toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Orivel, J.; Grangier, J.; Foucaud, J.; Le Breton, J.; Andres, F.X.; Jourdan, H.; Delabie, J.H.C.; Fournier, D.; Cerdan, P.; Facon, B.; Estoup, A.; Dejean, A. openurl 
  Title Ecologically heterogeneous populations of the invasive ant Wasmannia auropunctata within its native and introduced ranges Type Journal Article
  Year 2009 Publication Ecological Entomology Abbreviated Journal Ecol. Entomol.  
  Volume 34 Issue 4 Pages 504-512  
  Keywords Biological invasion; disturbance; ecological traits; native; Wasmannia auropunctata  
  Abstract 1. The biology of most invasive species in their native geographical areas remains largely unknown. Such studies are, however, crucial in shedding light on the ecological and evolutionary processes underlying biological invasions. 2. The present study focuses on the little fire ant Wasmannia auropunctata, a species native to Central and South America that has been widely introduced and which has become invasive throughout the tropics. We characterise and compare several ecological traits of native populations in French Guiana with those in one of its introduced ranges, New Caledonia. 3. We found ecologically heterogeneous populations of W. auropunctata coexisting in the species' native geographical area. First, we found populations restricted to naturally perturbed areas (particularly floodplains) within the primary forest, and absent from the surrounding forest areas. These populations were characterised by low nest and worker densities. Second, we found dominant populations in recent anthropogenic areas (e.g. secondary forest or forest edge along road) characterised by high nest and worker densities, and associated with low ant species richness. The local dominance of W. auropunctata in such areas can be due to the displacement of other species (cause) or the filling-up of empty habitats unsuitable to other ants (effect). With respect to their demographic features and ant species richness, the populations of native anthropogenic habitats were to a large extent similar to the invasive populations introduced into remote areas. 4. The results point to the need for greater research efforts to better understand the ecological and demographic features of invasive species within their native ranges.  
  Address [Orivel, Jerome; Grangier, Julien; Le Breton, Julien] Univ Toulouse 3, Lab Evolut & Divers Biol, CNRS, UMR 5174, F-31062 Toulouse 9, France, Email: orivel@cict.fr  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0307-6946 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000267659900010 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 202  
Permanent link to this record
 

 
Author Bourguignon, T.; Sobotnik, J.; Lepoint, G.; Martin, J.M.; Hardy, O.J.; Dejean, A.; Roisin, Y. openurl 
  Title Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios Type Journal Article
  Year 2011 Publication Ecological Entomology Abbreviated Journal Ecol. Entomol.  
  Volume 36 Issue 2 Pages 261-269  
  Keywords Diet diversity; feeding groups; Isoptera; phylogenetic autocorrelation  
  Abstract 2. Nitrogen stable isotopes (hereafter delta 15N) were used to place termites from French Guiana rainforests along a wood-soil decomposition gradient, to test (i) whether feeding group assignation based on morphological characters was accurate and actually represented diet specialisation thresholds, and (ii) to what extent the dietary specialization of species is explained by phylogeny (phylogenetic autocorrelation). 3. delta 15N values vary over a range of 13 parts per thousand, suggesting that diet diversification contributes to the high species diversity in French Guiana. delta 15N values span a similar interval in all Termitidae subfamilies. Ranges of different subfamilies broadly overlap, although each of them diversified preferentially on one side of the wood-soil decomposition gradient. Congeneric species share similar feeding habits, whereas distant species tend to feed on distinct substrates. 4. Feeding groups did not completely match stable isotope data: there was no discontinuity between Groups III and IV, and no correlation between anatomical criteria used to distinguish these groups and delta 15N values. Nor was there any consistent difference in delta 15N values between wood feeders of the families Rhinotermitidae (Group I) and Termitidae (Group II). We also suggest that species feeding outside the wood-soil gradient should be distinguished for their peculiar feeding requirements.  
  Address [Sobotnik, Jan] Acad Sci Czech Republic, Inst Organ Chem & Biochem, Res Team Infochem, CR-16610 Prague 6, Czech Republic, Email: sobotnik@uochb.cas.cz  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0307-6946 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000288456300016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 302  
Permanent link to this record
 

 
Author Dejean, A.; Compin, A.; Delabie, J.H.C.; Azémar, F.; Corbara, B.; Leponce, M. url  doi
openurl 
  Title Biotic and abiotic determinants of the formation of ant mosaics in primary Neotropical rainforests Type Journal Article
  Year 2019 Publication Ecological Entomology Abbreviated Journal Ecol Entomol  
  Volume 44 Issue 4 Pages 560-570  
  Keywords Ant mosaics; connections on the ground; host tree attractiveness; indicators of disturbance; primary Neotropical rainforest; territoriality  
  Abstract 1. Ants are widespread in tropical rainforests, including in the canopy where territorially dominant arboreal species represent the main part of the arthropod biomass.
2. By mapping the territories of dominant arboreal ant species and using a null model analysis and a pairwise approach this study was able to show the presence of an ant mosaic on the upper canopy of a primary Neotropical rainforest (c. 1ha sampled; 157 tall trees from 28 families). Although Neotropical rainforest canopies are frequently irregular, with tree crowns at different heights breaking the continuity of the territories of dominant ants, the latter are preserved via underground galleries or trails laid on the ground.
3. The distribution of the trees influences the structure of the ant mosaic, something related to the attractiveness of tree taxa for certain arboreal ant species rather than others.
4. Small-scale natural disturbances, most likely strong winds in the area studied (presence of canopy gaps), play a role by favouring the presence of two ant species typical of secondary formations: Camponotus femoratus and Crematogaster levior, which live in parabiosis (i.e. share territories and nests but lodge in different cavities) and build conspicuous ant gardens. In addition, pioneer Cecropia myrmecophytic trees were recorded.
 
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0307-6946 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/een.12735 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 882  
Permanent link to this record
 

 
Author Leroy, C.; Corbara, B.; Pélozuelo, L.; Carrias, J.-F.; Dejean, A.; Céréghino, R. url  openurl
  Title Ant species identity mediates reproductive traits and allocation in an ant-garden bromeliad Type Journal Article
  Year 2012 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 109 Issue 1 Pages 145-152  
  Keywords δ15N; Aechmea mertensii; Bromeliaceae; bromeliad; Camponotus femoratus; floral traits; fruit-set; mutualistic ants; Pachycondyla goeldii; reproductive allocation; stable isotopes  
  Abstract •Background and Aims: Determining the sources of variation in floral morphology is crucial to understanding the mechanisms underlying Angiosperm evolution. The selection of floral and reproductive traits is influenced by the plants abiotic environment, florivores and pollinators. However, evidence that variations in floral traits result from mutualistic interactions with insects other than pollinators is lacking in the published literature and has rarely been investigated. We aimed to determine whether the association with either Camponotus femoratus or Pachycondyla goeldii (both involved in seed dispersal and plant protection) mediates the reproductive traits and allocation of Aechmea mertensii, an obligatory ant-garden tank-bromeliad, differently.•Methods: Floral and reproductive traits were compared between the two A. mertensii ant-gardens. The nitrogen flux from the ants to the bromeliads was investigated through experimental enrichments with stable isotopes (15N).•Key Results: Camponotus femoratus-associated bromeliads produced inflorescences up to four times longer than did P. goeldii-associated bromeliads. Also, the numbers of flowers and fruits were close to four times higher, and the number of seeds and their mass per fruit were close to 1·5 times higher in C. femoratus than in P. goeldii-associated bromeliads. Furthermore, the 15N-enrichment experiment showed that C. femoratus-associated bromeliads received more nitrogen from ants than did P. goeldii-associated bromeliads, with subsequent positive repercussions on floral development. Greater benefits were conferred to A. mertensii by the association with C. femoratus compared with P. goeldii ants.•Conclusions: We show for the first time that mutualistic associations with ants can result in an enhanced reproductive allocation for the bromeliad A. mertensii. Nevertheless, the strength and direction of the selection of floral and fruit traits change based on the ant species and were not related to light exposure. The different activities and ecological preferences of the ants may play a contrasting role in shaping plant evolution and speciation. © The Author 2011.  
  Address Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 January 2012; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mcr253; Language of Original Document: English; Correspondence Address: Leroy, C.; CNRS, UMR Ecologie des Forêts de Guyane (UMR-CNRS 8172), Campus Agronomique, F-97379 Kourou Cedex, France; email: celine.leroy@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 378  
Permanent link to this record
 

 
Author Colin, F.; Sanjines, A.; Fortin, M.; Bontemps, J.-D.; Nicolini, E. url  openurl
  Title Fagus sylvatica trunk epicormics in relation to primary and secondary growth Type Journal Article
  Year 2012 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 110 Issue 5 Pages 995-1005  
  Keywords epicormics; European beech; Fagus sylvatica; mixed ZIP models; ontogeny; radial growth; sprouting  
  Abstract Background and AimsEuropean beech epicormics have received far less attention than epicormics of other species, especially sessile oak. However, previous work on beech has demonstrated that there is a negative effect of radial growth on trunk sprouting, while more recent investigations on sessile oak proved a strong positive influence of the presence of epicormics. The aims of this study were, first, to make a general quantification of the epicormics present along beech stems and, secondly, to test the effects of both radial growth and epicormic frequency on sprouting. MethodsIn order to test the effect of radial growth, ten forked individuals were sampled, with a dominant and a dominated fork of almost equal length for every individual. To test the effects of primary growth and epicormic frequency, on the last 17 annual shoots of each fork arm, the number of axillary buds, shoot length, ring width profiles, epicormic shoots and other epicormics were carefully recorded. Key ResultsThe distribution of annual shoot length, radial growth profiles and parallel frequencies of all epicormics are presented. The latter frequencies were parallel to the annual shoot lengths, nearly equivalent for both arms of each tree, and radial growth profiles included very narrow rings in the lowest annual shoots and even missing rings in the dominated arms alone. The location of the latent buds and the epicormics was mainly at branch base, while epicormic shoots, bud clusters and spheroblasts were present mainly in the lowest annual shoots investigated. Using a zero-inflated mixed model, sprouting was shown to depend positively on epicormic frequency and negatively on radial growth. ConclusionsSupport for a trade-off between cambial activity and sprouting is put forward. Sprouting mainly depends on the frequency of epicormics. Between-and within-tree variability of the epicormic composition in a given species may thus have fundamental and applied implications. © 2012 The Author.  
  Address Equipe Architecture et Développement des Plantes, CIRAD, Campus Agronomique de Silvolab, BP 701, 97387 Kourou cedex, Guyane, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 8 October 2012; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mcs178; Language of Original Document: English; Correspondence Address: Colin, F.; INRA, Centre de Nancy, UMR 1092 INRA-AgroParisTech LERFoB, 54280 Champenoux, France; email: colin@nancy.inra.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 439  
Permanent link to this record
 

 
Author Leroy, C.; Carrias, J.-F.; Corbara, B.; Pélozuelo, L.; Dezerald, O.; Brouard, O.; Dejean, A.; Céréghino, R. url  openurl
  Title Mutualistic ants contribute to tank-bromeliad nutrition Type Journal Article
  Year 2013 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 112 Issue 5 Pages 919-926  
  Keywords δ15N; Algae; ants; Bromeliaceae; food webs; Formicinae; French Guiana; mutualistic interactions; nitrogen; phytotelmata; stable isotopes; tank bromeliad  
  Abstract Background and AimsEpiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations.MethodsQuantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ15N).Key ResultsAll variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ15N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ15N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C 3-Tillandsioideae compared with CAM-Bromelioideae.ConclusionsThe study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its tank. The results highlight a gap in our knowledge of the reciprocal interactions between bromeliads and the various trophic levels (from bacteria to large metazoan predators) that intervene in reservoir-assisted nutrition. © The Author 2013.  
  Address CNRS, UMR 8172, Écologie des Forêts de Guyane, Campus Agronomique, F-97379 Kourou cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 September 2013; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mct147; Language of Original Document: English; Correspondence Address: Leroy, C.; IRD, UMR AMAP (BotAnique et BioinforMatique de l'Architecture des Plantes), Boulevard de la Lironde, TA A-51/PS2, F-34398 Montpellier Cedex 5, France; email: celine.leroy@ird.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 501  
Permanent link to this record
 

 
Author Brousseau, L.; Bonal, D.; Cigna, J.; Scotti, I. url  openurl
  Title Highly local environmental variability promotes intrapopulation divergence of quantitative traits: An example from tropical rain forest trees Type Journal Article
  Year 2013 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 112 Issue 6 Pages 1169-1179  
  Keywords common garden experiment; E. grandiflora; ecological traits; Eperua falcata; habitat mosaics; intrapopulation divergence; maternal family inheritance  
  Abstract Background and AimsIn habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.MethodsPhenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.Key ResultsIn both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. Conclusions The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation. © 2013 The Author. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.  
  Address Université de Lorraine, UMR 1137 Ecologie et Ecophysiologie Forestières, Vandœuvre-lès-Nancy, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 October 2013; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mct176; Language of Original Document: English; Correspondence Address: Scotti, I.; INRA, UMR Ecologie des Forêts de Guyane, Campus Agronomique, BP 709, 97387 Kourou cedex, French Guiana; email: ivan.scotti@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 505  
Permanent link to this record
 

 
Author Coutand, C.; Chevolot, M.; Lacointe, A.; Rowe, N.; Scotti, I. openurl 
  Title Mechanosensing of stem bending and its interspecific variability in five neotropical rainforest species Type Journal Article
  Year 2010 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 105 Issue 2 Pages 341-347  
  Keywords Mechanosensing; interspecific variability; trees; lianas; rain forest; neotropical species; bending; biomechanics; Bauhinia; Eperua; Symphonia; Tachigali  
  Abstract In rain forests, sapling survival is highly dependent on the regulation of trunk slenderness (height/diameter ratio): shade-intolerant species have to grow in height as fast as possible to reach the canopy but also have to withstand mechanical loadings (wind and their own weight) to avoid buckling. Recent studies suggest that mechanosensing is essential to control tree dimensions and stability-related morphogenesis. Differences in species slenderness have been observed among rainforest trees; the present study thus investigates whether species with different slenderness and growth habits exhibit differences in mechanosensitivity. Recent studies have led to a model of mechanosensing (sum-of-strains model) that predicts a quantitative relationship between the applied sum of longitudinal strains and the plant's responses in the case of a single bending. Saplings of five different neotropical species (Eperua falcata, E. grandiflora, Tachigali melinonii, Symphonia globulifera and Bauhinia guianensis) were subjected to a regimen of controlled mechanical loading phases (bending) alternating with still phases over a period of 2 months. Mechanical loading was controlled in terms of strains and the five species were subjected to the same range of sum of strains. The application of the sum-of-strain model led to a dose-response curve for each species. Dose-response curves were then compared between tested species. The model of mechanosensing (sum-of-strain model) applied in the case of multiple bending as long as the bending frequency was low. A comparison of dose-response curves for each species demonstrated differences in the stimulus threshold, suggesting two groups of responses among the species. Interestingly, the liana species B. guianensis exhibited a higher threshold than other Leguminosae species tested. This study provides a conceptual framework to study variability in plant mechanosensing and demonstrated interspecific variability in mechanosensing.  
  Address [Coutand, Catherine; Lacointe, Andre] Univ Clermont Ferrand, INRA, PIAF, UMR 547, F-63000 Clermont Ferrand, France, Email: coutand@clermont.inra.fr  
  Corporate Author Thesis  
  Publisher OXFORD UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0305-7364 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000274347000025 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 71  
Permanent link to this record
 

 
Author Coutand, C.; Dupraz, C.; Jaouen, G.; Ploquin, S.; Adam, B. openurl 
  Title Mechanical stimuli regulate the allocation of biomass in trees: Demonstration with young Prunus avium trees Type Journal Article
  Year 2008 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 101 Issue 9 Pages 1421-1432  
  Keywords Prunus avium; growth; mechanical stress; bending; biomass; shoot/root ratio; wind; shelter  
  Abstract Background and Aims Plastic tree-shelters are increasingly used to protect tree seedlings against browsing animals and herbicide drifts. The biomass allocation in young seedlings of deciduous trees is highly disturbed by common plastic tree-shelters, resulting in poor root systems and reduced diameter growth of the trunk. The shelters have been improved by creating chimney-effect ventilation with holes drilled at the bottom, resulting in stimulated trunk diameter growth, but the root deficit has remained unchanged. An experiment was set up to elucidate the mechanisms behind the poor root growth of sheltered Prunus avium trees. Methods Tree seedlings were grown either in natural windy conditions or in tree-shelters. Mechanical wind stimuli were suppressed in ten unsheltered trees by staking. Mechanical stimuli (bending) of the stem were applied in ten sheltered trees using an original mechanical device. Key Results Sheltered trees suffered from poor root growth, but sheltered bent trees largely recovered, showing that mechano-sensing is an important mechanism governing C allocation and the shoot-root balance. The use of a few artificial mechanical stimuli increased the biomass allocation towards the roots, as did natural wind sway. It was demonstrated that there was an acclimation of plants to the imposed strain. Conclusions This study suggests that if mechanical stimuli are used to control plant growth, they should be applied at low frequency in order to be most effective. The impact on the functional equilibrium hypothesis that is used in many tree growth models is discussed. The consequence of the lack of mechanical stimuli should be incorporated in tree growth models when applied to environments protected from the wind (e.g. greenhouses, dense forests).  
  Address [Coutand, Catherine; Jaouen, Gaelle; Ploquin, Stephane; Adam, Boris] Univ Clermont Ferrand, INRA, UMR PIAF, F-63100 Clermont Ferrand, France, Email: coutand@clermont.inra.fr  
  Corporate Author Thesis  
  Publisher OXFORD UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0305-7364 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000255987500013 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 211  
Permanent link to this record
 

 
Author Leroy, C.; Jauneau, A.; Quilichini, A.; Dejean, A.; Orivel, J. openurl 
  Title Comparison between the anatomical and morphological structure of leaf blades and foliar domatia in the ant-plant Hirtella physophora (Chrysobalanaceae) Type Journal Article
  Year 2008 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 101 Issue 4 Pages 501-507  
  Keywords anatomy; ant-plant mutualism; Chrysobalanaceae; extra-floral nectaries; French Guiana; Hirtella physophora; secondary domatia  
  Abstract Background and Aims Myrmecophytes, or ant-plants, are characterized by their ability to shelter colonies of some ant species in hollow structures, or ant-domatia, that are often formed by hypertrophy of the internal tissue at specific locations (i.e. trunk, branches, thorns and leaf pouches). In Hirtella physophora (Chrysobalanaceae), the focal species of this study, the ant-domatia consist of leaf pouches formed when the leaf rolls over onto itself to create two spheres at the base of the blade. Methods The morphological and anatomical changes through which foliar ant-domatia developed from the laminas are studied for the first time by using fresh and fixed mature leaves from the same H. physophora individuals. Key results Ant-domatia were characterized by larger extra-floral nectaries, longer stomatal apertures and lower stomatal density. The anatomical structure of the domatia differed in the parenchymatous tissue where palisade and spongy parenchyma were indistinct; chloroplast density was lower and lignified sclerenchymal fibres were more numerous compared with the lamina. In addition, the domatia were thicker than the lamina, largely because the parenchymatous and epidermal cells were enlarged. Conclusion Herein, the morphological and anatomical changes that permit foliar ant-domatia to be defined as a specialized leaf structure are highlighted. Similarities as well as structural modifications in the foliar ant-domatia compared with the lamina are discussed from botanical, functional and mutualistic points of view. These results are also important to understanding the reciprocal evolutionary changes in traits and, thus, the coevolutionary processes occurring in insect-plant mutualisms.  
  Address [Leroy, Celine; Quilichini, Angelique; Dejean, Alain; Orivel, Jerome] Univ Toulouse 3, CNRS, UMR 5174, Lab Evolut & Diversite Biol, F-31062 Toulouse 9, France, Email: orivel@cict.fr  
  Corporate Author Thesis  
  Publisher OXFORD UNIV PRESS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0305-7364 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000253489700003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 212  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: