Baraloto, C., Paine, C.E.T., Patiño, S., Bonal, D., Herault, B., Chave, J., Functional trait variation and sampling strategies in species-rich plant communities (2010) Functional Ecology, 24, pp. 208-216; Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.M., Hérault, B., Chave, J., Decoupled leaf and stem economics in rain forest trees (2010) Ecology Letters, 13, pp. 1338-1347; Baraloto, C., Rabaud, S., Molto, Q., Blanc, L., Fortunel, C., Hérault, B., Davila, N., Fine, P.V.A., Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests (2011) Global Change Biology, 17, pp. 2677-2688; Baraloto, C., Molto, Q., Rabaud, S., Hérault, B., Valencia, R., Blanc, L., Fine, P.V.A., Thompson, J., Rapid simultaneous estimation of aboveground biomass and tree diversity across Neotropical forests: a comparison of field inventory methods (2013) Biotropica, 45, pp. 288-298; Belyea, L.R., Lancaster, J., Assembly rules within a contingent ecology (1999) Oikos, 86, pp. 402-416; Berry, S.L., Roderick, M.L., Estimating mixtures of leaf functional types using continental-scale satellite and climatic data (2002) Global Ecology and Biogeography, 11, pp. 23-39; Brando, P.M., Nepstad, D.C., Balch, J.K., Bolker, B., Christman, M.C., Coe, M., Putz, F.E., Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior (2012) Global Change Biology, 18, pp. 630-641; Burnham, K.P., Anderson, D.R., Multimodel inference – understanding AIC and BIC in model selection (2004) Sociological Methods & Research, 33, pp. 261-304; Calcagno, V., de Mazancourt, C., glmulti: an R package for easy automated model selection with (generalized) linear models (2010) Journal of Statistical Software, 34, pp. 1-29; Chapin, F.S., BretHarte, M.S., Hobbie, S.E., Zhong, H.L., Plant functional types as predictors of transient responses of arctic vegetation to global change (1996) Journal of Vegetation Science, 7, pp. 347-358; Chaturvedi, R.K., Raghubanshi, A.S., Singh, J.S., Leaf attributes and tree growth in a tropical dry forest (2011) Journal of Vegetation Science, 22, pp. 917-931; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Cingolani, A.M., Cabido, M., Gurvich, D.E., Renison, D., Diaz, S., Filtering processes in the assembly of plant communities: are species presence and abundance driven by the same traits? (2007) Journal of Vegetation Science, 18, pp. 911-920; Coates, K.D., Lilles, E.B., Astrup, R., Competitive interactions across a soil fertility gradient in a multispecies forest (2013) Journal of Ecology, 101, pp. 806-818; Cornwell, W.K., Ackerly, D.D., Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California (2009) Ecological Monographs, 79, pp. 109-126; Cornwell, W.K., Schwilk, D.W., Ackerly, D.D., A trait-based test for habitat filtering: convex hull volume (2006) Ecology, 87, pp. 1465-1471; Craine, J.M., Reconciling plant strategy theories of Grime and Tilman (2005) Journal of Ecology, 93, pp. 1041-1052; de Deyn, G.B., Cornelissen, J.H.C., Bardgett, R.D., Plant functional traits and soil carbon sequestration in contrasting biomes (2008) Ecology Letters, 11, pp. 516-531; Dray, S., Dufour, A.B., The ade4 package: implementing the duality diagram for ecologists (2007) Journal of Statistical Software, 22, pp. 1-20; Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L., Hubbell, S.P., Drought sensitivity shapes species distribution patterns in tropical forests (2007) Nature, 447, pp. 80-82; Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., Carbon isotope discrimination and photosynthesis (1989) Annual