toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Michalet, S.; Rohr, J.; Warshan, D.; Bardon, C.; Roggy, J.-C.; Domenach, A.-M.; Czarnes, S.; Pommier, T.; Combourieu, B.; Guillaumaud, N.; Bellvert, F.; Comte, G.; Poly, F. url  openurl
  Title (up) Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy Type Journal Article
  Year 2013 Publication Plant Physiology and Biochemistry Abbreviated Journal Plant Physiol. Biochem.  
  Volume 72 Issue Pages 169-177  
  Keywords Chemical ecology; Denitrification; Eperua falcata; Metabolic profiling; Mycorrhizae; Plant-microbes interactions; Root exudates  
  Abstract Eperua falcata (Aublet), a late-successional species in tropical rainforest and one of the most abundant tree in French Guiana, has developed an original strategy concerning N-acquisition by largely preferring nitrate, rather than ammonium (H. Schimann, S. Ponton, S. Hättenschwiler, B. Ferry, R. Lensi, A.M. Domenach, J.C. Roggy, Differing nitrogen use strategies of two tropical rainforest tree species in French Guiana: evidence from 15N natural abundance and microbial activities, Soil Biol. Biochem. 40 (2008) 487-494). Given the preference of this species for nitrate, we hypothesized that root exudates would promote nitrate availability by (a) enhancing nitrate production by stimulating ammonium oxidation or (b) minimizing nitrate losses by inhibiting denitrification.Root exudates were collected in situ in monospecific planted plots. The phytochemical analysis of these exudates and of several of their corresponding root extracts was achieved using UHPLC/DAD/ESI-QTOF and allowed the identification of diverse secondary metabolites belonging to the flavonoid family.Our results show that (i) the distinct exudation patterns observed are related to distinct root morphologies, and this was associated with a shift in the root flavonoid content, (ii) a root extract representative of the diverse compounds detected in roots showed a significant and selective metabolic inhibition of isolated denitrifiers invitro, and (iii) in soil plots the abundance of nirK-type denitrifiers was negatively affected in rhizosphere soil compared to bulk. Altogether this led us to formulate hypothesis concerning the ecological role of the identified compounds in relation to N-acquisition strategy of this species. © 2013 Elsevier Masson SAS.  
  Address SOLICAZ, c/o Guyane Technopole 16 bis rue du 14 Juillet, 97300 Cayenne, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09819428 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 November 2013; Source: Scopus; Coden: Ppbie; doi: 10.1016/j.plaphy.2013.05.003; Language of Original Document: English; Correspondence Address: Michalet, S.; Université Lyon1, CNRS, UMR5557, INRA, USC1364, Ecologie Microbienne, Centre d'Etude des Substances Naturelles, Pavillon Nétien, ISPB, 8 Avenue Rockefeller, 69373 Lyon cedex, France; email: sergemichalet@yahoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 509  
Permanent link to this record
 

 
Author Cachet, N.; Ho-A-Kwie, F.; Rivaud, M.; Houel, E.; Deharo, E.; Bourdy, G.; Jullian, V. url  openurl
  Title (up) Picrasin K, a new quassinoid from Quassia amara L. (Simaroubaceae) Type Journal Article
  Year 2012 Publication Phytochemistry Letters Abbreviated Journal Phytochem. Lett.  
  Volume 5 Issue 1 Pages 162-164  
  Keywords Malaria; P. falciparum; Quassia amara; Quassinoids; Simaroubaceae  
  Abstract A new quassinoid Picrasin K 1 was isolated from a decoction made of Quassia amara leaves, traditionally used in French Guyana to treat malaria. The structure and relative stereochemistry of 1 was determined through extensive NMR analysis. Picrasin K showed a low activity against Plasmodium falciparum in vitro (IC 50 = 8 μM), and a similar low activity on human cancerous cells line (IC 50 = 7 μM on MCF-7 cells line). © 2011 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.  
  Address CNRS, UMR Ecofog, Université des Antilles et de la Guyane, Cayenne, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18743900 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 8 March 2012; Source: Scopus; doi: 10.1016/j.phytol.2011.12.001; Language of Original Document: English; Correspondence Address: Jullian, V.; UMR-152 Pharma-Dev, IRD, Université Paul Sabatier Toulouse 3, 31062 Toulouse, France; email: jullian@cict.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 382  
Permanent link to this record
 

 
Author Kunstler, G.; Falster, D.; Coomes, D.A.; Hui, F.; Kooyman, R.M.; Laughlin, D.C.; Poorter, L.; Vanderwel, M.; Vieilledent, G.; Wright, S.J.; Aiba, M.; Baraloto, C.; Caspersen, J.; Cornelissen, J.H.C.; Gourlet-Fleury, S.; Hanewinkel, M.; Herault, B.; Kattge, J.; Kurokawa, H.; Onoda, Y.; Peñuelas, J.; Poorter, H.; Uriarte, M.; Richardson, S.; Ruiz-Benito, P.; Sun, I.-F.; Ståhl, G.; Swenson, N.G.; Thompson, J.; Westerlund, B.; Wirth, C.; Zavala, M.A.; Zeng, H.; Zimmerman, J.K.; Zimmermann, N.E.; Westoby, M. url  openurl
  Title (up) Plant functional traits have globally consistent effects on competition Type Journal Article
  Year 2016 Publication Nature Abbreviated Journal Nature  
  Volume 529 Issue 7585 Pages 204-207  
  Keywords  
  Abstract Phenotypic traits and their associated trade-offs have been shown to have globally consistent effects on individual plant physiological functions, but how these effects scale up to influence competition, a key driver of community assembly in terrestrial vegetation, has remained unclear. Here we use growth data from more than 3 million trees in over 140,000 plots across the world to show how three key functional traits – wood density, specific leaf area and maximum height – consistently influence competitive interactions. Fast maximum growth of a species was correlated negatively with its wood density in all biomes, and positively with its specific leaf area in most biomes. Low wood density was also correlated with a low ability to tolerate competition and a low competitive effect on neighbours, while high specific leaf area was correlated with a low competitive effect. Thus, traits generate trade-offs between performance with competition versus performance without competition, a fundamental ingredient in the classical hypothesis that the coexistence of plant species is enabled via differentiation in their successional strategies. Competition within species was stronger than between species, but an increase in trait dissimilarity between species had little influence in weakening competition. No benefit of dissimilarity was detected for specific leaf area or wood density, and only a weak benefit for maximum height. Our trait-based approach to modelling competition makes generalization possible across the forest ecosystems of the world and their highly diverse species composition. © 2016 Macmillan Publishers Limited. All rights reserved.  
  Address Forestry and Forest Products Research Institute, Tsukuba, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 29 January 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 653  
Permanent link to this record
 

 
Author Delnatte, C.; Meyer, J.-Y. url  openurl
  Title (up) Plant introduction, naturalization, and invasion in French Guiana (South America) Type Journal Article
  Year 2012 Publication Biological Invasions Abbreviated Journal Biol. Invasions  
  Volume 14 Issue 5 Pages 915-927  
  Keywords Acacia mangium; French Guiana; Invasive plant; Melaleuca quinquenervia; Naturalization; Savanna  
  Abstract Continental tropical ecosystems are generally viewed as less vulnerable to biological invasions than island ones. Their apparent resistance to invasive alien species is often attributed to their higher native biota diversity and complexity. However, with the increase of human activities and disturbances and the accelerate rate of introductions of plant species, these apparently resilient continental ecosystems are now experiencing alien plant naturalization and invasion events. In order to illustrate this emergent phenomenon, we compiled a list of all known introduced and naturalized plant species in French Guiana (Guiana Shield, South America). A total of 490 alien plants were recorded, about 34% of which are currently naturalized, mainly species belonging to the Acanthaceae and Fabaceae (Faboideae) in the Eudicotyledons, and Poaceae (grasses) and Arecaceae (palms) in the Monocotyledons. The coastal dry and wet savannas appears to be vulnerable to plant invasion (with 165 naturalized species, about 34% of the alien flora), especially by Acacia mangium (Mimosaceae) and Melaleuca quinquenervia (Myrtaceae) which are forming localized but dense monotypic stands. Both tree species, intentionnally introduced for reforestation, rehabilitation, and as garden ornamentals and have the potential to spread with increasing human disturbances The number and abundance of naturalized alien plants in the relatively undisturbed tropical lowland rainforests and savannas remains still very low. Therefore, surveillance, early detection, and eradication of potential plant invaders are crucial; moreover collaboration with neighbouring countries of the Guiana Shield is essential to prevent the introduction of potentially invasive species which are still not present in French Guiana. © 2011 Springer Science+Business Media B.V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13873547 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 May 2012; Source: Scopus; Coden: Blinf; doi: 10.1007/s10530-011-0129-1; Language of Original Document: English; Correspondence Address: Delnatte, C.; Herbier de Guyane, Institut de Recherche pour le Développement, B.P. 165, Cayenne, French Guiana; email: cesar_delnatte@yahoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 399  
Permanent link to this record
 

 
Author Amusant, N.; Digeon, A.; Descroix, L.; Bruneau, O.; Bezard, V.; Beauchene, J. url  openurl
  Title (up) Planting rosewood for sustainable essential oil production: Influence of surrounding forest and seed provenance on tree growth and essential oil yields Type Journal Article
  Year 2015 Publication Bois et Forets des Tropiques Abbreviated Journal Bois et Forets des Tropiques  
  Volume 326 Issue 4 Pages 57-65  
  Keywords Aniba rosaeodora Ducke; Dendrometric traits; Essential oil yield; French Guiana; Light effect; Plantation; Rosewood; Seed provenance  
  Abstract Essential oil from the Amazonian rosewood tree (Aniba rosaeodora Ducke) is valued as an important aromatic ingredient in luxury perfumes. Due to over-harvesting in recent decades, rosewood is now listed as an endangered species. Rosewood tree planting is now considered a viable alternative to logging as it can support both reforestation and sustainable agriculture thanks to sales of the essential oil extracted. We planted 605 rosewood trees in French Guiana from two seeds of local provenance, in a 5 445 m2 plot surrounded by primary forest. Nine years after planting, we assessed the effect of the position of the tree relative to the surrounding forest and of the seed provenance on dendrometric traits (height, circumference, above ground woody biomass) and hence on the yield of essential oil. Measurements were made on 99 trees. Average growth rates for the young trees were 0.7 m/year in height, 2.5 cm/year in stem circumference and 990.5 kg dry mass/ha/year in aboveground biomass, while essential oil yields ranged from 0.6% to 3.6% with a mean of 2.1%. The position of the tree relative to the surrounding forest was the main factor affecting tree growth and essential oil production: trees located close to the surrounding forest were significantly smaller and accumulated less essential oil due to the reduced availability of light. Seed provenance had less effect on dendrometric traits and essential oil yields. In conclusion, although planting practices will need to be adapted to avoid the edge effects of proximity to the forest, short-rotation cultivation of rosewood trees could be the optimum and most economically attractive system for the production of essential oil.  
  Address Office National des Forêts (ONF), Département R and D, Pôle de Cayenne, Réserve de Montabo, BP 87002, Cayenne Cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 7 March 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 670  
Permanent link to this record
 

 
Author Barriault, I.; Barabe, D.; Cloutier, L.; Gibernau, M. openurl 
  Title (up) Pollination ecology and reproductive success in Jack-in-the-pulpit (Arisaema triphyllum) in Quebec (Canada) Type Journal Article
  Year 2010 Publication Plant Biology Abbreviated Journal Plant Biol.  
  Volume 12 Issue 1 Pages 161-171  
  Keywords Araceae; bisexual inflorescence; deceptive pollination; Mycetophilidae; pollen load; Thysanoptera; visitation rates  
  Abstract Pollination ecology and reproductive success of Jack-in-the-pulpit (Arisaema triphyllum) were studied in two natural populations in Quebec, Canada. Individual A. triphyllum plants can be of three types: male, female or bisexual. In both populations studied, the presence of bisexual inflorescences was not negligible (13%), where 'female' and 'male' bisexual plants were categorised according to the relative number of stamens and ovaries. 'Male bisexual' plants produce only pollen and 'female bisexual' plants produce only fruit. Hence, A. triphyllum is a true dioecious plant, as each plant only reproduces through either the male or the female function. 'Female bisexual' plants were equivalent to female plants in terms of visitation rate by insects, fructification rate and production of berries and seeds. Neither agamospermy in female plants nor self-pollination in 'female bisexual' plants was found, thus A. triphyllum relies on insects for cross-pollination. Despite the long flowering cycle, a low visitation rate was documented: only 20-40% of inflorescences were visited, according to gender, by a mean of 1.5 insects. In this study, Mycetophilidae represented the most generically diversified and abundant family, as well as the most efficient insect pollinator, especially the genera Docosia and Mycetophila.  
  Address [Gibernau, M.] Univ Toulouse 3, Lab Evolut & Divers Biol, UMR, CNRS, F-31062 Toulouse 9, France, Email: gibernau@cict.fr  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1435-8603 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000272589700017 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 89  
Permanent link to this record
 

 
Author Maia, A.C.D.; Schlindwein, C.; Navarro, D.M.A.F.; Gibernau, M. openurl 
  Title (up) Pollination of Philodendron Acutatum (Araceae) in the Atlantic Forest of Northeastern Brazil: A Single Scarab Beetle Species Guarantees High Fruit Set Type Journal Article
  Year 2010 Publication International Journal of Plant Sciences Abbreviated Journal Int. J. Plant Sci.  
  Volume 171 Issue 7 Pages 740-748  
  Keywords Cyclocephala; floral volatiles; pollination specificity; reproductive success; thermogenesis  
  Abstract Philodendron acutatum (Araceae) is a hemiepiphyte common to the Atlantic Forest of northeastern Brazil. In two localities, we studied the species' breeding system and associations with flower-visiting insects, along with an analysis of its floral scent composition. The fruit set of self-incompatible P. acutatum was high, more than 90%, and inflorescences were exclusively pollinated by one species of scarab beetle, Cyclocephala celata (Scarabaeidae, Dynastinae). Pollinators are drawn toward the inflorescences at dusk by strong floral fragrances given off during the female phase of anthesis, along with endogenous heating of the spadix, whose temperatures were recorded at more than 11 degrees C above ambient air. Two other species of flower-visiting Cyclocephala were also consistently recovered in blacklight trappings during the flowering period of P. acutatum. The fact that only C. celata was found in association with P. acutatum suggests a local reproductive dependence of the plant to this scarab beetle species. Dihydro-beta-ionone and 2-hydroxy-5-methyl-3-hexanone, a rare volatile molecule so far unreported as a floral compound, together accounted for more than 97% of the unique scent composition of P. acutatum and might be involved in specific attraction of C. celata.  
  Address [Dalia Maia, Artur Campos] Univ Fed Paraiba, Programa Posgrad Ciencias Biol, BR-58059900 Joao Pessoa, Paraiba, Brazil, Email: arturcamposmaia@yahoo.com.br  
  Corporate Author Thesis  
  Publisher UNIV CHICAGO PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1058-5893 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280855800003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 46  
Permanent link to this record
 

 
Author Mortier, F.; Rossi, V.; Guillot, G.; Gourlet-Fleury, S.; Picard, N. url  openurl
  Title (up) Population dynamics of species-rich ecosystems: The mixture of matrix population models approach Type Journal Article
  Year 2013 Publication Methods in Ecology and Evolution Abbreviated Journal Methods Ecol. Evol.  
  Volume 4 Issue 4 Pages 316-326  
  Keywords Bayesian; Clustering; Mixture models; Population dynamics; Reversible jump Markov chain Monte Carlo; Species-rich ecosystems; Tropical rain forests  
  Abstract Matrix population models are widely used to predict population dynamics, but when applied to species-rich ecosystems with many rare species, the small population sample sizes hinder a good fit of species-specific models. This issue can be overcome by assigning species to groups to increase the size of the calibration data sets. However, the species classification is often disconnected from the matrix modelling and from the estimation of matrix parameters, thus bringing species groups that may not be optimal with respect to the predicted community dynamics. We proposed here a method that jointly classified species into groups and fit the matrix models in an integrated way. The model was a special case of mixture with unknown number of components and was cast in a Bayesian framework. An MCMC algorithm was developed to infer the unknown parameters: the number of groups, the group of each species and the dynamics parameters. We applied the method to simulated data and showed that the algorithm efficiently recovered the model parameters. We applied the method to a data set from a tropical rain forest in French Guiana. The mixture matrix model classified tree species into well-differentiated groups with clear ecological interpretations. It also accurately predicted the forest dynamics over the 16-year observation period. Our model and algorithm can straightforwardly be adapted to any type of matrix model, using the life cycle diagram. It can be used as an unsupervised classification technique to group species with similar population dynamics. © 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society.  
  Address Statistics Section IMM, Technical University of Denmark, Copenhagen, Denmark  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041210x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 April 2013; Source: Scopus; :doi 10.1111/2041-210x.12019; Language of Original Document: English; Correspondence Address: Mortier, F.; CIRAD, UPR Bsef, Montpellier, 34398, France; email: frederic.mortier@cirad.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 480  
Permanent link to this record
 

 
Author Scotti, I.; Paglia, G.; Magni, F.; Morgante, M. openurl 
  Title (up) Population genetics of Norway spruce (Picea abies Karst.) at regional scale: sensitivity of different microsatellite motif classes in detecting differentiation Type Journal Article
  Year 2006 Publication Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 63 Issue 5 Pages 485-491  
  Keywords conifers; SSR; divergence; statistical testing; genetic distance  
  Abstract Four populations of Norway spruce (Picea abies Karst.) were screened using nine nuclear microsatellite markers (three trinucleotides and six dinucleotides) and four chloroplast markers (all mononucleotides). Marker classes were compared for their variability, mutation rate and ability to detect differentiation between stands. Dinucleotide markers proved to be the most variable group and chloroplast stretches the least variable, with differences in mutation rate between the former and the latter spanning over two orders of magnitude. Variability correlated to the number of repeats but not to the absolute length of the microsatellite region. The different marker classes were combined with two different measures of genetic distance in order to investigate the performance of markers and evolutionary models for the study of genetic variation in natural populations of Norway spruce. Weir and Cockeram's F-ST generally performed better in this clear-cut, four-population model study. Chloroplast haplotypes turned out to be the most sensitive marker system, being able to differentiate populations and to detect differences in genetic variability between sub-regions.  
  Address INRA, UMR ECOFOG, Kourou 97387, French Guiana, Email: ivan.scotti@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000240514800005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 177  
Permanent link to this record
 

 
Author Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; de-Miguel, S.; Paquette, A.; Herault, B.; Scherer-Lorenzen, M.; Barrett, C.B.; Glick, H.B.; Hengeveld, G.M.; Nabuurs, G.-J.; Pfautsch, S.; Viana, H.; Vibrans, A.C.; Ammer, C.; Schall, P.; Verbyla, D.; Tchebakova, N.; Fischer, M.; Watson, J.V.; Chen, H.Y.H.; Lei, X.; Schelhaas, M.-J.; Lu, H.; Gianelle, D.; Parfenova, E.I.; Salas, C.; Lee, E.; Lee, B.; Kim, H.S.; Bruelheide, H.; Coomes, D.A.; Piotto, D.; Sunderland, T.; Schmid, B.; Gourlet-Fleury, S.; Sonké, B.; Tavani, R.; Zhu, J.; Brandl, S.; Vayreda, J.; Kitahara, F.; Searle, E.B.; Neldner, V.J.; Ngugi, M.R.; Baraloto, C.; Frizzera, L.; Bałazy, R.; Oleksyn, J.; Zawiła-Niedźwiecki, T.; Bouriaud, O.; Bussotti, F.; Finér, L.; Jaroszewicz, B.; Jucker, T.; Valladares, F.; Jagodzinski, A.M.; Peri, P.L.; Gonmadje, C.; Marthy, W.; O’Brien, T.; Martin, E.H.; Marshall, A.R.; Rovero, F.; Bitariho, R.; Niklaus, P.A.; Alvarez-Loayza, P.; Chamuya, N.; Valencia, R.; Mortier, F.; Wortel, V.; Engone-Obiang, N.L.; Ferreira, L.V.; Odeke, D.E.; Vasquez, R.M.; Lewis, S.L.; Reich, P.B. url  doi
openurl 
  Title (up) Positive biodiversity-productivity relationship predominant in global forests Type Journal Article
  Year 2016 Publication Science Abbreviated Journal  
  Volume 354 Issue 6309 Pages  
  Keywords  
  Abstract The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs.Science, this issue p. 196INTRODUCTIONThe biodiversity-productivity relationship (BPR; the effect of biodiversity on ecosystem productivity) is foundational to our understanding of the global extinction crisis and its impacts on the functioning of natural ecosystems. The BPR has been a prominent research topic within ecology in recent decades, but it is only recently that we have begun to develop a global perspective.RATIONALEForests are the most important global repositories of terrestrial biodiversity, but deforestation, forest degradation, climate change, and other factors are threatening approximately one half of tree species worldwide. Although there have been substantial efforts to strengthen the preservation and sustainable use of forest biodiversity throughout the globe, the consequences of this diversity loss pose a major uncertainty for ongoing international forest management and conservation efforts. The forest BPR represents a critical missing link for accurate valuation of global biodiversity and successful integration of biological conservation and socioeconomic development. Until now, there have been limited tree-based diversity experiments, and the forest BPR has only been explored within regional-scale observational studies. Thus, the strength and spatial variability of this relationship remains unexplored at a global scale.RESULTSWe explored the effect of tree species richness on tree volume productivity at the global scale using repeated forest inventories from 777,126 permanent sample plots in 44 countries containing more than 30 million trees from 8737 species spanning most of the global terrestrial biomes. Our findings reveal a consistent positive concave-down effect of biodiversity on forest productivity across the world, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide.The BPR shows considerable geospatial variation across the world. The same percentage of biodiversity loss would lead to a greater relative (that is, percentage) productivity decline in the boreal forests of North America, Northeastern Europe, Central Siberia, East Asia, and scattered regions of South-central Africa and South-central Asia. In the Amazon, West and Southeastern Africa, Southern China, Myanmar, Nepal, and the Malay Archipelago, however, the same percentage of biodiversity loss would lead to greater absolute productivity decline.CONCLUSIONOur findings highlight the negative effect of biodiversity loss on forest productivity and the potential benefits from the transition of monocultures to mixed-species stands in forestry practices. The BPR we discover across forest ecosystems worldwide corresponds well with recent theoretical advances, as well as with experimental and observational studies on forest and nonforest ecosystems. On the basis of this relationship, the ongoing species loss in forest ecosystems worldwide could substantially reduce forest productivity and thereby forest carbon absorption rate to compromise the global forest carbon sink. We further estimate that the economic value of biodiversity in maintaining commercial forest productivity alone is $166 billion to $490 billion per year. Although representing only a small percentage of the total value of biodiversity, this value is two to six times as much as it would cost to effectively implement conservation globally. These results highlight the necessity to reassess biodiversity valuation and the potential benefits of integrating and promoting biological conservation in forest resource management and forestry practices worldwide.Global effect of tree species diversity on forest productivity.Ground-sourced data from 777,126 global forest biodiversity permanent sample plots (dark blue dots, left), which cover a substantial portion of the global forest extent (white), reveal a consistent positive and concave-down biodiversity-productivity relationship across forests worldwide (red line with pink bands representing 95% confidence interval, right).The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone—US$166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 703  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: