toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Deurwaerder, H.; Hervé-Fernández, P.; Stahl, C.; Burban, B.; Petronelli, P.; Hoffman, B.; Bonal, D.; Boeckx, P.; Verbeeck, H. doi  openurl
  Title Liana and tree below-ground water competition – evidence for water resource partitioning during the dry season Type Journal Article
  Year 2018 Publication Tree Physiology Abbreviated Journal  
  Volume 38 Issue 7 Pages (up) 1071-1083  
  Keywords  
  Abstract To date, reasons for the increase in liana abundance and biomass in the Neotropics are still unclear. One proposed hypothesis suggests that lianas, in comparison with trees, are more adaptable to drought conditions. Moreover, previous studies have assumed that lianas have a deeper root system, which provides access to deeper soil layers, thereby making them less susceptible to drought stress. The dual stable water isotope approach (δ18O and δ2H) enables below-ground vegetation competition for water to be studied. Based on the occurrence of a natural gradient in soil water isotopic signatures, with enriched signatures in shallow soil relative to deep soil, the origin of vegetation water sources can be derived. Our study was performed on canopy trees and lianas reaching canopy level in tropical forests of French Guiana. Our results show liana xylem water isotopic signatures to be enriched in heavy isotopes in comparison with those from trees, indicating differences in water source depths and a more superficial root activity for lianas during the dry season. This enables them to efficiently capture dry season precipitation. Our study does not support the liana deep root water extraction hypothesis. Additionally, we provide new insights into water competition between tropical canopy lianas and trees. Results suggest that this competition is mitigated during the dry season due to water resource partitioning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0829-318x ISBN Medium  
  Area Expedition Conference  
  Notes 10.1093/treephys/tpy002 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 848  
Permanent link to this record
 

 
Author Maia, A.C.D.; Dötterl, S.; Kaiser, R.; Silberbauer-Gottsberger, I.; Teichert, H.; Gibernau, M.; do Amaral Ferraz Navarro, D.M.; Schlindwein, C.; Gottsberger, G. url  openurl
  Title The Key Role of 4-methyl-5-vinylthiazole in the Attraction of Scarab Beetle Pollinators: A Unique Olfactory Floral Signal Shared by Annonaceae and Araceae Type Journal Article
  Year 2012 Publication Journal of Chemical Ecology Abbreviated Journal J. Chem. Ecol.  
  Volume 38 Issue 9 Pages (up) 1072-1080  
  Keywords Beetle pollination; Floral scent; Gas chromatography-mass spectrometry (GC-MS); Olfactory-mediated attraction  
  Abstract Cyclocephaline scarabs are specialised scent-driven pollinators, implicated with the reproductive success of several Neotropical plant taxa. Night-blooming flowers pollinated by these beetles are thermogenic and release intense fragrances synchronized to pollinator activity. However, data on floral scent composition within such mutualistic interactions are scarce, and the identity of behaviorally active compounds involved is largely unknown. We performed GC-MS analyses of floral scents of four species of Annona (magnoliids, Annonaceae) and Caladium bicolor (monocots, Araceae), and demonstrated the chemical basis for the attraction of their effective pollinators. 4-Methyl-5-vinylthiazole, a nitrogen and sulphur-containing heterocyclic compound previously unreported in flowers, was found as a prominent constituent in all studied species. Field biotests confirmed that it is highly attractive to both male and female beetles of three species of the genus Cyclocephala, pollinators of the studied plant taxa. The origin of 4-methyl-5-vinylthiazole in plants might be associated with the metabolism of thiamine (vitamin B1), and we hypothesize that the presence of this compound in unrelated lineages of angiosperms is either linked to selective expression of a plesiomorphic biosynthetic pathway or to parallel evolution. © 2012 Springer Science+Business Media, LLC.  
  Address Departamento de Botânica, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00980331 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 November 2012; Source: Scopus; Coden: Jcecd; doi: 10.1007/s10886-012-0173-z; Language of Original Document: English; Correspondence Address: Maia, A. C. D.; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife 50740-560, Brazil; email: arturcamposmaia@yahoo.com.br Approved no  
  Call Number EcoFoG @ webmaster @ Serial 444  
Permanent link to this record
 