Review of Plant Physiology and Plant Molecular Biology, 40, pp. 503-537; Ferry, B., Morneau, F., Bontemps, J.D., Blanc, L., Freycon, V., Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest (2010) Journal of Ecology, 98, pp. 106-116; Fine, P.V.A., Mesones, I., Coley, P.D., Herbivores promote habitat specialization by trees in Amazonian forests (2004) Science, 305, pp. 663-665; Fine, P.V.A., Miller, Z.J., Mesones, I., Irazuzta, S., Appel, H.M., Stevens, M.H.H., Saaksjarvi, I., Coley, P.D., The growth-defense trade-off and habitat specialization by plants in Amazonian forests (2006) Ecology, 87, pp. S150-S162; Fortunel, C., Fine, P.V.A., Baraloto, C., Leaf, stem and root tissue strategies across 758 Neotropical tree species (2012) Functional Ecology, 26, pp. 1153-1161; Fyllas, N.M., Patino, S., Baker, T.R., Nardoto, G.B., Martinelli, L.A., Quesada, C.A., Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate (2009) Biogeosciences, 6, pp. 2677-2708; Grime, J.P., Vegetation classification by reference to strategies (1974) Nature, 250, pp. 26-31; Harrison, S.P., Prentice, I.C., Barboni, D., Kohfeld, K.E., Ni, J., Sutra, J.P., Ecophysiological and bioclimatic foundations for a global plant functional classification (2010) Journal of Vegetation Science, 21, pp. 300-317; Huston, M.A., Precipitation, soils, NPP, and biodiversity: resurrection of Albrecht's curve (2012) Ecological Monographs, 82, pp. 277-296; Ingram, T., Shurin, J.B., Trait-based assembly and phylogenetic structure in northeast Pacific rockfish assemblages (2009) Ecology, 90, pp. 2444-2453; Kadane, J.B., Lazar, N.A., Methods and criteria for model selection (2004) Journal of the American Statistical Association, 99, pp. 279-290; Katabuchi, M., Kurokawa, H., Davies, S.J., Tan, S., Nakashizuka, T., Soil resource availability shapes community trait structure in a species-rich dipterocarp forest (2012) Journal of Ecology, 100, pp. 643-651; Keddy, P.A., Assembly and response rules – two goals for predictive community ecology (1992) Journal of Vegetation Science, 3, pp. 157-164; Keith, D.A., Holman, L., Rodoreda, S., Lemmon, J., Bedward, M., Plant functional types can predict decade-scale changes in fire-prone vegetation (2007) Journal of Ecology, 95, pp. 1324-1337; Kitajima, K., Poorter, L., Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species (2010) New Phytologist, 186, pp. 708-721; Kraft, N.J.B., Valencia, R., Ackerly, D.D., Functional traits and niche-based tree community assembly in an Amazonian forest (2008) Science, 322, pp. 580-582; Landsberg, J., Modelling forest ecosystems: state of the art, challenges, and future directions (2003) Canadian Journal of Forest Research, 33, pp. 385-397; Laughlin, D.C., Fulé, P.Z., Huffman, D.W., Crouse, J., Laliberté, E., Climatic constraints on trait-based forest assembly (2011) Journal of Ecology, 99, pp. 1489-1499; Lavergne, S., Mouquet, N., Thuiller, W., Ronce, O., Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities (2010) Annual Review of Ecology, Evolution, and Systematics, 41, pp. 321-350; Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S.G., Garden, D., Dorrough, J., Berman, S., Bonis, A., Assessing functional diversity in the field: methodology matters! (2008) Functional Ecology, 22, pp. 134-147; Lebrija-Trejos, E., Perez-Garcia, E.A., Meave, J.A., Bongers, F., Poorter, L., Functional traits and environmental filtering drive community assembly in a species-rich tropical system (2010) Ecology, 91, pp. 386-398; Liu, X., Swenson, N.G., Wright, S.J., Zhang, L., Song, K., Du, Y., Zhang, J., Ma, K., Covariation in plant functional traits and soil fertility within two species-rich forests (2012) PLoS ONE, 7, pp. e34767; Lortie, C.J., Brooker, R.W., Choler, P., Kikvidze, Z., Michalet, R., Pugnaire, F.I., Callaway, R.M., Rethinking plant community theory (2004) Oikos, 107, pp. 433-438; Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W.H., Nobre, C.A., Climate change, deforestation, and the fate of the Amazon (2008) Science, 319, pp. 169-172; Muller-Landau, H.C., Interspecific and inter-site variation in wood specific gravity of tropical trees (2004) Biotropica, 36, pp. 20-32; Niinemets, U., Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants (1999) New Phytologist, 144, pp. 35-47; Oksanen, J.F., Blanchet, G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Wagner, H., (2012), http://CRAN.R-project.org/package=vegan, vegan: Community Ecology Package. R package version 2.0-3Onoda, Y., Westoby, M., Adler, P.B., Choong, A.M.F., Clissold, F.J., Cornelissen, J.H.C., Global patterns of leaf mechanical properties (2011) Ecology Letters, 14, pp. 301-312; Ordonez, J.C., van Bodegom, P.M., Witte, J.P.M., Wright, I.J., Reich, P.B., Aerts, R., A global study of relationships between leaf traits, climate and soil measures of nutrient fertility (2009) Global Ecology and Biogeography, 18, pp. 137-149; Paine, C.E.T., Stahl, C., Courtois, E.A., Patino, S., Sarmiento, C., Baraloto, C., Functional explanations for variation in bark thickness in tropical rain forest trees (2010) Functional Ecology, 24, pp. 1202-1210; Paine, C.E.T., Baraloto, C., Chave, J., Herault, B., Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests (2011) Oikos, 120, pp. 720-727; Parolin, P., Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees (2001) Oecologia, 128, pp. 326-335; Parolin, P., De Simone, O., Haase, K., Waldhoff, D., Rottenberger, S., Kuhn, U., Kesselmeier, J., Junk, W.J., Central Amazonian floodplain forests: tree adaptations in a pulsing system (2004) Botanical Review, 70, pp. 357-380; Phillips, O.L., Vasquez Martinez, R., Nunez Vargas, P., Lorenzo Monteagudo, A., Chuspe Zans, M.E., Galiano Sanchez, W., Pena Cruz, A., Rose, S., Efficient plot-based floristic assessment of tropical forests (2003) Journal of Tropical Ecology, 19, pp. 629-645; Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manriques, G., Are functional traits good predictors of demographic rates? Evidence from five neotropical forests (2008) Ecology, 89, pp. 1908-1920; Quesada, C.A., Lloyd, J., Anderson, L.O., Fyllas, N.M., Schwarz, M., Czimczik, C.I., Soils of Amazonia with particular reference to the RAINFOR sites (2011) Biogeosciences, 8, pp. 1415-1440; Quesada, C.A., Phillips, O.L., Schwarz, M., Czimczik, C.I., Baker, T.R., Patino, S., Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate (2012) Biogeosciences, 9, pp. 2203-2246; (2011), http://www.R-project.org, R Development Core TeamReich, P.B., Walters, M.B., Ellsworth, D.S., From tropics to tundra: global convergence in plant functioning (1997) Proceedings of the National Academy of Sciences of the United States of America, 94, pp. 13730-13734; Reu, B., Zaehle, S., Proulx, R., Bohn, K., Kleidon, A., Pavlick, R., Schmidtlein, S., The role of plant functional trade-offs for biodiversity changes and biome shifts under scenarios of global climatic change (2011) Biogeosciences, 7, pp. 7449-7473; Ryan, C.M., Hill, T., Woollen, E., Ghee, C., Mitchard, E., Cassells, G., Grace, J., Williams, M., Quantifying small-scale deforestation and forest degradation in African woodlands using radar imagery (2012) Global Change Biology, 18, pp. 243-257; Smith, M.J., Sibly, R.M., Identification of trade-offs underlying the primary strategies of plants (2008) Evolutionary Ecology Research, 10, pp. 45-60; ter Steege, H., Sabatier, D., Castellanos, H., Van Andel, T., Duivenvoorden, J., De Oliveira, A.A., Ek, R., Mori, S., An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield (2000) Journal of Tropical Ecology, 16, pp. 801-828; ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.F., Vasquez, R., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Suding, K.N., Goldstein, L.J., Testing the Holy Grail framework: using functional traits to predict ecosystem change (2008) New Phytologist, 180, pp. 559-562; Swenson, N.G., Anglada-Cordero, P., Barone, J.A., Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient (2010) Proceedings of the Royal Society of London. Series B, Biological Sciences, 278, pp. 877-884; Swenson, N.G., Enquist, B.J., Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology (2009) Ecology, 90, pp. 2161-2170; Swenson, N.G., Stegen, J.C., Davies, S.J., Erickson, D.L., Forero-Montaña, J., Hurlbert, A.H., Kress, W.J., Zimmerman, J.K., Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity (2012) Ecology, 93, pp. 490-499; Tilman, D., Constraints and tradeoffs – toward a predictive theory of competition and succession (1990) Oikos, 58, pp. 3-15; Wagner, F., Herault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agricultural and Forest Meteorology, 151, pp. 1202-1213; Wand, M.P., Fast computation of multivariate kernel estimators (1994) Journal of Computational and Graphical Statistics, 3, pp. 433-445; Warton, D.I., Wright, I.J., Falster, D.S., Westoby, M., Bivariate line-fitting methods for allometry (2006) Biological Reviews, 81, pp. 259-291; Webb, C.T., Hoeting, J.A., Ames, G.M., Pyne, M.I., Poff, N.L., A structured and dynamic framework to advance traits-based theory and prediction in ecology (2010) Ecology Letters, 13, pp. 267-283; Williamson, G.B., Wiemann, M.C., Measuring wood specific gravity ... correctly (2010) American Journal of Botany, 97, pp. 519-524; Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., The worldwide leaf economics spectrum (2004) Nature, 428, pp. 821-827; Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., Assessing the generality of global leaf trait relationships (2005) New Phytologist, 166, pp. 485-496; Wright, I.J., Falster, D.S., Pickup, M., Westoby, M., Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics (2006) Physiologia Plantarum, 127, pp. 445-456; Wright, I.J., Ackerly, D.D., Bongers, F., Harms, K.E., Ibarra-Manriquez, G., Martinez-Ramos, M., Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests (2007) Annals of Botany, 99, pp. 1003-1015; Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Functional traits and the growth-mortality trade-off in tropical trees (2010) Ecology, 91, pp. 3664-3674 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 520  
Permanent link to this record
 

 
Author Perrin, A.-S.; Fujisaki, K.; Petitjean, C.; Sarrazin, M.; Godet, M.; Garric, B.; Horth, J.-C.; Balbino, L.C.; Filho, A.S.; de Almeida Machado, P.L.O.; Brossard, M. url  doi
openurl 
  Title Conversion of forest to agriculture in Amazonia with the chop-and-mulch method: Does it improve the soil carbon stock? Type Journal Article
  Year 2014 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.  
  Volume 184 Issue Pages 101-114  
  Keywords Annual crops; Brachiaria; Deforestation; Fire-free; French Guiana; No-tillage  
  Abstract Fire-free forest conversion with organic inputs as an alternative to slash-and-burn could improve agro-ecosystem sustainability. We assessed soil carbon mass changes in a sandy-clayey and well-drained soil in French Guiana after forest clearing by the chop-and-mulch method and crop establishment. At the experimental site of Combi, native forest was cut down in October 2008; woody biomass was chopped and incorporated into the top 20cm of soil. After about one year of legume and grass cover, three forms of land management were compared: grassland (Urochloa ruziziensis), maize/soybean crop rotation with disk tillage and in direct seeding without tillage. There were four replicates. We measured 14.16kgm-2 of carbon in 2mm-sieved soil down to 2m depth for the initial forest. Forest clearing did not induce significant soil compaction; neither did any specific agricultural practice. In converted soils, C stocks were measured in the 0-30cm layer after each crop for three years. Carbon mass changes for soil fractions <2mm (soil C stock) and >2mm (soil C pool) in the 0-5, 5-10, 10-20 and 20-30cm soil layers were assessed on an equivalent soil mass basis. One year and 1.5 years after deforestation, higher C stocks (+0.64 to 1.16kgCm-2yr-1) and C pools (+0.52 to 0.90kgCm-2yr-1) were measured in converted soils, compared to those of the forest into the top 30cm of soil. However, the masses of carbon in these converted soils declined later. The highest rates of carbon decrease were measured between 1.5 and 2 years after forest conversion in the <2mm soil fraction, from 0.46kgCm-2yr-1 (in grassland soils) to 0.71kgCm-2yr-1 (in cropland under no tillage). The carbon pool declined during the third year at rates of 0.41kgCm-2yr-1 (cropland under disk tillage) to 0.76kgCm-2yr-1 (grassland soils). Three years after forest conversion, C masses in the top 30cm of soils for grassland showed similar values than for forest. In comparison, the carbon stock in cropped soils managed under no tillage in direct seeding (without mulch) was significantly 17% and 16% lower than in forest and grassland soils, respectively. None of the studied agricultural practices succeeded in accumulating carbon from the chopped forest biomass. © 2013 Elsevier B.V.  
  Address EMBRAPA Arroz e Feijao, Cx Postal 179, CEP 75375-000 Santo Antonio de Goias, GO, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 01678809 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 January 2014; Source: Scopus; Coden: Aeend; doi: 10.1016/j.agee.2013.11.009 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 521  
Permanent link to this record
 

 
Author Lalague, H.; Csilléry, K.; Oddou-Muratorio, S.; Safrana, J.; de Quattro, C.; Fady, B.; González-Martínez, S.C.; Vendramin, G.G. url  openurl
  Title Nucleotide diversity and linkage disequilibrium at 58 stress response and phenology candidate genes in a European beech (Fagus sylvatica L.) population from southeastern France Type Journal Article
  Year 2014 Publication Tree Genetics and Genomes Abbreviated Journal Tree Genetics and Genomes  
  Volume 10 Issue 1 Pages 15-26  
  Keywords Climate adaptation; Effective population size; Forest tree; Genomic diversity; Minor allele frequency (MAF); Recombination rate; Single nucleotide polymorphism (SNP)  
  Abstract European beech (Fagus sylvatica L.) is one of the most economically and ecologically important deciduous trees in Europe, yet little is known about its genomic diversity and its adaptive potential. Here, we detail the discovery and analysis of 573 single nucleotide polymorphisms (SNPs) from 58 candidate gene fragments that are potentially involved in abiotic stress response and budburst phenology using a panel of 96 individuals from southeastern France. The mean nucleotide diversity was low (θ π = 2.2 × 10-3) but extremely variable among gene fragments (range from 0.02 to 10), with genes carrying insertion/deletion mutations exhibiting significantly higher diversity. The decay of linkage disequilibrium (LD) measured at gene fragments >800 base pairs was moderate (the half distance of r 2 was 154 bp), consistent with the low average population-scaled recombination rate (ρ = 5.4 × 10-3). Overall, the population-scaled recombination rate estimated in F. sylvatica was lower than for other angiosperm tree genera (such as Quercus or Populus) and similar to conifers. As a methodological perspective, we explored the effect of minimum allele frequency (MAF) on LD and showed that higher MAF resulted in slower decay of LD. It is thus essential that the same MAF is used when comparing the decay of LD among different studies and species. Our results suggest that genome-wide association mapping can be a potentially efficient approach in F. sylvatica, which has a relatively small genome size. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address Department of Forest Ecology and Genetics, National Institute for Agriculture and Food Research and Technology (INIA), Forest Research Centre (CIFOR), 28040 Madrid, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 13 January 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 578  
Permanent link to this record
 

 
Author Houel, E.; Rodrigues, A.M.S.; Jahn-Oyac, A.; Bessière, J.-M.; Eparvier, V.; Deharo, E.; Stien, D. url  openurl
  Title In vitro antidermatophytic activity of Otacanthus azureus (Linden) Ronse essential oil alone and in combination with azoles Type Journal Article
  Year 2014 Publication Journal of Applied Microbiology Abbreviated Journal J. Appl. Microbiol.  
  Volume 116 Issue 2 Pages 288-294  
  Keywords Antifungal activity; Azoles; Dermatophytes; Essential oil; Otacanthus azureus; Synergy  
  Abstract Aims: We determined the chemical composition and investigated the antifungal activity of Otacanthus azureus (Linden) Ronse essential oil (EO) against a range of dermatophytes alone or in combination with azole antifungals. Methods and Results: Aerial parts of the plant were steam-distilled and the obtained oil was analysed by gas chromatography/mass spectrometry and 1H-NMR. It was shown to be largely composed of sesquiterpenes, with the main component being β-copaen-4-α-ol. Using broth microdilution techniques, this oil was found to have remarkable in vitro antifungal activities. Minimum inhibitory concentrations as low as 4 μg ml-1 were recorded. The analysis of the combined effect of the O. azureus EO with azoles using chequerboard assays revealed a synergism between the EO and ketoconazole, fluconazole or itraconazole against Trichophyton mentagrophytes. Notably, the O. azureus essential oil showed low cytotoxicity to VERO cells. Conclusions: The O. azureus essential oil alone or in combination with azoles is a promising antifungal agent in the treatment for human dermatomycoses caused by filamentous fungi. Significance and Impact of the Study: There is much interest in the study of essential oils for the discovery of new antimicrobial drugs. This study has highlighted the antidermatophytic activity of the O. azureus EO. © 2013 The Society for Applied Microbiology.  
  Address Institut de Recherche pour le Développement (IRD), UMR 152 Pharma-DEV, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13645072 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 February 2014; Source: Scopus; Coden: Jamif; Language of Original Document: English; Correspondence Address: Houël, E.; CNRS – UMR Ecologie des Forêts de Guyane (EcoFoG), Institut Pasteur de la Guyane, 23 Avenue Pasteur, BP6010, 97306 Cayenne Cedex, French Guiana; email: emeline.houel@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 526  
Permanent link to this record
 

 
Author Woolfit, M.; Iturbe-Ormaetxe, I.; Brownlie, J.C.; Walker, T.; Riegler, M.; Seleznev, A.; Popovici, J.; Rancès, E.; Wee, B.A.; Pavlides, J.; Sullivan, M.J.; Beatson, S.A.; Lane, A.; Sidhu, M.; McMeniman, C.J.; McGraw, E.A.; O'Neill, S.L. pdf  url
openurl 
  Title Genomic evolution of the pathogenic Wolbachia strain, wMelPop Type Journal Article
  Year 2013 Publication Genome Biology and Evolution Abbreviated Journal Genome Biolog. Evol.  
  Volume 5 Issue 11 Pages 2189-2204  
  Keywords Endosymbiont; Evolution; Genomics; Wolbachia  
  Abstract Most strains of the widespread endosymbiotic bacterium Wolbachia pipientis are benign or behave as reproductive parasites. The pathogenic strain wMelPop is a striking exception, however: it overreplicates in its insect hosts and causes severe life shortening. The mechanism of this pathogenesis is currently unknown. We have sequenced the genomes of three variants of wMelPop and of the closely related nonpathogenic strain wMelCS. We show that the genomes of wMelCS and wMelPop appear to be identical in the nonrepeat regions of the genome and differ detectably only by the triplication of a 19-kb region that is unlikely to be associated with life shortening, demonstrating that dramatic differences in the host phenotype caused by this endosymbiont may be the result of only minor genetic changes. We also compare the genomes of the original wMelPop strain from Drosophila melanogaster and two sequentialderivatives, wMelPop-CLA and wMelPop-PGYP. To develop wMelPop as a novel biocontrol agent, it was first transinfected into and passaged in mosquito cell lines for approximately 3.5 years, generating wMelPop-CLA. This cell line-passaged strain was then transinfected into Aedesaegypti mosquitoes, creating wMelPop-PGYP,which wassequenced after 4yearsin the insecthost. We observe a rapid burst of genomic changes during cell line passaging, but no further mutations were detected after transinfection into mosquitoes, indicating either that host preadaptation had occurred in cell lines, that cell lines are a more selectively permissive environment than animal hosts, or both. Our results provide valuable data on the rates of genomic and phenotypic change in Wolbachia associated with host shifts over short time scales. © The Author(s) 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.  
  Address Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17596653 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 February 2014; Source: Scopus; Language of Original Document: English; Correspondence Address: O'Neill, S.L.; School of Biological Sciences, Monash University, Clayton, VIC, Australia; email: scott.oneill@monash.edu; Funding Details: NIH, National Institutes of Health Approved no  
  Call Number EcoFoG @ webmaster @ Serial 527  
Permanent link to this record
 

 
Author Rockwell, C.A.; Kainer, K.A.; d'Oliveira, M.V.N.; Staudhammer, C.L.; Baraloto, C. url  openurl
  Title Logging in bamboo-dominated forests in southwestern Amazonia: Caveats and opportunities for smallholder forest management Type Journal Article
  Year 2014 Publication Forest Ecology and Management Abbreviated Journal For. Ecol. Manage.  
  Volume 315 Issue Pages 202-210  
  Keywords Bamboo; Community forest management; Guadua; Logging; Timber management; Tropical forest  
  Abstract Guadua sarcocarpa and Guadua weberbaueri (Poaceae: Bambuseae) have a negative influence on tree regeneration and recruitment in bamboo-dominated forests of southwestern Amazonia. The lack of advanced regeneration and sparse canopy in this forest type present a considerable challenge for developing sustainable timber management plans. We conducted field studies in the Porto Dias Agroextractive Settlement Project in Acre, Brazil to assess influences of logging in bamboo-dominated forest sites. Taxonomic composition, stand structure, aboveground biomass, commercial timber volume, and commercial tree seedling and bamboo culm density were compared between five logged vs. unlogged sites in different landholdings, using modified 0.5. ha Gentry plots. No differences in taxonomic composition, aboveground biomass, adult and juvenile stem density, or woody seedling and bamboo culm density were detected between paired logged and unlogged sites. Commercial timber volume, however, was reduced by almost two-thirds in logged plots, suggesting that long-term timber management goals in this forest type are compromised since so few future crop trees remained onsite. Our findings indicate that in order to maximize local management objectives, community forest managers must approach logging in bamboo-dominated forests with caution. We suggest an integration of non-timber forest product extraction with low harvest intensity and low-impact logging, tending of natural regeneration, and diversification of commercial species. © 2014 Elsevier B.V.  
  Address INRA, UMR Ecologie des Forêts de Guyane, 97387 Kourou Cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03781127 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 February 2014; Source: Scopus; Coden: Fecmd; Language of Original Document: English; Correspondence Address: Rockwell, C.A.; School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, United States; email: rockwell_cara@yahoo.com; Funding Details: DGE-0221599, NSF, National Science Foundation Approved no  
  Call Number EcoFoG @ webmaster @ Serial 528  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: