|   | 
Details
   web
Records
Author Peguero, Guille ; Ferrin, Miquel ; Sardans, Jordi ; Verbruggen, Erik ; Ramirez-Rojas , Irène ; Van Langenhove, Leandro ; Verryckt, Lore T. ; Murienne, Jérôme ; Iribar, Amaia ; Zinger, Lucie ; Grau, Oriol ; Orivel, Jérome ; Stahl, Clement ; Courtois, Elodie A. ; Asensio, Dolores ; Gargallo-Garriga, Albert ; Llusia, Joan ; Margalef, Olga ; Ogaya, Roma ; Richter, Andreas ; Janssens, Ivan A. ; Penuelas, Josep
Title Decay of similitary across tropical forest communities: integrating spatial distance with soil nutrients Type Journal Article
Year 2021 Publication Ecology Abbreviated Journal
Volume 103 Issue (up) 2 Pages e03599
Keywords
Abstract Understanding the mechanisms that drive the change of biotic assemblages over space and time is the main quest of community ecology. Assessing the relative importance of dispersal and environmental species selection in a range of organismic sizes and motilities has been a fruitful strategy. A consensus for whether spatial and environmental distances operate similarly across spatial scales and taxa, however, has yet to emerge. We used censuses of four major groups of organisms (soil bacteria, fungi, ground insects, and trees) at two observation scales (1-m2 sampling point vs. 2,500-m2 plots) in a topographically standardized sampling design replicated in two tropical rainforests with contrasting relationships between spatial distance and nutrient availability. We modeled the decay of assemblage similarity for each taxon set and site to assess the relative contributions of spatial distance and nutrient availability distance. Then, we evaluated the potentially structuring effect of tree composition over all other taxa. The similarity of nutrient content in the litter and topsoil had a stronger and more consistent selective effect than did dispersal limitation, particularly for bacteria, fungi, and trees at the plot level. Ground insects, the only group assessed with the capacity of active dispersal, had the highest species turnover and the flattest nonsignificant distance−decay relationship, suggesting that neither dispersal limitation nor nutrient availability were fundamental drivers of their community assembly at this scale of analysis. Only the fungal communities at one of our study sites were clearly coordinated with tree composition. The spatial distance at the smallest scale was more important than nutrient selection for the bacteria, fungi, and insects. The lower initial similarity and the moderate variation in composition identified by these distance-decay models, however, suggested that the effects of stochastic sampling were important at this smaller spatial scale. Our results highlight the importance of nutrients as one of the main environmental drivers of rainforest communities irrespective of organismic or propagule size and how the overriding effect of the analytical scale influences the interpretation, leading to the perception of greater importance of dispersal limitation and ecological drift over selection associated with environmental niches at decreasing observation scales.
Address
Corporate Author Thesis
Publisher Ecological Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1022
Permanent link to this record
 

 
Author Vacher, Corinne ; Castagneyrol, Bastien ; Jousselin, Emmanuelle ; Schimann, Heidy
Title Trees and Insects Have Microbiomes: Consequences for Forest Health and Management Type Journal Article
Year 2021 Publication Current Forestry Reports Abbreviated Journal
Volume 7 Issue (up) 2 Pages 81-96
Keywords
Abstract Purpose of Review Forest research has shown for a long time that microorganisms influence tree-insect interactions, but the complexity of microbial communities, as well as the holobiont nature of both trees and insect herbivores, has only recently been taken fully into account by forest entomologists and ecologists. In this article, we review recent findings on the effects of tree-insect-microbiome interactions on the health of tree individuals and discuss whether and how knowledge about tree and insect microbiomes could be integrated into forest health management strategies. We then examine the effects tree-insect-microbiome interactions on forest biodiversity and regeneration, highlighting gaps in our knowledge at the ecosystem scale. Recent Findings Multiple studies show that herbivore damage in forest ecosystems is clearly influenced by tripartite interactions between trees, insects and their microbiomes. Recent research on the plant microbiome indicates that microbiomes of planted trees could be managed at several stages of production, from seed orchards to mature forests, to improve the resistance of forest plantations to insect pests. Therefore, the tree microbiome could potentially be fully integrated into forest health management strategies. To achieve this aim, future studies will have to combine, as has long been done in forest research, holistic goals with reductionist approaches. Efforts should be made to improve our understanding of how microbial fluxes between trees and insects determine the health of forest ecosystems, and to decipher the underlying mechanisms, through the development of experimental systems in which microbial communities can be manipulated. Knowledge about tree-insect-microbiome interactions should then be integrated into spatial models of forest dynamics to move from small-scale mechanisms to forest ecosystem-scale predictions.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1059
Permanent link to this record
 

 
Author Rockwell, C.A.; Kainer, K.A.; Staudhammer, C.L.; Baraloto, C.
Title Future crop tree damage in a certified community forest in southwestern Amazonia Type Journal Article
Year 2007 Publication Forest Ecology and Management Abbreviated Journal For. Ecol. Manage.
Volume 242 Issue (up) 2-3 Pages 108-118
Keywords bamboo; community forest management; forest certification; Guadua; liana; marking; reduced-impact logging; RIL; timber management; tropical forest
Abstract Field studies in Acre, Brazil assessed logging impacts of a certified community timber management project. The main objectives of the study were: (1) to determine if damage incidence to future crop trees (FCTs; >= 20 cm diameter at breast height (dbh)) differs between (a) forest with and without bamboo (Guadua spp.), and (b) trees with and without lianas; (2) to what extent harvesting can be conducted more intensely (m(3)ha(-1)), without incurring greater FCT damage; and (3) to what extent marking diminishes FCT damage. Full inventories of FCTs of 50 commercial species complexes were conducted before and after logging in 50 m-radius zones of impact around each designated harvest tree in three 10 ha (200 m x 500 m) logging blocks. We also mapped all forested areas potentially influenced by logging, including skid trails, log landings and felling gaps, throughout the 30 ha logged. More than 28% of the forest area was disturbed by logging, with 12.1% in skid trails and 16.8% in gap clearings, indicating that the forest gap mosaic can be significantly altered even when reduced-impact logging guidelines are followed. Overall, 15% of FCTs inventoried were damaged. Damage rates were not significantly reduced by marking treatment, location in bamboo-dominated forest, or liana load on FCT damage. Harvest intensity did not influence the probability of FCT damage. For future studies, it would be prudent to address impacts of timber extraction on other livelihood activities, such as non-timber forest product collection, particularly in such regions as the Brazilian Amazon, where many communities are attempting to integrate a suite of income-generating activities. (C) 2007 Elsevier B.V. All rights reserved.
Address Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA, Email: crockwel@ufl.edu
Corporate Author Thesis
Publisher ELSEVIER SCIENCE BV Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-1127 ISBN Medium
Area Expedition Conference
Notes ISI:000246268100003 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 217
Permanent link to this record
 

 
Author Phillips, P.D.; Thompson, I.S.; Silva, J.N.M.; van Gardingen, P.R.; Degen, B.
Title Scaling up models of tree competition for tropical forest population genetics simulation Type Journal Article
Year 2004 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 180 Issue (up) 2-3 Pages 419-434
Keywords tropical rain; forest; population genetics; model SYMFOR; eco-gene; scaling up; competition
Abstract Understanding the effects of logging activity on genetic diversity is an important aspect of establishing the sustainability of selective logging management operations in tropical forests. Genetic variation is affected by selective logging directly, through the removal of and damage to trees within the population, and indirectly, through a change in the forest structure and environment in which the remaining population lives. Eco-Gene is a population genetics model applied to tropical forests over a scale of hundreds of hectares. SYMFOR is a modelling framework for individual-based spatially explicit ecological and management models applied to tropical forests over a scale of 0.25 4 ha. We have linked the models to enable simulations using processes involved in both models. To overcome problems of scale, the spatially explicit competition index calculated in SYMFOR simulations has been modelled such that it can be applied at scales representing much larger areas for which the data are not available, as required by Eco-Gene. The competition index is modelled as a distribution on a grid-square basis, and implemented in the linked Eco-Gene/SYMFOR system. Each tree within a grid-square is given a “relative competition” within the distribution, biased according to species. A competition index value is obtained for the tree by transforming the grid-square distribution to be relevant to the size of the tree, and extracting a value according to the tree's relative competition within the distribution. The distribution and each tree's relative competition within it change according to the effects of growth, mortality and logging activity. The model was calibrated using data from the Tapajos region of the Eastern Amazon forest. This paper describes the model, its calibration and validation and the implications of scaling up from an explicit representation to a modelled quantity. (C) 2004 Elsevier B.V. All rights reserved.
Address Embrapa Amazonia Oriental, BR-66095100 Belem, Para, Brazil, Email: paul.phillips@envams.co.uk
Corporate Author Thesis
Publisher ELSEVIER SCIENCE BV Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium
Area Expedition Conference
Notes ISI:000224635700012 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 234
Permanent link to this record
 

 
Author Sierra, J.; Daudin, D.; Domenach, A.M.; Nygren, P.; Desfontaines, L.
Title Nitrogen transfer from a legume tree to the associated grass estimated by the isotopic signature of tree root exudates: A comparison of the N-15 leaf feeding and natural N-15 abundance methods Type Journal Article
Year 2007 Publication European Journal of Agronomy Abbreviated Journal Eur. J. Agron.
Volume 27 Issue (up) 2-4 Pages 178-186
Keywords agroforestry; box model; gliricidia sepium; N-15 fractionation; root turnover; tree pruning
Abstract Nitrogen (N) transfer from legume trees to associated crops is a key factor for the N economy of low-input agroforestry systems. In this work, we presented a new approach to estimate N transfer based on the N-15 content of root exudates and N released by root turnover of the donor plant (Gliricidia sepium) and the temporal change of the N-15 content of the receiver plant (Dichanthium aristatum). The study was carried out in greenhouse using two isotopic methods: N-15 leaf feeding (LF) and the natural N-15 abundance (NA). Measurements of exudate N-15 were made at several dates before and after tree pruning. A time-dependent box model was devised to quantify N transfer in time and to make comparisons between the isotopic methods. In NA, although tree roots and exudates presented a similar N-15 signature before tree pruning, exudates were strongly depleted in N-15 after pruning. In LF, exudates were always depleted in N-15 in relation to tree roots. Hence, the current assumption used in N transfer studies concerning the equal N-15/N-14 distribution in tissues of the donor plant and in its excreted N was not confirmed in our study. Before pruning, N transfer functioned as a two-N-source system (soil N and exudates N) and both isotopic methods provided similar estimates: 11-12% for LF and 10-15% for NA. Calculations per-formed with the model indicated that N transfer occurred with small or nil fractionation of N-15 in exudates. After pruning, there was a third N source associated with N released from tree root turnover. During this period, the isotopic signature of the receiver plant showed a transient state due to the progressive decrease of N-15 content of that N source. The amount of N derived from the tree represented 65% of the total N content of the. grass at the end of the experiments. (c) 2007 Elsevier B.V. All rights reserved.
Address INRA, Unite Agropedioclimat, UR135, Petit Bourg 97170, Guadeloupe, Email: jorge.sierra@antilles.inra.fr
Corporate Author Thesis
Publisher ELSEVIER SCIENCE BV Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium
Area Expedition Conference
Notes ISI:000249798900003 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 157
Permanent link to this record
 

 
Author Schmitt, Sylvain ; Tysklind, Niklas ; Hérault, Bruno ; Heuertz, Myriam
Title Topography drives microgeographic adaptations of closely related species in two tropical tree species complexes Type Journal Article
Year 2021 Publication Molecular Ecology Abbreviated Journal
Volume 30 Issue (up) 20 Pages 5080-5093
Keywords
Abstract Closely related tree species that grow in sympatry are abundant in rainforests. However, little is known of the ecoevolutionary processes that govern their niches and local coexistence. We assessed genetic species delimitation in closely related sympatric species belonging to two Neotropical tree species complexes and investigated their genomic adaptation to a fine-scale topographic gradient with associated edaphic and hydrologic features. Combining LiDAR-derived topography, tree inventories, and single nucleotide polymorphisms (SNPs) from gene capture experiments, we explored genome-wide population genetic structure, covariation of environmental variables, and genotype-environment association to assess microgeographic adaptations to topography within the species complexes Symphonia (Clusiaceae), and Eschweilera (Lecythidaceae) with three species per complex and 385 and 257 individuals genotyped, respectively. Within species complexes, closely related tree species had different realized optima for topographic niches defined through the topographic wetness index or the relative elevation, and species displayed genetic signatures of adaptations to these niches. Symphonia species were genetically differentiated along water and nutrient distribution particularly in genes responding to water deprivation, whereas Eschweilera species were genetically differentiated according to soil chemistry. Our results suggest that varied topography represents a powerful driver of processes modulating tropical forest biodiversity with differential adaptations that stabilize local coexistence of closely related tree species.
Address
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1045
Permanent link to this record
 

 
Author De Souza, F.C.; Dexter, K.G.; Phillips, O.L.; Brienen, R.J.W.; Chave, J.; Galbraith, D.R.; Gonzalez, G.L.; Mendoza, A.M.; Toby Pennington, R.; Poorter, L.; Alexiades, M.; Álvarez-Dávila, E.; Andrade, A.; Aragão, L.E.O.C.; Araujo-Murakami, A.; Arets, E.J.M.M.; Aymard C., G.A.; Baraloto, C.; Barroso, J.G.; Bonal, D.; Boot, R.G.A.; Camargo, J.L.C.; Comiskey, J.A.; Valverde, F.C.; De Camargo, P.B.; Di Fiore, A.; Elias, F.; Erwin, T.L.; Feldpausch, T.R.; Ferreira, L.; Fyllas, N.M.; Gloor, E.; Herault, B.; Herrera, R.; Higuchi, N.; Coronado, E.N.H.; Killeen, T.J.; Laurance, W.F.; Laurance, S.; Lloyd, J.; Lovejoy, T.E.; Malhi, Y.; Maracahipes, L.; Marimon, B.S.; Marimon-Junior, B.H.; Mendoza, C.; Morandi, P.; Neill, D.A.; Vargas, P.N.; Oliveira, E.A.; Lenza, E.; Palacios, W.A.; Peñuela-Mora, M.C.; Pipoly, J.J., III; Pitman, N.C.A.; Prieto, A.; Quesada, C.A.; Ramirez-Angulo, H.; Rudas, A.; Ruokolainen, K.; Salomão, R.P.; Silveira, M.; Stropp, J.; Steege, H.T.; Thomas-Caesar, R.; Van Der Hout, P.; Van Der Heijden, G.M.F.; Van Der Meer, P.J.; Vasquez, R.V.; Vieira, S.A.; Vilanova, E.; Vos, V.A.; Wang, O.; Young, K.R.; Zagt, R.J.; Baker, T.R.
Title Evolutionary heritage influences amazon tree ecology Type Journal Article
Year 2016 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proceedings of the Royal Society B: Biological Sciences
Volume 283 Issue (up) 20161587 Pages
Keywords Convergent evolution; Divergent selection; Phylogenetic signal; Trait; Tropical tree
Abstract Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant lifehistory strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.
Address Department of Geography and the Environment, University of Texas at Austin, Austin, TX, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 17 January 2017 Approved no
Call Number EcoFoG @ webmaster @ Serial 706
Permanent link to this record
 

 
Author Jaouen, G.; Sagne, A.; Buyck, B.; Decock, C.; Louisanna, E.; Manzi, S.; Baraloto, C.; Roy, M.; Schimann, H.
Title Fungi of French Guiana gathered in a taxonomic, environmental and molecular dataset Type Journal Article
Year 2019 Publication Scientific data Abbreviated Journal
Volume 6 Issue (up) 206 Pages
Keywords
Abstract In Amazonia, the knowledge about Fungi remains patchy and biased towards accessible sites. This is particularly the case in French Guiana where the existing collections have been confined to few coastal localities. Here, we aimed at filling the gaps of knowledge in undersampled areas of this region, particularly focusing on the Basidiomycota. From 2011, we comprehensively collected fruiting-bodies with a stratified and reproducible sampling scheme in 126 plots. Sites of sampling reflected the main forest habitats of French Guiana in terms of soil fertility and topography. The dataset of 5219 specimens gathers 245 genera belonging to 75 families, 642 specimens are barcoded. The dataset is not a checklist as only 27% of the specimens are identified at the species level but 96% are identified at the genus level. We found an extraordinary diversity distributed across forest habitats. The dataset is an unprecedented and original collection of Basidiomycota for the region, making specimens available for taxonomists and ecologists. The database is publicly available in the GBIF repository ( https://doi.org/10.15468/ymvlrp ).
Address Department of Biological Science, Florida International University, FL, Miami, 33199, United States
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Export Date: 28 October 2019 Approved no
Call Number EcoFoG @ webmaster @ Serial 891
Permanent link to this record
 

 
Author Dezecache, C.; Salles, J.-M.; Herault, B.
Title Questioning emissions-based approaches for the definition of REDD+ deforestation baselines in high forest cover/low deforestation countries Type Journal Article
Year 2018 Publication Carbon Balance Manage. Abbreviated Journal
Volume 13 Issue (up) 21 Pages
Keywords Baseline; Deforestation; Guiana Shield; HFLD countries; Redd+; Reference level; Spatial modelling
Abstract Background: REDD+ is being questioned by the particular status of High Forest/Low Deforestation countries. Indeed, the formulation of reference levels is made difficult by the confrontation of low historical deforestation records with the forest transition theory on the one hand. On the other hand, those countries might formulate incredibly high deforestation scenarios to ensure large payments even in case of inaction. Results: Using a wide range of scenarios within the Guiana Shield, from methods involving basic assumptions made from past deforestation, to explicit modelling of deforestation using relevant socio-economic variables at the regional scale, we show that the most common methodologies predict huge increases in deforestation, unlikely to happen given the existing socio-economic situation. More importantly, it is unlikely that funds provided under most of these scenarios could compensate for the total cost of avoided deforestation in the region, including social and economic costs. Conclusion: This study suggests that a useful and efficient international mechanism should really focus on removing the underlying political and socio-economic forces of deforestation rather than on hypothetical result-based payments estimated from very questionable reference levels.
Address
Corporate Author Thesis
Publisher BioMed Central Ltd. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 17500680 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 837
Permanent link to this record
 

 
Author Mirabel, Ariane ; Marcon, Eric ; Hérault, Bruno
Title 30 Years of postdisturbance recruitment in a Neotropical forest Type Journal Article
Year 2021 Publication Ecology and Evolution Abbreviated Journal
Volume 11 Issue (up) 21 Pages 14448-14458
Keywords
Abstract
Address
Corporate Author Thesis
Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 1043
Permanent link to this record