 
Author De Weirdt, M.; Verbeeck, H.; Maignan, F.; Peylin, P.; Poulter, B.; Bonal, D.; Ciais, P.; Steppe, K. url  openurl
  Title Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model Type Journal Article
  Year 2012 Publication Geoscientific Model Development Abbreviated Journal Geoscientific Model Dev.  
  Volume 5 Issue 5 Pages (up) 1091-1108  
  Keywords  
  Abstract The influence of seasonal phenology on canopy photosynthesis in tropical evergreen forests remains poorly understood, and its representation in global ecosystem models is highly simplified, typically with no seasonal variation of canopy leaf properties taken into account. Including seasonal variation in leaf age and photosynthetic capacity could improve the correspondence of global vegetation model outputs with the wet-dry season CO2 patterns measured at flux tower sites in these forests. We introduced a leaf litterfall dynamics scheme in the global terrestrial ecosystem model ORCHIDEE based on seasonal variations in net primary production (NPP), resulting in higher leaf turnover in periods of high productivity. The modifications in the leaf litterfall scheme induce seasonal variation in leaf age distribution and photosynthetic capacity. We evaluated the results of the modification against seasonal patterns of three long-term in-situ leaf litterfall datasets of evergreen tropical forests in Panama, French Guiana and Brazil. In addition, we evaluated the impact of the model improvements on simulated latent heat (LE) and gross primary productivity (GPP) fluxes for the flux tower sites Guyaflux (French Guiana) and TapajÃ3s (km 67, Brazil). The results show that the introduced seasonal leaf litterfall corresponds well with field inventory leaf litter data and times with its seasonality. Although the simulated litterfall improved substantially by the model modifications, the impact on the modelled fluxes remained limited. The seasonal pattern of GPP improved clearly for the Guyaflux site, but no significant improvement was obtained for the TapajÃ3s site. The seasonal pattern of the modelled latent heat fluxes was hardly changed and remained consistent with the observed fluxes. We conclude that we introduced a realistic and generic litterfall dynamics scheme, but that other processes need to be improved in the model to achieve better simulations of GPP seasonal patterns for tropical evergreen forests. © Author(s) 2012. CC Attribution 3.0 License.  
  Address INRA Nancy, UMR INRA-UHP1137 Ecologie et Ecophysiologie Forestière, 54280 Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1991959x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 4 October 2012; Source: Scopus; doi: 10.5194/gmd-5-1091-2012; Language of Original Document: English; Correspondence Address: De Weirdt, M.; Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; email: marjolein.deweirdt@ugent.be Approved no  
  Call Number EcoFoG @ webmaster @ Serial 437  
Permanent link to this record
 

 
Author Herault, B.; Bornet, A.; Tremolieres, M. openurl 
  Title Redundancy and niche differentiation among the European invasive Elodea species Type Journal Article
  Year 2008 Publication Biological Invasions Abbreviated Journal Biol. Invasions  
  Volume 10 Issue 7 Pages (up) 1099-1107  
  Keywords biological traits; functional equivalence; invasivness; niche overlapping; waterweeds  
  Abstract Community ecologists implicitly assume redundancy when they aggregate species into functional groups. But there have been remarkably few empirical efforts to investigate the accuracy of this concept in situ. The concept of redundancy could be roughly split into two components: the ecological redundancy (similar response to environmental variations involving similar ecological processes) and the functional redundancy (similar biological trait combinations shaping similar functional processes). Both types of redundancy are tested among the 3 invasive European Elodeas. In 11 sites and during two successive years 2004-2005, the cover growth rate of each Elodea species was monthly recorded. To test ecological redundancy, cover growth rates were related to a large suite of environmental variables. To test functional redundancy, 13 biological traits involved in competitive relationships were measured each month. Firstly, the redundancy hypothesis looks problematic for Elodea ernstiae. Indeed, the later possess numerous biological traits involved in light competition and niche overlap with the other Elodeas is very low. Secondly, ecological and functional redundancy can be successfully applied to Elodea canadensis and Elodea nuttallii. They share a large suite of biological traits leading to wide niche overlaps through the growing season. And the measured environmental variables do not differentially influence their growth rates, which are, in turn, controlled by a similar group of biological traits. In this way, the different invasiveness patterns of E. canadensis and E. nuttallii could be solely due to the ecological drift and their ecological dynamic could follow neutral rules.  
  Address [Herault, Bruno] Univ Antilles Guyane, INRA, UMR Ecol Forets Guyane, F-97379 Kourou, France, Email: Bruno.Herault@cirad.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-3547 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000258704400015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 131  
Permanent link to this record
 

 
Author Talaga, S.; Dejean, A.; Mouza, C.; Dumont, Y.; Leroy, C. doi  openurl
  Title Larval interference competition between the native Neotropical mosquito Limatus durhamii and the invasive Aedes aegypti improves the fitness of both species Type Journal Article
  Year 2018 Publication Insect Science Abbreviated Journal Insect Science  
  Volume 25 Issue Pages (up) 1102-1107  
  Keywords Aedes aegypti; increased fitness; interference competition; Limatus durhamii; phenotypic plasticity; resistance to invasion  
  Abstract Abstract Interspecific competition with native species during biological invasions can sometimes limit alien expansion. We aimed to determine the potential ecological effects of Limatus durhamii Theobald 1901, a native Neotropical mosquito (Diptera: Culicidae) species, on the invasive species Aedes (Stegomyia) aegypti (Linnaeus 1762) that breeds in the same artificial water containers. Development time and adult dry mass were measured in 3 rearing conditions: control (a single larva), intraspecific competition (2 conspecific larvae), and interspecific competition (2 heterospecific larvae). Food was provided ad libitum to eliminate exploitative competition. For Ae. aegypti, development time was not affected by interspecific interference competition (nonsignificant differences with the control) and the adult dry mass was significantly higher, meaning that individual fitness likely increased. Yet, because previous studies showed longer development time and lighter adults during competition with other invasive mosquitoes, it is likely that Ae. aegypti can express a different phenotype depending on the competing species. The similar pattern found for Li. durhamii females and the nonsignificant difference with the control for males explain in part why this species can compete with Ae. aegypti.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1672-9609 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 836  
Permanent link to this record
 

 
Author Andris, M.; Aradottir, G.I.; Arnau, G.; Audzijonyte, A.; Bess, E.C.; Bonadonna, F.; Bourdel, G.; Bried, J.; Bugbee, G.J.; Burger, P.A.; Chair, H.; Charruau, P.C.; Ciampi, A.Y.; Costet, L.; Debarro, P.J.; Delatte, H.; Dubois, M.P.; Eldridge, M.D.B.; England, P.R.; Enkhbileg, D.; Fartek, B.; Gardner, M.G.; Gray, K.A.; Gunasekera, R.M.; Hanley, S.J.; Havil, N.; Hereward, J.P.; Hirase, S.; Hong, Y.; Jarne, P.; Qi, J.F.; Johnson, R.N.; Kanno, M.; Kijima, A.; Kim, H.C.; Kim, K.S.; Kim, W.J.; Larue, E.; Lee, J.W.; Lee, J.H.; Li, C.H.; Liao, M.H.; Lo, N.; Lowe, A.J.; Malausa, T.; Male, P.J.G.; Marko, M.D.; Martin, J.F.; Messing, R.; Miller, K.J.; Min, B.W.; Myeong, J.I.; Nibouche, S.; Noack, A.E.; Noh, J.K.; Orivel, J.; Park, C.J.; Petro, D.; Prapayotin-Riveros, K.; Quilichini, A.; Reynaud, B.; Riginos, C.; Risterucci, A.M.; Rose, H.A.; Sampaio, I.; Silbermayr, K.; Silva, M.B.; Tero, N.; Thum, R.A.; Vinson, C.C.; Vorsino, A.; Vossbrinck, C.R.; Walzer, C.; White, J.C.; Wieczorek, A.; Wright, M. openurl 
  Title Permanent Genetic Resources added to Molecular Ecology Resources Database 1 June 2010-31 July 2010 Type Journal Article
  Year 2010 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.  
  Volume 10 Issue 6 Pages (up) 1106-1108  
  Keywords  
  Abstract This article documents the addition of 205 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Bagassa guianensis, Bulweria bulwerii, Camelus bactrianus, Chaenogobius annularis, Creontiades dilutus, Diachasmimorpha tryoni, Dioscorea alata, Euhrychiopsis lecontei, Gmelina arborea, Haliotis discus hannai, Hirtella physophora, Melanaphis sacchari, Munida isos, Thaumastocoris peregrinus and Tuberolachnus salignus. These loci were cross-tested on the following species: Halobaena caerulea, Procellaria aequinoctialis, Oceanodroma monteiroi, Camelus ferus, Creontiades pacificus, Dioscorea rotundata, Dioscorea praehensilis, Dioscorea abyssinica, Dioscorea nummularia, Dioscorea transversa, Dioscorea esculenta, Dioscorea pentaphylla, Dioscorea trifida, Hirtella bicornis, Hirtella glandulosa, Licania alba, Licania canescens, Licania membranaceae, Couepia guianensis and 7 undescribed Thaumastocoris species.  
  Address [Andris, Malvina; Bried, Joel] Univ Acores, Ctr IMAR, Dept Oceanog & Pescas, P-9901862 Horta, Acores, Portugal, Email: editorial.office@molecol.com  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-098X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282876300024 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 28  
Permanent link to this record
 

 
Author Leroy, C.; Corbara, B.; Dejean, A.; Cereghino, R. openurl 
  Title Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad Type Journal Article
  Year 2009 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 183 Issue 4 Pages (up) 1124-1133  
  Keywords Aechmea mertensii; antgardens; Camponotus femoratus; foliar structure; delta N-15; Pachycondyla goeldii; phytotelmata contents  
  Abstract Aechmea mertensii is a tank-bromeliad that roots on ant-gardens initiated by the ants Camponotus femoratus and Pachycondyla goeldii. Its leaves form compartments acting as phytotelmata that hold rainwater and provide habitats for invertebrates. In this article, we aimed to determine whether the association with either C. femoratus or P. goeldii influenced the vegetative traits of A. mertensii, invertebrate diversity and nutrient assimilation by the leaves. Transmitted light, vegetative traits and phytotelmata contents were compared between the two A. mertensii ant-gardens. Camponotus femoratus colonized partially shaded areas, whereas P. goeldii colonized exposed areas. The bromeliads' rosettes had a large canopy (C. femoratus ant-gardens), or were smaller and amphora shaped (P. goeldii ant-gardens). There were significant differences in leaf anatomy, as shaded leaves were thicker than exposed leaves. The mean volumes of water, fine particulate organic matter and detritus in C. femoratus-associated bromeliads were three to five times higher than in P. goeldii-associated bromeliads. Moreover, the highest invertebrate diversity and leaf delta N-15 values were found in C. femoratus-associated bromeliads. This study enhances our understanding of the dynamics of biodiversity, and shows how ant-plant interactions can have trophic consequences and thus influence the architecture of the interacting plant via a complex feedback loop.  
  Address [Leroy, Celine; Dejean, Alain] EcoFoG, CNRS, UMR 8172, F-97379 Kourou, France, Email: Celine.Leroy@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000268855300020 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 106  
Permanent link to this record
 

 
Author Coste, S.; Roggy, J.C.; Imbert, P.; Born, C.; Bonal, D.; Dreyer, E. openurl 
  Title Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance Type Journal Article
  Year 2005 Publication Tree Physiology Abbreviated Journal Tree Physiol.  
  Volume 25 Issue 9 Pages (up) 1127-1137  
  Keywords functional diversity; leaf carbon; leaf nitrogen; nitrogen-use efficiency; photosynthetic capacity; tropical rain forest  
  Abstract Variability of leaf traits related to photosynthesis was assessed in seedlings from 14 tree species growing in the tropical rain forest of French Guiana. Leaf photosynthetic capacity (maximum rate of carboxylation and maximum rate of electron transport) was estimated by fitting a biochemical model of photosynthesis to response curves of net CO2 assimilation rate versus intercellular CO2 mole fraction. Leaf morphology described by leaf mass per unit leaf area (LMA), density and thickness, as well as area- and mass-based nitrogen (N) and carbon (C) concentrations, were recorded on the same leaves. Large interspecific variability was detected in photosynthetic capacity as well as in leaf structure and leaf N and C concentrations. No correlation was found between leaf thickness and density. The correlations between area- and mass-based leaf N concentration and photosynthetic capacity were poor. Conversely, the species differed greatly in relative N allocation to carboxylation and bioenergetics. Principal component analysis (PCA) revealed that, of the recorded traits, only the computed fraction of total leaf N invested in photosynthesis was tightly correlated to photosynthetic capacity. We also used PCA to test to what extent species with similar shade tolerances displayed converging leaf traits related to photosynthesis. No clear-cut ranking could be detected among the shade-tolerant groups, as confirmed by a one-way ANOVA. We conclude that the large interspecific diversity in photosynthetic capacity was mostly explained by differences in the relative allocation of N to photosynthesis and not by leaf N concentration, and that leaf traits related to photosynthetic capacity did not discriminate shade-tolerance ranking of these tropical tree species.  
  Address CNRS Ecol Forets Guyane, INRA, ENGREF,CIRAD, Unite Mixte Rech, Kourou 97387, French Guiana, Email: roggy.j@cirad.fr  
  Corporate Author Thesis  
  Publisher HERON PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0829-318X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000231555200005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 230  
Permanent link to this record
 

 
Author Clair, B.; Almeras, T.; Yamamoto, H.; Okuyama, T.; Sugiyama, J. openurl 
  Title Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation Type Journal Article
  Year 2006 Publication Biophysical Journal Abbreviated Journal Biophys. J.  
  Volume 91 Issue 3 Pages (up) 1128-1135  
  Keywords  
  Abstract A change in cellulose lattice spacing can be detected during the release of wood maturation stress by synchrotron x-ray diffraction experiment. The lattice strain was found to be the same order of magnitude as the macroscopic strain. The fiber repeat distance, 1.033 nm evaluated for tension wood after the release of maturation stress was equal to the conventional wood values, whereas the value before stress release was larger, corresponding to a fiber repeat of 1.035 nm, nearly equal to that of cotton and ramie. Interestingly, the fiber repeat varied from 1.033 nm for wood to 1.040 nm for algal cellulose, with an increasing order of lateral size of cellulose microfibrils so far reported. These lines of experiments demonstrate that, before the stress release, the cellulose was in a state of tension, which is, to our knowledge, the first experimental evidence supporting the assumption that tension is induced in cellulose microfibrils.  
  Address Kyoto Univ, Res Inst Sustainable Humanosphere, Uji, Kyoto, Japan, Email: sugiyama@rish.kyoto-u.ac.jp  
  Corporate Author Thesis  
  Publisher BIOPHYSICAL SOCIETY Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3495 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000239086800039 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 224  
Permanent link to this record
 

 
Author Talaga, S.; Leroy, C.; Céréghino, R.; Dejean, A. doi  openurl
  Title Convergent evolution of intraguild predation in phytotelm-inhabiting mosquitoes Type Journal Article
  Year 2016 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.  
  Volume 30 Issue 6 Pages (up) 1133-1147  
  Keywords  
  Abstract Intraguild predation (IGP) is a type of biological interaction involving the killing and consuming of competing species that exploit similar and often limited resources. This phenomenon is widespread among a great variety of taxonomic groups and has already been reported for mosquito (Diptera: Culicidae) larvae. Moreover, the larvae of certain mosquito species of the tribe Sabethini have evolved modified mouthparts ending in rigid apical structures signaling their capacity to be effective intraguild predators. We assumed that IGP confers a selective advantage under severe competitive conditions by both providing an immediate energetic gain and reducing potential competition. Because potential competition is likely to increase with decreasing habitat size, we hypothesized that the proportion of species with modified mouthparts would increase in smaller aquatic habitats. We tested this hypothesis by examining the mosquito species naturally associated with phytotelmata of decreasing sizes in French Guiana. We show that the degree of specialization in mosquito-phytotelm associations is high, suggesting a long coevolutive process. Indeed, short-term interaction experiments confirmed that species with modified mouthparts are able to prey upon similarly-sized intraguild prey and are, thus, effective intraguild predators. In addition, these species are larger and associated with smaller phytotelmata than those with typical mouthparts. Moreover, below a certain threshold of phytotelm size, only species with modified mouthparts were present. These results show that IGP confers a selective advantage under severe competitive conditions and results from the coadaptation of mosquito species to their specific phytotelm habitat. The presence of functionally analogous structures in different mosquito genera also implies that IGP has emerged from convergent evolution in small phytotelmata.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1573-8477 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Talaga2016 Serial 711  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: