|   | 
Details
   web
Records
Author Schimann, H.; Petit-Jean, C.; Guitet, S.; Reis, T.; Domenach, A.M.; Roggy, J.-C.
Title Microbial bioindicators of soil functioning after disturbance: The case of gold mining in tropical rainforests of French Guiana Type Journal Article
Year 2012 Publication Ecological Indicators Abbreviated Journal Ecol. Indic.
Volume 20 Issue Pages 34-41
Keywords Bioindicators; DEA/SIR ratio; Denitrifying Enzyme Activity (DEA); Disturbance; Substrate Induced Respiration (SIR); Tropical rainforest
Abstract In the context of an ongoing monitoring study on the impacts of gold-mining activities on critical ecosystem processes, we explored the use of soil Denitrifying Enzyme Activity (DEA) and Substrate Induced Respiration (SIR) as ecosystem indicators in tropical rainforests of French Guiana. We also propose DEA/SIR ratio as ecosystem attribute able to describe the state of an ecosystem and to reflect changes in ecological processes. With this purpose, we measured SIR, DEA and DEA/SIR ratio in five gold-mining areas and five surrounding natural reference rainforests. We also measured indicators in two conditions of spontaneous regeneration of vegetation (stratified or not) and two conditions of soil rehabilitation (prior preparation of soils or not). We showed a high variability of DEA, SIR and DEA/SIR ratio in the natural reference forests. This pointed out the necessity to identify relevant reference systems – i.e. proving a close match in all relevant ecological dimensions – to compare with closed perturbed systems in order to assess the levels of alterations after disturbances. Results showed a high impact of gold mine on microbial processes with a strong decrease of DEA (10-fold lower), SIR (2-fold lower) and DEA/SIR ratio (8-fold lower) in perturbed areas in comparison with natural reference forests. The type of spontaneous vegetation (stratified or not) influenced the values of indicators as well as prior rehabilitation of soils, demonstrating the capacity of DEA, SIR and DEA/SIR ratio to respond in proportion to the perturbation (robustness) and to the different levels of restoration (sensitivity). The systematic decrease of the ratio DEA/SIR observed in the studied perturbed situations demonstrates clearly that the structure of microbial communities has been also modified. The ratio DEA/SIR proved to be robust and sensitive, and able to describe in fairly fine way changes of soil microbial communities in terms of structure and function in gold mine areas and during processes of restoration. We propose to use DEA, SIR and DEA/SIR ratio as bioindicators of both structural and functional aspects of C and N cycling in soils. Together with others bioindicators based on key supporting functions in soils, these indicators should accurately evaluate the ecological potential of natural ecosystems and the levels of degradation in case of land-use changes. © 2012 Elsevier Ltd.
Address SOLICAZ – Campus Agronomique, BP 76, 97389 Kourou Cedex, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1470160x (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 2 May 2012; Source: Scopus; doi: 10.1016/j.ecolind.2012.01.021; Language of Original Document: English; Correspondence Address: Schimann, H.; INRA-Joint Research Unit Ecology of Guiana Forests (Ecofog), Campus Agronomique, BP 709, 97387 Kourou Cedex, France; email: heidy.schimann@ecofog.gf Approved no
Call Number EcoFoG @ webmaster @ Serial 396
Permanent link to this record
 

 
Author Royer, M.; Rodrigues, A.M.S.; Herbette, G.; Beauchene, J.; Chevalier, M.; Herault, B.; Thibaut, B.; Stien, D.
Title Efficacy of Bagassa guianensis Aubl. extract against wood decay and human pathogenic fungi Type Journal Article
Year 2012 Publication International Biodeterioration and Biodegradation Abbreviated Journal Int. Biodeterior. Biodegrad.
Volume 70 Issue Pages 55-59
Keywords Antifungal; Bagassa guianensis; Extractives; Natural durability; Polyphenols; Synergy
Abstract Extractives that provide natural resistance to Bagassa guianensis Aubl. heartwood were examined. Soil-bed tests showed that the B. guianensis heartwood resistance was significantly reduced after ethyl acetate extraction, whereas methanol and especially water extractions improved the resistance. The ethyl acetate extract was submitted to a bioguided fractionation, and fractions were tested against one wood-destroying fungal strain (Pycnoporus sanguineus) and two human pathogenic fungal strains (Candida glabrata (yeast) and Trichophyton rubrum (filamentous dermatophyte)). Fraction F7, which exhibited the strongest antifungal activity, was subsequently fractionated by high performance liquid chromatography (HPLC). Six previously described compounds were isolated. Although the two moracins, 6-O-methyl-moracin N (3) and moracin N (4) were the most active against fungal strains with MIC values between 4 and 16 μg ml -1, the isolated compounds showed less or equivalent antifungal activity than the initial fraction. Possible synergism between compounds 3 and 4 and other secondary metabolites have been hypothesized. Our study demonstrated that this extract as a whole might be used as a wood preservation or antimycotic product. © 2012 Elsevier Ltd.
Address CNRS, Institut de Chimie des Substances Naturelles, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 09648305 (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 2 May 2012; Source: Scopus; Coden: Ibbie; doi: 10.1016/j.ibiod.2011.10.016; Language of Original Document: English; Correspondence Address: Royer, M.; Centre de recherche sur le bois, Département des sciences du bois et de la forêt, Faculté de foresterie de géographie et de géomatique, Université Laval, 2425, rue de la Terrasse, Québec, QC, G1V 0A6, Canada; email: mariana.royer.1@ulaval.ca Approved no
Call Number EcoFoG @ webmaster @ Serial 398
Permanent link to this record
 

 
Author Delnatte, C.; Meyer, J.-Y.
Title Plant introduction, naturalization, and invasion in French Guiana (South America) Type Journal Article
Year 2012 Publication Biological Invasions Abbreviated Journal Biol. Invasions
Volume 14 Issue 5 Pages 915-927
Keywords Acacia mangium; French Guiana; Invasive plant; Melaleuca quinquenervia; Naturalization; Savanna
Abstract Continental tropical ecosystems are generally viewed as less vulnerable to biological invasions than island ones. Their apparent resistance to invasive alien species is often attributed to their higher native biota diversity and complexity. However, with the increase of human activities and disturbances and the accelerate rate of introductions of plant species, these apparently resilient continental ecosystems are now experiencing alien plant naturalization and invasion events. In order to illustrate this emergent phenomenon, we compiled a list of all known introduced and naturalized plant species in French Guiana (Guiana Shield, South America). A total of 490 alien plants were recorded, about 34% of which are currently naturalized, mainly species belonging to the Acanthaceae and Fabaceae (Faboideae) in the Eudicotyledons, and Poaceae (grasses) and Arecaceae (palms) in the Monocotyledons. The coastal dry and wet savannas appears to be vulnerable to plant invasion (with 165 naturalized species, about 34% of the alien flora), especially by Acacia mangium (Mimosaceae) and Melaleuca quinquenervia (Myrtaceae) which are forming localized but dense monotypic stands. Both tree species, intentionnally introduced for reforestation, rehabilitation, and as garden ornamentals and have the potential to spread with increasing human disturbances The number and abundance of naturalized alien plants in the relatively undisturbed tropical lowland rainforests and savannas remains still very low. Therefore, surveillance, early detection, and eradication of potential plant invaders are crucial; moreover collaboration with neighbouring countries of the Guiana Shield is essential to prevent the introduction of potentially invasive species which are still not present in French Guiana. © 2011 Springer Science+Business Media B.V.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 13873547 (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 2 May 2012; Source: Scopus; Coden: Blinf; doi: 10.1007/s10530-011-0129-1; Language of Original Document: English; Correspondence Address: Delnatte, C.; Herbier de Guyane, Institut de Recherche pour le Développement, B.P. 165, Cayenne, French Guiana; email: cesar_delnatte@yahoo.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 399
Permanent link to this record
 

 
Author Fouquet, A.; Ledoux, J.-B.; Dubut, V.; Noonan, B.P.; Scotti, I.
Title The interplay of dispersal limitation, rivers, and historical events shapes the genetic structure of an Amazonian frog Type Journal Article
Year 2012 Publication Biological Journal of the Linnean Society Abbreviated Journal Biol. J. Linn. Soc.
Volume 106 Issue 2 Pages 356-373
Keywords Amazonia; Amphibian; Gene flow; Microsatellites; Mitochondrial DNA; Spatial genetic structure
Abstract Disentangling the impact of landscape features such as rivers and historical events on dispersal is a challenging but necessary task to gain a comprehensive picture of the evolution of diverse biota such as that found in Amazonia. Adenomera andreae, a small, territorial, terrestrial frog species of the Amazonian forest represents a good model for such studies. We combined cytochromeb sequences with 12 microsatellites to investigate the genetic structure at two contrasted spatial scales in French Guiana: along a ∼6-km transect, to evaluate dispersal ability, and between paired bank populations along a ∼65-km stretch of the Approuague river, to test the effect of rivers as barriers to dispersal. We observed significant spatial genetic structure between individuals at a remarkably small geographical scale, and conclude that the species has a restricted dispersal ability that is probably tied to its life-history traits. Mitochondrial and microsatellite data also indicate a high level of differentiation among populations on opposite banks of the river, and, in some cases, among populations on the same riverbank. These results suggest that the observed population structure in A.andreae is the result of restricted dispersal abilities combined with the action of rivers and Quaternary population isolation. Given that Amazonia hosts a great portion of anurans, as well as other small vertebrates, that display life-history traits comparable with A.andreae, we argue that our analyses provide new insights into the complex interactions among evolutionary processes shaping Amazonian biodiversity. © 2012 The Linnean Society of London.
Address INRA, UMR ECOFOG, Campus agronomique, Avenue de France, BP 709, 97387 Kourou, French Guiana, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00244066 (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 2 May 2012; Source: Scopus; Coden: Bjlsb; doi: 10.1111/j.1095-8312.2012.01871.x; Language of Original Document: English; Correspondence Address: Fouquet, A.; Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461, CEP 05422-970, São Paulo, Brazil; email: fouquet.antoine@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 397
Permanent link to this record
 

 
Author Perrin, A.-S.; Fujisaki, K.; Petitjean, C.; Sarrazin, M.; Godet, M.; Garric, B.; Horth, J.-C.; Balbino, L.C.; Filho, A.S.; de Almeida Machado, P.L.O.; Brossard, M.
Title Conversion of forest to agriculture in Amazonia with the chop-and-mulch method: Does it improve the soil carbon stock? Type Journal Article
Year 2014 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.
Volume 184 Issue Pages 101-114
Keywords Annual crops; Brachiaria; Deforestation; Fire-free; French Guiana; No-tillage
Abstract Fire-free forest conversion with organic inputs as an alternative to slash-and-burn could improve agro-ecosystem sustainability. We assessed soil carbon mass changes in a sandy-clayey and well-drained soil in French Guiana after forest clearing by the chop-and-mulch method and crop establishment. At the experimental site of Combi, native forest was cut down in October 2008; woody biomass was chopped and incorporated into the top 20cm of soil. After about one year of legume and grass cover, three forms of land management were compared: grassland (Urochloa ruziziensis), maize/soybean crop rotation with disk tillage and in direct seeding without tillage. There were four replicates. We measured 14.16kgm-2 of carbon in 2mm-sieved soil down to 2m depth for the initial forest. Forest clearing did not induce significant soil compaction; neither did any specific agricultural practice. In converted soils, C stocks were measured in the 0-30cm layer after each crop for three years. Carbon mass changes for soil fractions <2mm (soil C stock) and >2mm (soil C pool) in the 0-5, 5-10, 10-20 and 20-30cm soil layers were assessed on an equivalent soil mass basis. One year and 1.5 years after deforestation, higher C stocks (+0.64 to 1.16kgCm-2yr-1) and C pools (+0.52 to 0.90kgCm-2yr-1) were measured in converted soils, compared to those of the forest into the top 30cm of soil. However, the masses of carbon in these converted soils declined later. The highest rates of carbon decrease were measured between 1.5 and 2 years after forest conversion in the <2mm soil fraction, from 0.46kgCm-2yr-1 (in grassland soils) to 0.71kgCm-2yr-1 (in cropland under no tillage). The carbon pool declined during the third year at rates of 0.41kgCm-2yr-1 (cropland under disk tillage) to 0.76kgCm-2yr-1 (grassland soils). Three years after forest conversion, C masses in the top 30cm of soils for grassland showed similar values than for forest. In comparison, the carbon stock in cropped soils managed under no tillage in direct seeding (without mulch) was significantly 17% and 16% lower than in forest and grassland soils, respectively. None of the studied agricultural practices succeeded in accumulating carbon from the chopped forest biomass. © 2013 Elsevier B.V.
Address EMBRAPA Arroz e Feijao, Cx Postal 179, CEP 75375-000 Santo Antonio de Goias, GO, Brazil
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 01678809 (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 2 January 2014; Source: Scopus; Coden: Aeend; doi: 10.1016/j.agee.2013.11.009 Approved no
Call Number EcoFoG @ webmaster @ Serial 521
Permanent link to this record
 

 
Author Malé, P.-J.G.; Leroy, C.; Dejean, A.; Quilichini, A.; Orivel, J.
Title An ant symbiont directly and indirectly limits its host plant's reproductive success Type Journal Article
Year 2012 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.
Volume 26 Issue 1 Pages 55-63
Keywords Cheater; Evolutionary conflict; Mutualism breakdown; Myrmecophyte; Pollination
Abstract In theory, mutualisms are intrinsically unstable, and the search for the maximum profit at the minimum cost should lead every mutualist to become a parasite. From an empirical point of view, mutualisms are ubiquitous and of major importance to ecosystems, suggesting the existence of mechanisms that enhance the maintenance of such relationships. We focused on the obligatory myrmecophytic association between the Neotropical plant Hirtella physophora (Chrysobalanaceae) and the ant Allomerus decemarticulatus (Myrmicinae). The plant shelters the ants in leaf pouches in exchange for protection from phytophagous insects. We experimentally demonstrated that the ants partially castrate their host plant by destroying almost two-thirds of its floral buds. The ants also impede pollination through their presence and interactions with pollinators. These results reveal that ant activity negatively affects the plant's reproduction both directly and indirectly. This dual negative effect does not result in the complete castration of the plant. We also highlight major limitations to plant reproduction due to the spontaneous abscission of flowers and to the limited quantity and/or poor quality of the pollen. These limitations must not be overlooked since they can alter the outcome of the association of H. physophora with its ant partner. We therefore conclude that the evolutionary fate of the relationship depends on both ant castration intensity and obstacles to plant fertilization not related to the presence of ants. © 2011 Springer Science+Business Media B.V.
Address Jardin Botanique Henri Gaussen, 39 Allées Jules Guesde, 31062 Toulouse, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 02697653 (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 2 January 2012; Source: Scopus; Coden: Evece; doi: 10.1007/s10682-011-9485-7; Language of Original Document: English; Correspondence Address: Malé, P.-J. G.; CNRS, EDB (Laboratoire Evolution et Diversité Biologique), UMR 5174, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France; email: pjmale@cict.fr Approved no
Call Number EcoFoG @ webmaster @ Serial 377
Permanent link to this record
 

 
Author Aili, S.R.; Touchard, A.; Escoubas, P.; Padula, M.P.; Orivel, J.; Dejean, A.; Nicholson, G.M.
Title Diversity of peptide toxins from stinging ant venoms Type Journal Article
Year 2014 Publication Toxicon Abbreviated Journal Toxicon
Volume 92 Issue Pages 166-178
Keywords Ant venom; Chemotaxonomy; Disulfide linkage; Peptides; Venom biochemistry
Abstract Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents.
Address Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, 118 Route de NarbonneToulouse, France
Corporate Author Thesis
Publisher Elsevier Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00410101 (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 2 December 2014; Coden: Toxia; Correspondence Address: Nicholson, G.M.; Neurotoxin Research Group, School of Medical and Molecular Biosciences, University of Technology SydneyAustralia Approved no
Call Number EcoFoG @ webmaster @ Serial 568
Permanent link to this record
 

 
Author Cottet, K.; Genta-Jouve, G.; Fromentin, Y.; Odonne, G.; Duplais, C.; Laprévote, O.; Michel, S.; Lallemand, M.-C.
Title Comparative LC-MS-based metabolite profiling of the ancient tropical rainforest tree Symphonia globulifera Type Journal Article
Year 2014 Publication Phytochemistry Abbreviated Journal Phytochemistry
Volume 108 Issue Pages 102-108
Keywords Kendrick mass defect; Lc-Ms; Plant organs; Symphonia globulifera; Untargeted metabolomics; Symphonia globulifera
Abstract In the last few years, several phytochemical studies have been undertaken on the tropical tree Symphonia globulifera leading to the isolation and characterisation of several compounds exhibiting antiparasitic activities against Plasmodium falciparum, Trypanosoma brucei and Leishmania donovani. The comparative LC-MS based metabolite profiling study conducted on the tree led to the identification of compounds originating from specific tissues. The results showed that renewable organs/tissues can be used as the starting material for the production of polycyclic poly-prenylated-acylphloroglucinols, therefore reducing impacts on biodiversity. This study also underlined the lack of knowledge on the secondary metabolites produced by S. globulifera since only a small number of the total detected features were putatively identified using the database of known compounds for the species.
Address Laboratoire de Chimie et Toxicologie Analytique et Cellulaire, UMR 8638, Université Paris Descartes Sorbonne Paris Cité, 4 Avenue de l'ObservatoireParis, France
Corporate Author Thesis
Publisher Elsevier Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00319422 (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 2 December 2014; Coden: Pytca; Correspondence Address: Genta-Jouve, G.; Laboratoire de Pharmacognosie, UMR 8638, Université Paris Descartes Sorbonne Paris Cité, 4 Avenue de l'Observatoire, France Approved no
Call Number EcoFoG @ webmaster @ Serial 569
Permanent link to this record
 

 
Author Wagner, F.; Rossi, V.; Stahl, C.; Bonal, D.; Herault, B.
Title Asynchronism in leaf and wood production in tropical forests: A study combining satellite and ground-based measurements Type Journal Article
Year 2013 Publication Biogeosciences Abbreviated Journal Biogeosciences
Volume 10 Issue 11 Pages 7307-7321
Keywords
Abstract The fixation of carbon in tropical forests mainly occurs through the production of wood and leaves, both being the principal components of net primary production. Currently field and satellite observations are independently used to describe the forest carbon cycle, but the link between satellite-derived forest phenology and field-derived forest productivity remains opaque. We used a unique combination of a MODIS enhanced vegetation index (EVI) dataset, a wood production model based on climate data and direct litterfall observations at an intra-annual timescale in order to question the synchronism of leaf and wood production in tropical forests. Even though leaf and wood biomass fluxes had the same range (respectively 2.4 ± 1.4 and 2.2 ± 0.4 Mg C ha-1 yr-1), they occurred separately in time. EVI increased with leaf renewal at the beginning of the dry season, when solar irradiance was at its maximum. At this time, wood production stopped. At the onset of the rainy season, when new leaves were fully mature and water available again, wood production quickly increased to reach its maximum in less than a month, reflecting a change in carbon allocation from short-lived pools (leaves) to long-lived pools (wood). The time lag between peaks of EVI and wood production (109 days) revealed a substantial decoupling between the leaf renewal assumed to be driven by irradiance and the water-driven wood production. Our work is a first attempt to link EVI data, wood production and leaf phenology at a seasonal timescale in a tropical evergreen rainforest and pave the way to develop more sophisticated global carbon cycle models in tropical forests. © 2013 Author(s).
Address INRA, UMR EEF 1137, 54280 Champenoux, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17264170 (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 2 December 2013; Source: Scopus; doi: 10.5194/bg-10-7307-2013; Language of Original Document: English; Correspondence Address: Wagner, F.; CIRAD, UMR Ecologie des Forêts de Guyane, Kourou, French Guiana, French Guiana; email: wagner.h.fabien@gmail.com; References: Allen, R., Smith, M., Pereira, L., Perrier, A., An update for the calculation of reference evapotranspiration (1994) Journal of the ICID, 43, pp. 35-92; Anderson, L.O., Biome-scale forest properties in Amazonia based on field and satellite observations (2012) Remote Sens., 4, pp. 1245-1271. , doi:10.3390/rs4051245; Arias, P.A., Fu, R., Hoyos, C.D., Li, W., Zhou, L., Changes in cloudiness over the Amazon rainforests during the last two decades: Diagnostic and potential causes (2011) Clim. Dynam., 37, pp. 1151-1164. , doi:10.1007/s00382-010-0903-2; Asner, G., Townsend, A., Braswell, B., Satellite observation of El Nino effects on Amazon forest phenology and productivity (2000) Geophys. Res. Lett., 27, pp. 981-984. , doi:10.1029/1999GL011113; Asner, G.P., Nepstad, D., Cardinot, G., Ray, D., Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (16), pp. 6039-6044. , DOI 10.1073/pnas.0400168101; Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J., Houghton, R.A., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps (2012) Nat. Clim. Change, 2, pp. 182-185. , doi:10.1038/NCLIMATE1354; Baker, T.R., Burslem, D.F.R.P., Swaine, M.D., Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest (2003) Journal of Tropical Ecology, 19 (2), pp. 109-125. , DOI 10.1017/S0266467403003146; Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Herault, B., Chave, J., Decoupled leaf and stem economics in rain forest trees (2010) Ecol. Lett., 13, pp. 1338-1347. , doi:10.1111/j.1461- 0248.2010.01517.x; Barnett, A., Dobson, A., (2010) Analysing Seasonal Health Data, , Springer; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B.T., Gross, P., Bonnefond, J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Global Change Biology, 14 (8), pp. 1917-1933. , DOI 10.1111/j.1365-2486.2008.01610.x; Bradley, A.V., Gerard, F.F., Barbier, N., Weedon, G.P., Anderson, L.O., Huntingford, C., Aragao, L.E.O.C., Arai, E., Relationships between phenology, radiation and precipitation in the Amazon region (2011) Glob. Change Biol., 17, pp. 2245-2260. , doi:10.1111/j.1365-2486.2011.02405.x; Brando, P.M., Goetz, S.J., Baccini, A., Nepstad, D.C., Beck, P.S.A., Christman, M.C., Seasonal and interannual variability of climate and vegetation indices across the Amazon (2010) P. Natl. Acad. Sci. USA, 107, pp. 14685-14690. , doi:10.1073/pnas.0908741107; Caldararu, S., Palmer, P.I., Purves, D.W., Inferring Amazon leaf demography from satellite observations of leaf area index (2012) Biogeosciences, 9, pp. 1389-1404. , doi:10.5194/bg-9-1389-2012; Chambers, J.Q., Silver, W.L., Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 463-476. , DOI 10.1098/rstb.2003.1424; Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L.E.O.C., Bonal, D., Châtelet, P., Malhi, Y., Regional and seasonal patterns of litterfall in tropical South America (2010) Biogeosciences, 7, pp. 43-55. , doi:10.5194/bg-7-43-2010; Clark, D.B., Clark, D.A., Oberbauer, S.F., Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2 (2010) Glob. Change Biol., 16, pp. 747-759. , doi:10.1111/j.1365-2486.2009.02004.x; Delegido, J., Vergara, C., Verrelst, J., Gandia, S., Moreno, J., Remote estimation of crop chlorophyll content by means of highspectral- resolution reflectance techniques (2011) Agron. J., 103, pp. 1834-1842. , doi:10.2134/agronj2011.0101; De Weirdt, M., Verbeeck, H., Maignan, F., Peylin, P., Poulter, B., Bonal, D., Ciais, P., Steppe, K., Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model (2012) Geosci. Model Dev., 5, pp. 1091-1108. , doi:10.5194/gmd-5-1091-2012; Doughty, C.E., An in situ leaf and branch warming experiment in the amazon (2011) Biotropica, 43, pp. 658-665. , doi:10.1111/j.1744- 7429.2010.00746.x; Doughty, C.E., Goulden, M.L., Are tropical forests near a high temperature threshold? (2008) J. Geophys. Res.-Biogeo., 113, pp. G00B07. , doi:10.1029/2007JG000632; Ekstrom, M., Jones, P.D., Fowler, H.J., Lenderink, G., Buishand, T.A., Conway, D., Regional climate model data used within the SWURVE project projected changes in seasonal patterns and estimation of PET (2007) Hydrology and Earth System Sciences, 11 (3), pp. 1069-1083; Enquist, B.J., Leffler, A.J., Long-term tree ring chronologies from sympatric tropical dry-forest trees: Individualistic responses to climatic variation (2001) Journal of Tropical Ecology, 17 (1), pp. 41-60. , DOI 10.1017/S0266467401001031; (2008) ESA SP-1313/4 Candidate Earth Explorer Core Missions – Reports for Assessment: FLEX – FLuorescence Explorer, , http://esamultimedia.esa.int/docs/SP1313-4_FLEX.pdf, European Space Agency, Tech. rep., published by ESA Communication Production Office, Noordwijk, The Netherlands; Fichtler, E., Clark, D.A., Worbes, M., Age and Long-term Growth of Trees in an Old-growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C (2003) Biotropica, 35 (3), pp. 306-317; Figueira, A., Miller, S., De Sousa, C., Menton, M., Maia, A., Da Rocha, H., Goulden, M., (2011) LBA-ECO CD-04 Dendrometry, Km 83 Tower Site, , http://daac.ornl.gov, Tapajos National Forest, Brazil, Data set, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, doi:10.3334/ORNLDAAC/989; Galvao, L.S., Breunig, F.M., Dos Santos, J.R., De Moura, Y.M., View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest (2013) Int. J. Appl. Earth Obs., 21, pp. 291-300. , doi:10.1016/j.jag.2012.07.005; Gao, X., Huete, A.R., Ni, W., Miura, T., Optical-biophysical relationships of vegetation spectra without background contamination (2000) Remote Sensing of Environment, 74 (3), pp. 609-620. , DOI 10.1016/S0034-4257(00)00150-4, PII S0034425700001504; Gond, V., Freycon, V., Molino, J.-F., Brunaux, O., Ingrassia, F., Joubert, P., Pekel, J.-F., Sabatier, D., Broad-scale spatial pattern of forest landscape types in the Guiana Shield (2011) Int. J. Appl. Earth Obs., 13, pp. 357-367. , doi:10.1016/j.jag.2011.01.004; Gourlet-Fleury, S., Guehl, J.M., Laroussinie, O., (2004) Ecology and Management of A Neotropical Rainforest – Lessons Drawn from Paracou, A Long-term Experimental Research Site in French Guiana, , Elsevier; Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G., Wright, S.J., Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (2), pp. 572-576. , DOI 10.1073/pnas.0133045100; Grogan, J., Schulze, M., The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil (2012) Biotropica, 44, pp. 331-340. , doi:10.1111/j.1744-7429.2011.00825.x; Harris, P.P., Huntingford, C., Cox, P.M., Amazon Basin climate under global warming: The role of the sea surface temperature (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1753-1759. , DOI 10.1098/rstb.2007.0037, PII M322R63897015H77; Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices (2002) Remote Sensing of Environment, 83 (1-2), pp. 195-213. , DOI 10.1016/S0034-4257(02)00096-2, PII S0034425702000962; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W.Z., Myneni, R., Amazon rainforests green-up with sunlight in dry season (2006) Geophys. Res. Lett., 33, pp. L06405. , doi:10.1029/2005GL025583; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) Journal of Geophysical Research G: Biogeosciences, 112 (3), pp. G03008. , DOI 10.1029/2006JG000365; Janzen, D., Wilson, D., The cost of being dormant in the tropics (1974) Biotropica, 6, pp. 260-262; Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., Salomonson, V.V., Barnsley, M.J., The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research (1998) IEEE Transactions on Geoscience and Remote Sensing, 36 (4), pp. 1228-1249. , PII S0196289298047512; Kozlowski, T., Carbohydrate sources and sinks in woody-plants (1992) Bot. Rev., 58, pp. 107-222. , doi:10.1007/BF02858600; Krepkowski, J., Bräuning, A., Gebrekirstos, A., Strobl, S., Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia (2011) Trees, 25, pp. 59-70. , doi:10.1007/s00468-010-0460-7; Lewis, S.L., Malhi, Y., Phillips, O.L., Fingerprinting the impacts of global change on tropical forests (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 437-462. , DOI 10.1098/rstb.2003.1432; Lisi, C.S., Tomazello Fo., M., Botosso, P.C., Roig, F.A., Maria, V.R.B., Ferreira-Fedele, L., Voigt, A.R.A., Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil (2008) IAWA Journal, 29 (2), pp. 189-207; Lloyd, J., Farquhar, G.D., Effects of rising temperatures and [CO2] on the physiology of tropical forest trees (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1811-1817. , DOI 10.1098/rstb.2007.0032, PII C14L2U757H282731; Da Costa Lola, A.C., Galbraith, D., Almeida, S., Tanaka Portela, B.T., Da Costa, M., De Athaydes Silva Jr., J., Braga, A.P., Meir, P., Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest (2010) New Phytol., 187, pp. 579-591. , doi:10.1111/j.1469-8137.2010.03309.x; Loubry, D., Phenology of deciduous trees in a French-Guianan forest (5 degrees latitude North) – Case of a determinism with endogenous and exogenous components (1994) Can. J. Bot., 72, pp. 1843-1857; Malhi, Y., Grace, J., Tropical forests and atmospheric carbon dioxide (2000) Trends in Ecology and Evolution, 15 (8), pp. 332-337. , DOI 10.1016/S0169-5347(00)01906-6, PII S0169534700019066; Malhi, Y., Aragao, L.E.O.C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., Meir, P., Exploring the likelihood and mechanism of a climatechange- induced dieback of the Amazon rainforest (2009) P. Natl. Acad. Sci. USA, 106, pp. 20610-20615. , doi:10.1073/pnas.0804619106; Malhi, Y., Doughty, C., Galbraith, D., The allocation of ecosystem net primary productivity in tropical forests (2011) Philos. T. R. Soc. B, 366, pp. 3225-3245. , doi:10.1098/rstb.2011.0062; Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., Performance of spectral fitting methods for vegetation fluorescence quantification (2010) Remote Sens. Environ., 114, pp. 363-374. , doi:10.1016/j.rse.2009.09.010; Michelot, A., Simard, S., Rathgeber, C., Dufrene, E., Damesin, C., Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and nonstructural carbohydrate dynamics (2012) Tree Physiol., 32, pp. 1033-1045. , doi:10.1093/treephys/tps052; Mitchell, T.D., Jones, P.D., An improved method of constructing a database of monthly climate observations and associated high-resolution grids (2005) International Journal of Climatology, 25 (6), pp. 693-712. , DOI 10.1002/joc.1181; Molto, Q., Rossi, V., Blanc, L., Error propagation in biomass estimation in tropical forests (2013) Meth. Ecol. Evolut., 4, pp. 175-183. , doi:10.1111/j.2041-210x.2012.00266.x; Moura, Y.M., Galvao, L.S., Dos Santos, J.R., Roberts, D.A., Breunig, F.M., Use of MISR/Terra data to study intra- and interannual EVI variations in the dry season of tropical forest (2012) Remote Sens. Environ., 127, pp. 260-270. , doi:10.1016/j.rse.2012.09.013; Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L., The meaning of spectral vegetation indices (1995) IEEE T. Geosci. Remote, 33, pp. 481-486; Myneni, R.B., Yang, W., Nemani, R.R., Huete, A.R., Dickinson, R.E., Knyazikhin, Y., Didan, K., Salomonson, V.V., Large seasonal swings in leaf area of Amazon rainforests (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (12), pp. 4820-4823. , DOI 10.1073/pnas.0611338104; Nath, C.D., Dattaraja, H.S., Suresh, H.S., Joshi, N.V., Sukumar, R., Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India (2006) Journal of Biosciences, 31 (5), pp. 651-669. , http://www.ias.ac.in/jbiosci/dec2006/651-669.pdf, DOI 10.1007/BF02708418; Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B., Running, S.W., Climate-driven increases in global terrestrial net primary production from 1982 to 1999 (2003) Science, 300 (5625), pp. 1560-1563. , DOI 10.1126/science.1082750; Nepstad, D., Moutinho, P., Dias, M., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res.-Atmos., 107, p. 8085. , doi:10.1029/2001JD000360; O'Brien, J.J., Oberbauer, S.F., Clark, D.B., Clark, D.A., Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest (2008) Biotropica, 40 (2), pp. 151-159. , DOI 10.1111/j.1744-7429.2007.00354.x; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333, pp. 988-993. , doi:10.1126/science.1201609; Pennec, A., Gond, V., Sabatier, D., Tropical forest phenology in French Guiana from MODIS time series (2011) Remote Sens. Lett., 2, pp. 337-345; Phillips, O.L., Aragao, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon rainforest (2009) Science, 323, pp. 1344-1347. , doi:10.1126/science.1164033; Poorter, L., Kitajima, K., Carbohydrate storage and light requirements of tropical moist and dry forest tree species (2007) Ecology, 88 (4), pp. 1000-1011. , http://www.esajournals.org/pdfserv/i0012-9658-088-04-1000.pdf, DOI 10.1890/06-0984; Rice, A.H., Pyle, E.H., Saleska, S.R., Hutyra, L., Palace, M., Keller, M., De Camargo, P.B., Wofsy, S.C., Carbon balance and vegetation dynamics in an old-growth Amazonian forest (2004) Ecological Applications, 14 (4 SUPPL.), pp. S55-S71; Richardson, A.D., Carbone, M.S., Keenan, T.F., Czimczik, C.I., Hollinger, D.Y., Murakami, P., Schaberg, P.G., Xu, X., Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees (2013) New Phytol., 197, pp. 850-861. , doi:10.1111/nph.12042; Rocha, A.V., Tracking carbon within the trees (2013) New Phytol., 197, pp. 685-686. , doi:10.1111/nph.12095; Rutishauser, E., Wagner, F., Herault, B., Nicolini, E.-A., Blanc, L., Contrasting above-ground biomass balance in a neotropical rain forest (2010) J. Veg. Sci., 21, pp. 672-682. , doi:10.1111/j.1654-1103.2010.01175.x; Rowland, L., Hill, T.C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Williams, M., Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest (2013) Glob. Change Biol., , doi:10.1111/gcb.12375; Sabatier, D., Puig, H., Phénologie et saisonnalité de la floraison et de la fructification en forêt dense guyanaise (1986) Memoir. Mus. Natl. Hist. A-Zool., 132, pp. 173-184; Sabatier, D., Grimaldi, M., Prevost, M., Guillaume, J., Godron, M., Dosso, M., Curmi, P., The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest (1997) Plant Ecol., 131, pp. 81-108; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L., Wofsy, S.C., Da Rocha, H.R., De Camargo, P.B., Silva, H., Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses (2003) Science, 302 (5650), pp. 1554-1557. , DOI 10.1126/science.1091165; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (5850), p. 612. , DOI 10.1126/science.1146663; Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., Knyazikhin, Y., Nemani, R.R., Myneni, R.B., Amazon forests did not green-up during the 2005 drought (2010) Geophys. Res. Lett., 37, pp. L05401. , doi:10.1029/2009GL042154; Schongart, J., Piedade, M.T.F., Ludwigshausen, S., Horna, V., Worbes, M., Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests (2002) Journal of Tropical Ecology, 18 (4), pp. 581-597. , DOI 10.1017/S0266467402002389; Solano, R., Didan, K., Jacobson, A., Huete, A., (2010) Terrestrial Biophysics and Remote Sensing Lab – The University of Arizona, MODIS Vegetation Indices (MOD13) C5 User's Guide, Version 1.00; Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.H., Leroy Miller, J., Chen, Z., (2007) Climate Change 2007, the Fourth Assessment Report (AR4), Intergovernmental Panel on Climate Change; Solomon, S., Plattner, G.-K., Knutti, R., Friedlingstein, P., Irreversible climate change due to carbon dioxide emissions (2009) P. Natl. Acad. Sci. USA, 106, pp. 1704-1709. , doi:10.1073/pnas.0812721106; Stahl, C., Burban, B., Bompy, F., Jolin, Z.B., Sermage, J., Bonal, D., Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana (2010) J. Trop. Ecol., 26, pp. 393-405. , doi:10.1017/S0266467410000155; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees (2013) Biotropica, 45, pp. 155-164; Tian, H., Melillo, J.M., Kicklighter, D.W., David McGuire, A., Helfrich III, J.V.K., Moore III, B., Vorosmarty, C.J., Effect of interannual climate variability on carbon storage in Amazonian ecosystems (1998) Nature, 396 (6712), pp. 664-667. , DOI 10.1038/25328; Verbeeck, H., Peylin, P., Bacour, C., Bonal, D., Steppe, K., Ciais, P., Seasonal patterns of CO2 fluxes in Amazon forests: Fusion of eddy covariance data and the ORCHIDEE model (2011) J. Geophys. Res.-Biogeo., 116, pp. G02018. , doi:10.1029/2010JG001544; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2010) Agr. Forest Meteorol., pp. 1202-1213. , doi:10.1016/j.agrformet.2011.04.012; Wagner, F., Rutishauser, E., Blanc, L., Herault, B., Effects of plot size and census interval on descriptors of forest structure and dynamics (2010) Biotropica, 42, pp. 664-671; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Herault, B., Water availability is the main climate driver of neotropical tree growth (2012) Plos One, 7, pp. e34074. , doi:10.1371/journal.pone.0034074; Worbes, M., Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela (1999) Journal of Ecology, 87 (3), pp. 391-403. , DOI 10.1046/j.1365-2745.1999.00361.x; Wright, S., Vanschaik, C., Light and the phenology of tropical trees (1994) Am. Nat., 143, pp. 192-199. , doi:10.1086/285600; Wurth, M.K.R., Pelaez-Riedl, S., Wright, S.J., Korner, C., Non-structural carbohydrate pools in a tropical forest (2005) Oecologia, 143 (1), pp. 11-24. , DOI 10.1007/s00442-004-1773-2; Zalamea, M., Gonzalez, G., Leaffall phenology in a subtropical wet forest in Puerto Rico: From species to community patterns (2008) Biotropica, 40 (3), pp. 295-304. , DOI 10.1111/j.1744-7429.2007.00389.x; Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., Huete, A., Monitoring vegetation phenology using MODIS (2003) Remote Sensing of Environment, 84 (3), pp. 471-475. , DOI 10.1016/S0034-4257(02)00135-9, PII S0034425702001359 Approved no
Call Number EcoFoG @ webmaster @ Serial 512
Permanent link to this record
 

 
Author Rey, O.; Estoup, A.; Vonshak, M.; Loiseau, A.; Blanchet, S.; Calcaterra, L.; Chifflet, L.; Rossi, J.-P.; Kergoat, G.J.; Foucaud, J.; Orivel, J.; Leponce, M.; Schultz, T.; Facon, B.
Title Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area Type Journal Article
Year 2012 Publication Ecology Letters Abbreviated Journal Ecol. Lett.
Volume 15 Issue 11 Pages 1266-1275
Keywords Adaptation; Biological invasion; Climatic niche shift; Cold temperature; Mediterranean zone; Wasmannia auropunctata
Abstract Evolution may improve the invasiveness of populations, but it often remains unclear whether key adaptation events occur after introduction into the recipient habitat (i.e. post-introduction adaptation scenario), or before introduction within the native range (i.e. prior-adaptation scenario) or at a primary site of invasion (i.e. bridgehead scenario). We used a multidisciplinary approach to determine which of these three scenarios underlies the invasion of the tropical ant Wasmannia auropunctata in a Mediterranean region (i.e. Israel). Species distribution models (SDM), phylogeographical analyses at a broad geographical scale and laboratory experiments on appropriate native and invasive populations indicated that Israeli populations followed an invasion scenario in which adaptation to cold occurred at the southern limit of the native range before dispersal to Israel. We discuss the usefulness of combining SDM, genetic and experimental approaches for unambiguous determination of eco-evolutionary invasion scenarios. © 2012 Blackwell Publishing Ltd/CNRS.
Address Smithsonian Institute, Department of Entomology, Natural Museum of Natural History, Washington, DC, 20013, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1461023x (Issn) ISBN Medium
Area Expedition Conference
Notes (down) Export Date: 19 October 2012; Source: Scopus; Coden: Eclef; doi: 10.1111/j.1461-0248.2012.01849.x; Language of Original Document: English; Correspondence Address: Rey, O.; INRA, UMR1062, CBGP, Montpellier, France; email: olivier.rey.1@gmail.com Approved no
Call Number EcoFoG @ webmaster @ Serial 441
Permanent link to this record