|   | 
Details
   web
Records
Author Amusant, N.; Beauchene, J.; Fournier, M.; Janin, G.; Thevenon, M.F.
Title (down) Decay resistance in Dicorynia guianensis Amsh.: analysis of inter-tree and intra-tree variability and relations with wood colour Type Journal Article
Year 2004 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.
Volume 61 Issue 4 Pages 373-380
Keywords Dicorynia guianensis; Amazonian wood; wood colour/decay resistance; heartwood; variability
Abstract Dicorynia guianensis Amsh. is very widespread in the forests of French Guiana and moreover is the leading species harvested in this area, but its main defect remains the great variability of wood durability, especially with respect to fungal decay. The aim of this work was to study this inter- and intra-tree variability in order to identify the parameters responsible for this variation (growth area, height and radial position) within the tree. The resistance decrease from the outer heartwood to the pith. Measurement of colour variation using the CIELAB (L*, a*, b*, C*, h*) system was performed at the intra-tree level to highlight the longitudinal and radial gradients of variation. Dicorynia guianensis becomes less red and dark from the outer to the inner heartwood and from the base to the top. Lastly, variations of colour and durability were correlated: the wood is less resistant the redder and darker it is.
Address CIRAD Foret, Forest Prod Programme, F-34398 Montpellier 5, France, Email: nadine.amusant@cirad.fr
Corporate Author Thesis
Publisher E D P SCIENCES Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1286-4560 ISBN Medium
Area Expedition Conference
Notes ISI:000223955500009 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 262
Permanent link to this record
 

 
Author Peguero, Guille ; Ferrin, Miquel ; Sardans, Jordi ; Verbruggen, Erik ; Ramirez-Rojas , Irène ; Van Langenhove, Leandro ; Verryckt, Lore T. ; Murienne, Jérôme ; Iribar, Amaia ; Zinger, Lucie ; Grau, Oriol ; Orivel, Jérome ; Stahl, Clement ; Courtois, Elodie A. ; Asensio, Dolores ; Gargallo-Garriga, Albert ; Llusia, Joan ; Margalef, Olga ; Ogaya, Roma ; Richter, Andreas ; Janssens, Ivan A. ; Penuelas, Josep
Title (down) Decay of similitary across tropical forest communities: integrating spatial distance with soil nutrients Type Journal Article
Year 2021 Publication Ecology Abbreviated Journal
Volume 103 Issue 2 Pages e03599
Keywords
Abstract Understanding the mechanisms that drive the change of biotic assemblages over space and time is the main quest of community ecology. Assessing the relative importance of dispersal and environmental species selection in a range of organismic sizes and motilities has been a fruitful strategy. A consensus for whether spatial and environmental distances operate similarly across spatial scales and taxa, however, has yet to emerge. We used censuses of four major groups of organisms (soil bacteria, fungi, ground insects, and trees) at two observation scales (1-m2 sampling point vs. 2,500-m2 plots) in a topographically standardized sampling design replicated in two tropical rainforests with contrasting relationships between spatial distance and nutrient availability. We modeled the decay of assemblage similarity for each taxon set and site to assess the relative contributions of spatial distance and nutrient availability distance. Then, we evaluated the potentially structuring effect of tree composition over all other taxa. The similarity of nutrient content in the litter and topsoil had a stronger and more consistent selective effect than did dispersal limitation, particularly for bacteria, fungi, and trees at the plot level. Ground insects, the only group assessed with the capacity of active dispersal, had the highest species turnover and the flattest nonsignificant distance−decay relationship, suggesting that neither dispersal limitation nor nutrient availability were fundamental drivers of their community assembly at this scale of analysis. Only the fungal communities at one of our study sites were clearly coordinated with tree composition. The spatial distance at the smallest scale was more important than nutrient selection for the bacteria, fungi, and insects. The lower initial similarity and the moderate variation in composition identified by these distance-decay models, however, suggested that the effects of stochastic sampling were important at this smaller spatial scale. Our results highlight the importance of nutrients as one of the main environmental drivers of rainforest communities irrespective of organismic or propagule size and how the overriding effect of the analytical scale influences the interpretation, leading to the perception of greater importance of dispersal limitation and ecological drift over selection associated with environmental niches at decreasing observation scales.
Address
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1022
Permanent link to this record
 

 
Author Vedel, V.; Cerdan, A.; Martinez, Q.; Baraloto, C.; Petitclerc, F.; Orivel, J.; Fortunel, C.
Title (down) Day-time vs. Night-time sampling does not affect estimates of spider diversity across a land use gradient in the Neotropics Type Journal Article
Year 2015 Publication Journal of Arachnology Abbreviated Journal Journal of Arachnology
Volume 43 Issue 3 Pages 413-416
Keywords Araneae; community; day; night; sampling protocol
Abstract To obtain a reliable description of spider communities, robust sampling protocols are crucial. However, it remains unclear if descriptions of spider communities in tropical habitats require both day and night sampling. Here we tested whether sampling both day and night in high and low vegetation strata would lead to better diversity estimates of spider communities than sampling at only one period of the day. We determined spider taxonomic diversity in a network of 12 plots in French Guiana along a vegetation gradient. We found high alpha diversity of spiders as expected for a tropical area at every site. We showed strong differences in spider alpha and beta diversity between high and low vegetation strata, while they were similar between day and night sampling. Our results suggest that collecting spiders at only one period is sufficient to describe the diversity of spider communities across land use types in the neotropics. © The American Arachnological Society.
Address Department of Biology, University of Maryland, College Park, MD, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 10 December 2015 Approved no
Call Number EcoFoG @ webmaster @ Serial 641
Permanent link to this record
 

 
Author Nicolini, E.; Beauchene, J.; De La Vallee, B.L.; Ruelle, J.; Mangenet, T.; Heuret, P.
Title (down) Dating branch growth units in a tropical tree using morphological and anatomical markers: The case of Parkia velutina Benoist (Mimosoïdeae) Type Journal Article
Year 2012 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.
Volume 69 Issue 5 Pages 543-555
Keywords Crown development; Deciduousness; Dendrochronology; French Guiana; Growth ring; Phenology; Tree architecture; Wood anatomy
Abstract • Context In tropical areas, studies based on the retrospective analysis of tree development have focused principally on growth ring research. The interpretation of primary growth markers is overlooked although it opens perspectives to provide long time-series on tree-crown development. • Aims This study focused on Parkia velutina, an emergent tree of neotropical rain forests. Our objectives were (1) to characterize the phenological cycle of this species, and (2) to identify temporally interpretable morphological and anatomical markers. • Methods We collected dominant branches in 14 adult trees and identified growth markers that limit longitudinal and radial increments. We coupled this approach with a 2-year phenological survey of 20 trees. • Results Leaf shedding, growth unit elongation and growth ring formation define the phenological cycle. At tree scale, this cycle is synchronous and affects all axes. At population scale, trees can be desynchronized. This cycle is annual despite some slight variability. Successive growth units and growth rings are easily identifiable. • Conclusion Dating a branch by counting the number of growth units or growth rings is possible in many years with a reasonable error. Nevertheless, estimating their precise month of formation in order to study climatic influences remains difficult. © INRA/Springer-Verlag France 2012.
Address INRA, UMR AMAP, TA A-51/PS2, Montpellier 34398, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 12864560 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 27 September 2012; Source: Scopus; Coden: Afosf; doi: 10.1007/s13595-011-0172-1; Language of Original Document: English; Correspondence Address: Nicolini, E.; Unité Mixte de Recherche CIRAD-CNRS-INRA-IRD-Université Montpellier 2, BotAnique et BioinforMatique de l'Architecture des Plantes (AMAP), BP 701, Kourou 97387, French Guiana; email: eric-andre.nicolini@cirad.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 436
Permanent link to this record
 

 
Author Campos Barros, Luisa Antonia ; Chaul, Julio Cezar Mario ; Orivel, Jérome ; Cardoso de Aguiar, Hilton Jeferson Alves
Title (down) Cytogenetics of Strumigenys louisianae Roger, 1863 (Formicidae: Myrmicinae) from North-eastern Amazonia shed light on a difficult species complex Type Journal Article
Year 2021 Publication Zoologischer Anzeiger Abbreviated Journal
Volume 294 Issue Pages 100-105
Keywords
Abstract Cytogenetic techniques provide powerful insights on species-rich taxa–such as ants–allowing better understanding of their biodiversity. Some hints on evolutionary paths can be observed through comparative populational cytogenetics among different ant groups. In this study, the karyotype of Strumigenys louisianae Roger from the Amazon rainforest is described and showed diploid chromosome number of 26 chromosomes. This configuration intriguingly contrasts with the already described karyotype for this species from the Atlantic rainforest with only 2n = 4 chromosomes. 18S rDNA site were detected on the pericentromeric region of the long arm of a metacentric pair and co-localizing with GC-rich chromatin. Recurrent synonymizations of S. louisianae may not reflect the species status of this taxon. The karyotypic differences and the observable morphological variation between the populations of both localities corroborates the idea of a species complex within S. louisianae. The morphology of S. louisianae from the Amazonian region is similar to that from the United States, the type locality. On the other hand, specimens from the Atlantic rainforest are more similar to the junior synonym Strumigenys unidentata Mayr. This study reinforces the need of taxonomical revision in S. louisianae by means of integrative taxonomy approaches.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1028
Permanent link to this record
 

 
Author de Aguiar, H.J.A.C.; Barros, L.A.C.; Silveira, L.I.; Petitclerc, F.; Etienne, S.; Orivel, J.
Title (down) Cytogenetic data for sixteen ant species from North-eastern Amazonia with phylogenetic insights into three subfamilies Type Journal Article
Year 2020 Publication Comparative Cytogenetics Abbreviated Journal Comp. Cytogenet.
Volume 14 Issue 1 Pages 43-60
Keywords Biodiversity; Formicidae; Karyotype; Neotropical ants
Abstract Ants play essential roles in most terrestrial ecosystems and may be considered pests for agriculture and agroforestry. Recent morphological and molecular data have challenged conventional ant phylogeny and the interpretation of karyotypic variations. Existing Neotropical ant cytogenetic data focus on Atlantic rainforest species, and provide evolutionary and taxonomic insight. However, there are data for only 18 Amazonian species. In this study, we describe the karyotypes of 16 ant species belonging to 12 genera and three subfamilies, collected in the Brazilian state of Amapa, and in French Guiana. The karyotypes of six species are described for the first time, including that of the South American genus Allomerus Mayr, 1878. The karyotype of Crematogaster Lund, 1831 is also described for the first time for the New World. For other species, extant data for geographically distinct populations was compared with our own data, e.g. for the leafcutter ants Acromyrmex balzani (Emery, 1890) and Atta sexdens (Linnaeus, 1758). The information obtained for the karyotype of Dolichoderus imitator Emery, 1894 differs from extant data from the Atlantic forest, thereby highlighting the importance of population cytogenetic approaches. This study also emphasizes the need for good chromosome preparations for studying karyotype structure.
Address INRA, UMR EcoFoG, AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, Kourou Cedex, 97379, France
Corporate Author Thesis
Publisher Pensoft Publishers Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 19930771 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 917
Permanent link to this record
 

 
Author Marchal, R.; Mothe, F.; Denaud, L.E.; Thibaut, B.; Bleron, L.
Title (down) Cutting forces in wood machining – Basics and applications in industrial processes. A review COST Action E35 2004-2008: Wood machining – micromechanics and fracture Type Journal Article
Year 2009 Publication Holzforschung Abbreviated Journal Holzforschung
Volume 63 Issue 2 Pages 157-167
Keywords cutting forces; online control; peeling process; physico-mechanical model; sound; vibrations; wood industry; wood machining
Abstract The data available in the literature concerning wood cutting forces permits to build models or to simulate the main wood machining processes ( milling, sawing, peeling, etc.). This approach contributes to a better understanding of formation of wood surfaces and chips and the data may be helpful to optimise cutting geometry, reduce tool wear, improve tool material, and to size tool-machines. The models may also be useful for industrial application in two ways: ( 1) providing data to optimise the settings for a given operation ( batch approach), and ( 2) building predictive models that could be the basis of an online control system for the machining processes ( interactive approach). A prerequisite for this is that numerous machining tests on different wood materials are performed based on experiences with different kind of tools and experimental devices. With a focus on potential industrial applications, the emphasis of this review was on the wood peeling process, which is a very demanding special case of wood cutting. Although not so many industrial machines are equipped with expensive force sensors, there is a lot of high quality information available about cutting forces which may be useful to improve the scientific or technological knowledge in wood machining. Alternative parameters, such as vibration or sound measurements, appear to be promising substitutes in the praxis, particularly to feed online control systems of any wood cutting process.
Address [Marchal, Remy; Bleron, Laurent] Arts & Metiers ParisTech, LABOMAP, F-71250 Cluny, France, Email: remy.marchal@cluny.ensam.fr
Corporate Author Thesis
Publisher WALTER DE GRUYTER & CO Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-3830 ISBN Medium
Area Expedition Conference
Notes ISI:000263932200006 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 205
Permanent link to this record
 

 
Author Hartke, J.; Sprenger, P.P.; Sahm, J.; Winterberg, H.; Orivel, J.; Baur, H.; Beuerle, T.; Schmitt, T.; Feldmeyer, B.; Menzel, F.
Title (down) Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association Type Journal Article
Year 2019 Publication Ecology and Evolution Abbreviated Journal
Volume 9 Issue 16 Pages 9160-9176
Keywords environmental association; integrative taxonomy; niche differentiation; population structure; sexual selection; speciation
Abstract Upon advances in sequencing techniques, more and more morphologically identical organisms are identified as cryptic species. Often, mutualistic interactions are proposed as drivers of diversification. Species of the neotropical parabiotic ant association between Crematogaster levior and Camponotus femoratus are known for highly diverse cuticular hydrocarbon (CHC) profiles, which in insects serve as desiccation barrier but also as communication cues. In the present study, we investigated the association of the ants’ CHC profiles with genotypes and morphological traits, and discovered cryptic species pairs in both genera. To assess putative niche differentiation between the cryptic species, we conducted an environmental association study that included various climate variables, canopy cover, and mutualistic plant species. Although mostly sympatric, the two Camponotus species seem to prefer different climate niches. However in the two Crematogaster species, we could not detect any differences in niche preference. The strong differentiation in the CHC profiles may thus suggest a possible role during speciation itself either by inducing assortative mating or by reinforcing sexual selection after the speciation event. We did not detect any further niche differences in the environmental parameters tested. Thus, it remains open how the cryptic species avoid competitive exclusion, with scope for further investigations. © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Address Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany
Corporate Author Thesis
Publisher John Wiley and Sons Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 20457758 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 2 September 2019; Correspondence Address: Hartke, J.; Senckenberg Biodiversity and Climate Research CentreGermany; email: Juliane.Hartke@senckenberg.de; Funding details: Leibniz-Gemeinschaft; Funding details: Agence Nationale de la Recherche, Not Available; Funding details: Deutsche Forschungsgemeinschaft, DFG, ME 3842/5‐1; Funding text 1: We thank Philippe Cerdan and Aurelie Dourdain for research permissions in the Hydreco Lab Petit Saut and the Paracou Research Station, respectively. Similarly, we thank Patrick Châtelet, Philippe Gaucher, and Dorothée Deslignes for permission to sample in the Les Nouragues Reserve. Further on, we thank Heike Stypa for supporting us in preparing the chemical samples. We thank Aidin Niamir for his helpful advice regarding climate data analysis. Financial support for this study was provided by the German Science Foundation (DFG) as a grant to Barbara Feldmeyer (FE 1333/7‐1), Thomas Schmitt (SCHM 2645/7‐1), and Florian Menzel (ME 3842/5‐1) and a grant managed by the French Agence Nationale de la Recherche (CEBA, ref. ANR‐10‐LABX‐25‐01) to Jérôme Orivel. The publication of this article was funded by the Open Access Fund of the Leibniz Association. Finally, we thank Markus Pfenninger and two anonymous reviewers for providing helpful comments on an earlier version of this manuscript.; References: Adler, P.B., HilleRisLambers, J., Levine, J.M., A niche for neutrality (2007) Ecology Letters, 10, pp. 95-104. , https://doi.org/10.1111/j.1461-0248.2006.00996.x; Aitchison, J., The statistical analysis of compositional data (1982) Journal of the Royal Statistical Society: Series B (Methodological), 44, pp. 139-177. , https://doi.org/10.1111/j.2517-6161.1982.tb01195.x; Andersson, M., Sexual selection, natural selection and quality advertisement (1982) Biological Journal of the Linnean Society, 17, pp. 375-393. , https://doi.org/10.1111/j.1095-8312.1982.tb02028.x; Bartlett, J.W., Frost, C., Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables (2008) Ultrasound in Obstetrics and Gynecology, 31, pp. 466-475. , https://doi.org/10.1002/uog.5256; Baur, H., Kranz-Baltensperger, Y., Cruaud, A., Rasplus, J.Y., Timokhov, A.V., Gokhman, V.E., Morphometric analysis and taxonomic revision of Anisopteromalus Ruschka (Hymenoptera: Chalcidoidea: Pteromalidae) – An integrative approach (2014) Systematic Entomology, 39, pp. 691-709; Baur, H., Leuenberger, C., Analysis of ratios in multivariate morphometry (2011) Systematic Biology, 60, pp. 813-825. , https://doi.org/10.1093/sysbio/syr061; Bell, G., The distribution of abundance in neutral communities (2017) The American Naturalist, 155, p. 606. , https://doi.org/10.2307/3078983; Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Das, I., Cryptic species as a window on diversity and conservation (2007) Trends in Ecology & Evolution, 22, pp. 148-155. , https://doi.org/10.1016/j.tree.2006.11.004; Blomberg, S.P., Garland, T., Ives, A.R., Testing for phylogenetic signal in comparative data: Behavioral traits are more labile (2003) Evolution, 57, pp. 717-745; Blomquist, G.J., Structure and analysis of insect hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 19-34. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Blomquist, G.J., Bagnères, A.-G., Introduction: History and overview of insect hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 3-18. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Bolaños, L.M., Rosenblueth, M., Manrique de Lara, A., Migueles-Lozano, A., Gil-Aguillón, C., Mateo-Estrada, V., Martínez-Romero, E., Cophylogenetic analysis suggests cospeciation between the Scorpion Mycoplasma Clade symbionts and their hosts (2019) PLoS ONE, 14. , https://doi.org/10.1371/journal.pone.0209588; Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Drummond, A.J., BEAST 2: A Software Platform for Bayesian Evolutionary Analysis (2014) PLoS Computational Biology, 10. , https://doi.org/10.1371/journal.pcbi.1003537; Boyle, J.H., Martins, D., Musili, P.M., Pierce, N.E., Population genomics and demographic sampling of the ant-plant Vachellia drepanolobium and its symbiotic ants from sites across its range in East Africa (2018) Frontiers in Ecology and Evolution, 7, p. 206. , https://doi.org/10.3389/fevo.2019.00206; Brückner, A., Heethoff, M., A chemo-ecologists' practical guide to compositional data analysis (2017) Chemoecology, 27, pp. 33-46. , https://doi.org/10.1007/s00049-016-0227-8; Carlson, D.A., Bernier, U.R., Sutton, B.D., Elution patterns from capillary GC for methyl-branched alkanes (1998) Journal of Chemical Ecology, 24, pp. 1845-1865; Chomicki, G., Ward, P.S., Renner, S.S., Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics (2015) Proceedings of the Royal Society B: Biological Sciences, 282, p. 20152200; Chung, H., Carroll, S.B., Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating (2015) BioEssays, 37, pp. 822-830. , https://doi.org/10.1002/bies.201500014; Chung, H., Loehlin, D.W., Dufour, H.D., Vaccaro, K., Millar, J.G., Carroll, S.B., A single gene affects both ecological divergence and mate choice in Drosophila (2014) Science, 343 (6175), pp. 1148-1151; Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L.S., Clement, W.L., Couloux, A., Savolainen, V., An extreme case of plant – insect codiversification: Figs and fig-pollinating wasps (2012) Systematic Biology, 61, pp. 1029-1047. , https://doi.org/10.1093/sysbio/sys068; Csösz, S., Wagner, H.C., Bozsó, M., Seifert, B., Arthofer, W., Schlick-Steiner, B.C., Pénzes, Z., Tetramorium indocile Santschi, 1927 stat. rev. is the proposed scientific name for Tetramorium sp. C sensu Schlick-Steiner et al. (2006) based on combined molecular and morphological evidence (Hymenoptera: Formicidae) (2014) Zoologischer Anzeiger, 253, pp. 469-481; Darwell, C.T., Cook, J.M., Cryptic diversity in a fig wasp community — morphologically differentiated species are sympatric but cryptic species are parapatric (2017) Molecular Ecology, 26, pp. 937-950. , https://doi.org/10.1111/mec.13985; Davidson, D.W., Ecological studies of Neotropical ant gardens (1988) Ecology, 69, pp. 1138-1152. , https://doi.org/10.2307/1941268; De Queiroz, K., Species concepts and species delimitation (2007) Systematic Biology, 56, pp. 879-886. , https://doi.org/10.1080/10635150701701083; de Vienne, D.M., Refrégier, G., López-Villavicencio, M., Tellier, A., Hood, M.E., Giraud, T., Cospeciation vs host-shift speciation: Methods for testing, evidence from natural associations and relation to coevolution (2013) New Phytologist, 198, pp. 347-385. , https://doi.org/10.1111/nph.12150; Degnan, P.H., Lazarus, A.B., Brock, C.D., Wernegreen, J.J., Host – symbiont stability and fast evolutionary rates in an ant – Bacterium Association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia (2004) Systematic Biology, 53, pp. 95-110. , https://doi.org/10.1080/10635150490264842; Dieckmann, U., Doebeli, M., On the origin of species by sympatric speciation (1999) Nature, 400, pp. 354-357. , https://doi.org/10.1038/22521; Doebeli, M., Dieckmann, U., Evolutionary branching and sympatric speciation caused by different types of ecological interactions (2000) The American Naturalist, 156, pp. S77-S101. , https://doi.org/10.1086/303417; Emery, V.J., Tsutsui, N.D., Recognition in a social symbiosis: Chemical phenotypes and nestmate recognition behaviors of Neotropical parabiotic ants (2013) PLoS ONE, 8. , https://doi.org/10.1371/journal.pone.0056492; Excoffier, L., Lischer, H.E.L., Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows (2010) Molecular Ecology Resources, 10, pp. 564-567; García-Robledo, C., Kuprewicz, E.K., Staines, C.L., Erwin, T.L., Kress, W.J., Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction (2015) Proceedings of the National Academy of Sciences of the United States of America, 113, pp. 680-685. , https://doi.org/10.1073/pnas.1507681113; Gause, G.F., Experimental studies on the struggle for existence I. Mixed population of two species of yeast (1932) Journal of Experimental Biology, 9, pp. 389-402; Gebiola, M., Monti, M.M., Johnson, R.C., Woolley, J.B., Hunter, M.S., Giorgini, M., Pedata, P.A., A revision of the Encarsia pergandiella species complex (Hymenoptera: Aphelinidae) shows cryptic diversity in parasitoids of whitefly pests (2017) Systematic Entomology, 42, pp. 31-59; Grundt, H.H., Kjølner, S., Borgen, L., Rieseberg, L.H., Brochmann, C., High biological species diversity in the arctic flora (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 972-975. , https://doi.org/10.1073/pnas.0510270103; Guimarães, P.R., Jordano, P., Thompson, J.N., Evolution and coevolution in mutualistic networks (2011) Ecology Letters, 14, pp. 877-885. , https://doi.org/10.1111/j.1461-0248.2011.01649.x; Gustafson, K.D., Kensinger, B.J., Bolek, M.G., Luttbeg, B., Distinct snail (Physa) morphotypes from different habitats converge in shell shape and size under common garden conditions (2014) Evolutionary Ecology Research, 16, pp. 77-89; Han, M.V., Zmasek, C.M., PhyloXML: XML for evolutionary biology and comparative genomics (2009) BMC Bioinformatics, 10, p. 356. , https://doi.org/10.1186/1471-2105-10-356; Hardin, G., The competitive exclusion principle (1960) Science, 131, pp. 1292-1297; Heethoff, M., Laumann, M., Weigmann, G., Raspotnig, G., Integrative taxonomy: Combining chemical, morphological and molecular data for delineation of the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae) (2011) Frontiers in Zoology, 8, p. 2; Hoeksema, J.D., Bruna, E.M., Pursuing the big questions about interspecific mutualism: A review of theoretical approaches (2000) Oecologia, 125, pp. 321-330. , https://doi.org/10.1007/s004420000496; Hoffmann, A.A., Turelli, M., Simmons, G.M., Unidirectional incompatibility between populations of Drosophila simulans (1986) Evolution, 40, pp. 692-701; Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M., Fukatsu, T., Strict Host-Symbiont cospeciation and reductive genome evolution in insect gut bacteria (2006) PLoS Biology, 4. , https://doi.org/10.1371/journal.pbio.0040337; Hubbell, S.P., (2001) The unified neutral theory of biodiversity and biogeography, , Princeton, NJ, Princeton University Press; Hubbell, S.P., Neutral theory in community ecology and the hypothesis of functional equivalence (2005) Functional Ecology, 19, pp. 166-172. , https://doi.org/10.1111/j.0269-8463.2005.00965.x; Hudson, E.J., Price, T.D., Pervasive reinforcement and the role of sexual selection in biological speciation (2014) Journal of Heredity, 105, pp. 821-833. , https://doi.org/10.1093/jhered/esu041; Janz, N., Nyblom, K., Nylin, S., Evolutionary dynamics of host-plant specialization: A case study of the Tribe Nymohalini (2001) Evolution, 55, pp. 783-796; Jousselin, E., van Noort, S., Berry, V., Rasplus, J.-Y., Rønsted, N., Erasmus, J.C., Greeff, J.M., One fig to bind them all: Host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps (2008) Evolution, 62, pp. 1777-1797. , https://doi.org/10.1111/j.1558-5646.2008.00406.x; Kamilar, J.M., Cooper, N., Phylogenetic singal in primate behaviour, ecolog anf life history (2013) Philosophical Transactions of the Royal Society of London. Series B, 368, p. 20120341; Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Kessler, M., Climatologies at high resolution for the earth's land surface areas (2017) Scientific Data, 4, p. 170122. , https://doi.org/10.1038/sdata.2017.122; Kawakita, A., Takimura, A., Terachi, T., Sota, T., Kato, M., Cospeciation analysis of an obligate pollination mutualism: Have Glochidon trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillaridae) diverified in parallel? (2004) Evolution, 58, pp. 2201-2214; Klingenberg, C.P., Size, shape, and form: Concepts of allometry in geometric morphometrics (2016) Development Genes and Evolution, 226, pp. 113-137. , https://doi.org/10.1007/s00427-016-0539-2; Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms (2018) Molecular Biology and Evolution, 35, pp. 1547-1549. , https://doi.org/10.1093/molbev/msy096; Leavitt, D.H., Starrett, J., Westphal, M.F., Hedin, M., Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae) (2015) Molecular Phylogenetics and Evolution, 91, pp. 56-67. , https://doi.org/10.1016/j.ympev.2015.05.016; Leigh, J.W., Bryant, D., POPART: Full-feature software for haplotype network construction (2015) Methods in Ecology and Evolution, 6, pp. 1110-1116; Liaw, A., Wiener, M., Classification and regression by randomForest (2002) R News, 2, pp. 18-22; Martin, S.J., Helanterä, H., Drijfhout, F.P., Evolution of species-specific cuticular hydrocarbon patterns in Formica ants (2008) Biological Journal of the Linnean Society, 95, pp. 131-140. , https://doi.org/10.1111/j.1095-8312.2008.01038.x; Menzel, F., Blaimer, B.B., Schmitt, T., How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait (2017) Proceedings of the Royal Society B-Biological Sciences, 284, p. 20161727. , https://doi.org/10.1098/rspb.2016.1727; Menzel, F., Linsenmair, K.E., Blüthgen, N., Selective interspecific tolerance in tropical Crematogaster-Camponotus associations (2008) Animal Behavior, 75, pp. 837-846. , https://doi.org/10.1016/j.anbehav.2007.07.005; Menzel, F., Orivel, J., Kaltenpoth, M., Schmitt, T., What makes you a potential partner? Insights from convergently evolved ant-ant symbioses (2014) Chemoecology, 24, pp. 105-119. , https://doi.org/10.1007/s00049-014-0149-2; Menzel, F., Schmitt, T., Blaimer, B.B., The evolution of a complex trait: Cuticular hydrocarbons in ants evolve independent from phylogenetic constraints (2017) Journal of Evolutionary Biology, 30, pp. 1372-1385. , https://doi.org/10.1111/jeb.13115; Montero-Pau, J., Gomez, A., Muñoz, J., Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs (2008) Limnology and Oceanography: Methods, 6, pp. 218-222. , https://doi.org/10.4319/lom.2008.6.218; Nosil, P., (2012) Ecological speciation, , Oxford, UK, Oxford University Press; Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Wagner, H., (2016) vegan: Community Ecology Package, , https://cran.r-project.org/web/packages/vegan/; Orivel, J., Errard, C., Dejean, A., Ant gardens: Interspecific recognition in parabiotic ant species (1997) Behavioral Ecology and Sociobiology, 40, pp. 87-93. , https://doi.org/10.1007/s002650050319; Paradis, E., Pegas: An R package for population genetics with an integrated-modular approach (2010) Bioinformatics, 26, pp. 419-420. , https://doi.org/10.1093/bioinformatics/btp696; Quek, S.-P., Davies, S.J., Itino, T., Pierce, N.E., Codiversification in an ant-plant mutualism: Stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) Inhabitants of Macaranga (Euphorbiaceae) (2004) Evolution, 58, pp. 554-570; (2018) R: A language and environment for statistical computing, , Vienna, Austria, R Foundation for Statistical Computing; Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., Posterior summarization in Bayesian Phylogenetics using Tracer 1.7 (2018) Systematic Biology, 67, pp. 901-904. , https://doi.org/10.1093/sysbio/syy032; Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Huelsenbeck, J.P., MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space (2012) Systematic Biology, 61, pp. 539-542; Schlenke, T.A., Begun, D.J., Strong selective sweep associated with a transposon insertion in Drosophila simulans (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 1626-1631. , https://doi.org/10.1073/pnas.0303793101; Schuler, H., Köppler, K., Daxböck-Horvath, S., Rasool, B., Krumböck, S., Schwarz, D., Riegler, M., The hitchhiker's guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi (2016) Molecular Ecology, 25, pp. 1595-1609; Schultz, T.R., Solomon, S.A., Mueller, U.G., Villesen, P., Boomsma, J.J., Adams, R.M.M., Norden, B., Cryptic speciation in the fungus-growing ants Cyphomyrmex longiscapus Weber and Cyphomyrmex muelleri Schultz and Solomon, new species (Formicidae, Attini) (2002) Insectes Sociaux, 49, pp. 331-343. , https://doi.org/10.1007/PL00012657; Schwander, T., Arbuthnott, D., Gries, R., Gries, G., Nosil, P., Crespi, B.J., Hydrocarbon divergence and reproductive isolation in Timema stick insects (2013) BMC Evolutionary Biology, 13, p. 151. , https://doi.org/10.1186/1471-2148-13-151; Scriven, J.J., Whitehorn, P.R., Goulson, D., Tinsley, M.C., Niche partitioning in a sympatric cryptic species complex (2016) Ecology and Evolution, 6, pp. 1328-1339. , https://doi.org/10.1002/ece3.1965; Seifert, B., Removal of allometric variance improves species separation in multi-character discriminant functions when species are strongly allometric and exposes diagnostic characters (2008) Myrmecological News, 11, pp. 91-105; Servedio, M.R., Van Doorn, G.S., Kopp, M., Frame, A.M., Nosil, P., Magic traits in speciation: “magic” but not rare? (2011) Trends in Ecology & Evolution, 26, pp. 389-397; Smadja, C., Butlin, R.K., On the scent of speciation: The chemosensory system and its role in premating isolation (2009) Heredity, 102, pp. 77-97. , https://doi.org/10.1038/hdy.2008.55; Steiner, F.M., Csöcs, S., Markó, B., Gamisch, A., Rinnhofer, L., Folterbauer, C., Schlick-Steiner, B.C., Molecular phylogenetics and evolution turning one into five: Integrative taxonomy uncovers complex evolution of cryptic species in the harvester ant Messor “structor” (2018) Molecular Phylogenetics and Evolution, 127, pp. 387-404. , https://doi.org/10.1016/j.ympev.2018.04.005; Stork, N.E., How many species of insects and other terrestrial arthropods are there on earth? (2018) Annual Review of Ecology Evolution and Systematics, 63, pp. 31-45; Ströher, P.R., Li, C., Pie, M.R., Exon-primed intron-crossing (EPIC) markers as a tool for ant phylogeography (2013) Revista Brasileira de Entomologia, 57, pp. 427-430. , https://doi.org/10.1590/S0085-56262013005000039; Struck, T.H., Feder, J.L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V.I., Dimitrov, D., Finding evolutionary processes hidden in cryptic species (2018) Trends in Ecology & Evolution, 33, pp. 153-163. , https://doi.org/10.1016/j.tree.2017.11.007; Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism (1989) Genetics, 123, pp. 585-595; Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Molecular Biology and Evolution, 10, pp. 512-526; Thibert-Plante, X., Gavrilets, S., Evolution of mate choice and the so-called magic traits in ecological speciation (2013) Ecology Letters, 16, pp. 1004-1013. , https://doi.org/10.1111/ele.12131; Thomas, M.L., Simmons, L.W., Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae) (2008) Journal of Insect Physiology, 54, pp. 1081-1089. , https://doi.org/10.1016/j.jinsphys.2008.04.012; Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Research, 22, pp. 4673-4680. , https://doi.org/10.1093/nar/22.22.4673; Thompson, J.N., Schwind, C., Guimarães, P.R., Friberg, M., Diversification through multitrait evolution in a coevolving interaction (2013) Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 11487-11492. , https://doi.org/10.1073/pnas.1307451110; Türke, M., Fiala, B., Linsenmair, K.E., Feldhaar, H., Estimation of dispersal distances of the obligately plant-associated ant Crematogaster decamera (2010) Ecological Entomology, 35, pp. 662-671. , https://doi.org/10.1111/j.1365-2311.2010.01222.x; van Wilgenburg, E., Symonds, M.R.E., Elgar, M.A., Evolution of cuticular hydrocarbon diversity in ants (2011) Journal of Evolutionary Biology, 24, pp. 1188-1198. , https://doi.org/10.1111/j.1420-9101.2011.02248.x; van Zweden, J.S., d'Ettorre, P., Nestmate recognition in social insects and the role of hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 222-243. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Vantaux, A., Dejean, A., Dor, A., Orivel, J., Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior (2007) Insectes Sociaux, 54, pp. 95-99. , https://doi.org/10.1007/s00040-007-0914-0; Violle, C., Nemergut, D.R., Pu, Z., Jiang, L., Phylogenetic limiting similarity and competitive exclusion (2011) Ecology Letters, 14, pp. 782-787. , https://doi.org/10.1111/j.1461-0248.2011.01644.x; Vodă, R., Dapporto, L., Dincă, V., Vila, R., Why do cryptic species tend not to co-occur? A case study on two cryptic pairs of butterflies (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0117802; Wickham, H., (2016) ggplot2: Elegant graphics for data analysis, , 2nd ed., New York, NY, Springer-Verlag; Wolak, M.E., Fairbairn, D.J., Paulsen, Y.R., Guidelines for estimating repeatability (2012) Methods in Ecology and Evolution, 3, pp. 129-137. , https://doi.org/10.1111/j.2041-210X.2011.00125.x Approved no
Call Number EcoFoG @ webmaster @ Serial 881
Permanent link to this record
 

 
Author Bordenave, B.; Lehir, F.; Lorans, M.
Title (down) Current knowledge on threatened plant species of French Guiana Type Journal Article
Year 2012 Publication Revue d'Ecologie (La Terre et la Vie) Abbreviated Journal Rev. Ecol. Terre Vie
Volume 67 Issue Suppl.2 Pages 29-45
Keywords
Abstract The elaboration of a first list of the most threatened species of the overseas territory of French Guyana was undertaken in 2009 by the Association for Botanical Conservation in French Guiana in collaboration with the National Botanical Conservatory of Brest. Carried out in synergy with the updating of the species list for Natural Areas of Ecological, Faunistic and Floritic Interests supervised by the Region Science Council for Natural Heritage, this work includes 97 vascular plants, 18 of which can be considered as threatened in the state of current knowledge, according to the IUCN criteria which are recommended by the Federation of National Botanical Conservatories. Among these 18 taxa, threatened because of their rarity and the fragility of their natural habitats, 17 are already protected by a 2001 ministry decree and one is from a new genus, Hekkingia bordenavei; nine of these appear to be of high concern for conservation: Cleistes grandifiora (Orchidaceae), Cornutia pubescens (Verbenaceae), Antirhea triflora (Rubiaceae), Himathantus drasticus (Apocynaceae), Axonopus oiapocensis (Poaceae), Psychotria granvillei (Rubiaceae), Eriocaulon guyanense (Eriocaulaceae) along with two palm species subject to National Action Plans for their conservation since 2009, Astrocaryum minus and Bactris nancibaensis. This study also contributes to the on-going “regional Red List” of the French Guiana flora.
Address Étudiant en Master 2, Écologie des Forêts Tropicales, Université de Kourou, 1 rue de l'Université, 97310 Kourou, Guyane Française, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 02497395 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 13 April 2012; Source: Scopus; Coden: Retve; Language of Original Document: French; Correspondence Address: Bordenave, B.; BGB Consultance, Botanique Tropicale, 9 route des grandes roches, 29910 Trégunc, France; email: bruno.bordenave@wanadoo.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 390
Permanent link to this record
 

 
Author Sist, P.; Blanc, L.; Mazzei, L.; Baraloto, C.; Aussenac, R.
Title (down) Current knowledge on overall post-logging biomass dynamics in Northern Amazonian forests Type Journal Article
Year 2012 Publication Bois et Forets des Tropiques Abbreviated Journal Bois Forets Tropiques
Volume 66 Issue 314 Pages 41-49
Keywords Above ground-biomass; Amazonian rainforests; Logging impact; Silviculture
Abstract This article presents the effects of logging on the dynamics of above-ground biomass from the results of the post-logging study within two forests: Cikel in Eastern Pará, Brazil and Paracou in French Guiana. The main objective is to compare the impact of commercial logging on the regeneration of the aboveground biomass in these forests whose characteristics differ in terms of structure and growth. In both sites, the intensity of exploitation is a key factor in determining the loss of biomass and the time required for its regeneration. In Paracou, the regeneration of biomass lost during conventional logging of 10 trees per hectare takes 45 years and more than 100 years when operating with higher intensity (21 trees/ha ). In Cikel the forest biomass regenerates after 49 years harvesting 6 trees/ha and that takes 87 years after removal of 8 trees/ha. This regeneration needs similar time on both sites but with lower logging intensity at Cikel, in which felled trees are larger with a greater biomass than those of Paracou. This post-logging study has established a direct correlation of the dynamics of the biomass with the initial structure of the forest, as well as with the parameters of forest dynamics: mortality, growth and recruitment. The accumulation of biomass by the tree growth of the two remaining stands is a key parameter for the net carbon storage, while the contribution of recruitment in Paracou becomes significant only after 10 years after felling. Therefore in view to improve the growth of residual trees, it is compulsory to apply adequate silvicultural treatments such as selective thinning or removal of vines. While the two forests are geographically close enough, their regenerative abilities differ and because of the significant difference in size of the trees, the forest could tolerate more intensive harvesting in French Guiana.
Address Université Antilles-Guyane Cayenne, Guyane, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006579x (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 5 June 2013; Source: Scopus; Language of Original Document: English; Correspondence Address: Cirad UR B and SEF, Campus international de Baillarguet, 34398 Montpellier Cedex 5, France Approved no
Call Number EcoFoG @ webmaster @ Serial 489
Permanent link to this record