toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ménard, L.; McKey, D.; Mühlen, G.S.; Clair, B.; Rowe, N.P. pdf  url
openurl 
  Title The Evolutionary Fate of Phenotypic Plasticity and Functional Traits under Domestication in Manioc: Changes in Stem Biomechanics and the Appearance of Stem Brittleness Type Journal Article
  Year 2013 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 8 Issue 9 Pages e74727  
  Keywords  
  Abstract Domestication can influence many functional traits in plants, from overall life-history and growth form to wood density and cell wall ultrastructure. Such changes can increase fitness of the domesticate in agricultural environments but may negatively affect survival in the wild. We studied effects of domestication on stem biomechanics in manioc by comparing domesticated and ancestral wild taxa from two different regions of greater Amazonia. We compared mechanical properties, tissue organisation and wood characteristics including microfibril angles in both wild and domesticated plants, each growing in two different habitats (forest or savannah) and varying in growth form (shrub or liana). Wild taxa grew as shrubs in open savannah but as lianas in overgrown and forested habitats. Growth form plasticity was retained in domesticated manioc. However, stems of the domesticate showed brittle failure. Wild plants differed in mechanical architecture between shrub and liana phenotypes, a difference that diminished between shrubs and lianas of the domesticate. Stems of wild plants were generally stiffer, failed at higher bending stresses and were less prone to brittle fracture compared with shrub and liana phenotypes of the domesticate. Biomechanical differences between stems of wild and domesticated plants were mainly due to changes in wood density and cellulose microfibril angle rather than changes in secondary growth or tissue geometry. Domestication did not significantly modify “large-scale” trait development or growth form plasticity, since both wild and domesticated manioc can develop as shrubs or lianas. However, “finer-scale” developmental traits crucial to mechanical stability and thus ecological success of the plant were significantly modified. This profoundly influenced the likelihood of brittle failure, particularly in long climbing stems, thereby also influencing the survival of the domesticate in natural situations vulnerable to mechanical perturbation. We discuss the different selective pressures that could explain evolutionary modifications of stem biomechanical properties under domestication in manioc. © 2013 Ménard et al.  
  Address CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19326203 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 13 September 2013; Source: Scopus; Art. No.: e74727; Coden: Polnc; doi: 10.1371/journal.pone.0074727; Language of Original Document: English; Correspondence Address: Rowe, N. P.; Université Montpellier 2, UMR AMAP, Montpellier, France; email: nrowe@cirad.fr Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 503  
Permanent link to this record
 

 
Author Maia, A.C.D.; Gibernau, M.; Dötterl, S.; Do Amaral Ferraz Navarro, D.M.; Seifert, K.; Müller, T.; Schlindwein, C. url  openurl
  Title The floral scent of Taccarum ulei (Araceae): Attraction of scarab beetle pollinators to an unusual aliphatic acyloin Type Journal Article
  Year 2013 Publication Phytochemistry Abbreviated Journal Phytochemistry  
  Volume 93 Issue Pages 71-78  
  Keywords (S)-2-Hydroxy-5-methyl-3-hexanone; Araceae; Behavioral tests; Cyclocephala celata and C. cearae; Dihydro-β-ionone; Floral volatiles; Taccarum ulei  
  Abstract The strongly fragrant thermogenic inflorescences of Taccarum ulei (Araceae) are highly attractive to nightactive scarab beetles of Cyclocephala celata and C. cearae (Scarabaeidae, Cyclocephalini), which are effective pollinators of plants in the wild in northeastern Brazil. GC-MS analysis of headspace floral scent samples of T. ulei established that two constituents, (S)-2-hydroxy-5- methyl-3-hexanone (an aliphatic acyloin rarely detected in flowers) and dihydro-b-ionone (an irregular terpene) accounted for over 96% of the total scent discharge. Behavioral tests (in both field and cages) showed that male and female C. celata and C. cearae were attracted to traps baited with a synthetic mixture of both compounds; however, they were also responsive to (S)-2-hydroxy-5-methyl-3-hexanone alone, which thus functions as a specific attractive cue. These findings support other recent research in suggesting that angiosperms pollinated by cyclocephaline scarab beetles release floral odors of limited complexity in terms of numbers of compounds, but often dominated by unusual compounds that may ensure attraction of specific pollinator species. © 2013 Elsevier B.V.  
  Address Organismic Biology, Plant Ecology, Salzburg University, 5020 Salzburg, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00319422 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 10 October 2013; Source: Scopus; Coden: Pytca; doi: 10.1016/j.phytochem.2013.03.005; Language of Original Document: English; Correspondence Address: Maia, A.C.D.; Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza, Departamento de Química Fundamental, Av. Jornalista Anibal Fernandes, s/n, Cidade Universita, Recife, PE 50740-560, Brazil; email: arturcamposmaia@yahoo.com.br Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 504  
Permanent link to this record
 

 
Author Brousseau, L.; Bonal, D.; Cigna, J.; Scotti, I. url  openurl
  Title Highly local environmental variability promotes intrapopulation divergence of quantitative traits: An example from tropical rain forest trees Type Journal Article
  Year 2013 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 112 Issue 6 Pages 1169-1179  
  Keywords common garden experiment; E. grandiflora; ecological traits; Eperua falcata; habitat mosaics; intrapopulation divergence; maternal family inheritance  
  Abstract Background and AimsIn habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences.MethodsPhenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured.Key ResultsIn both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. Conclusions The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species follows the same pattern as differentiation between species indicate that the same ecological processes underlie intra- and interspecific variation. © 2013 The Author. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.  
  Address Université de Lorraine, UMR 1137 Ecologie et Ecophysiologie Forestières, Vandœuvre-lès-Nancy, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 October 2013; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mct176; Language of Original Document: English; Correspondence Address: Scotti, I.; INRA, UMR Ecologie des Forêts de Guyane, Campus Agronomique, BP 709, 97387 Kourou cedex, French Guiana; email: ivan.scotti@ecofog.gf Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 505  
Permanent link to this record
 

 
Author Rowland, L.; Stahl, C.; Bonal, D.; Siebicke, L.; Williams, M.; Meir, P. url  openurl
  Title The Response of Tropical Rainforest Dead Wood Respiration to Seasonal Drought Type Journal Article
  Year 2013 Publication Ecosystems Abbreviated Journal Ecosystems  
  Volume 16 Issue 7 Pages 1294-1309  
  Keywords Amazon rainforest; coarse woody debris; respiration; seasonal drought; soil water content; woody moisture content  
  Abstract Coarse woody debris (CWD, dead wood sections ≥10 cm diameter) represents a large store of carbon in tropical forests; however, estimates of the flux of carbon from CWD in these forests remain poorly constrained. The objective of this study was to resolve the dry/wet season response of respiration in CWD (Rcwd), and investigate the importance of biotic and abiotic factors for predicting the seasonal change of Rcwd at the ecosystem level. This study presents a 4-month time series of Rcwd measurements conducted on 42 dead trees (26 species) at the Paracou Research Station in French Guiana. Rcwd measurements were repeated 13 times on each CWD sample from July to November 2011, spanning the transition from wet to dry season, and then from dry season to the following wet season. Seasonal drought caused monthly Rcwd to drop by 20.5 ± 5.1% over the wet-dry transition. Changes in woody tissue moisture content explained 41.9% of the measured seasonal variability in Rcwd, but 60% of the seasonal variability in mean forest Rcwd rates could be modelled using surface soil water content. We estimate that Rcwd is approximately 5% of annual ecosystem respiration (Reco) and that seasonal variations in Rcwd contribute appreciably to seasonal variations of Reco, and should be included in functional models simulating the response of tropical rainforest ecosystems to current and future climate. © 2013 Springer Science+Business Media New York.  
  Address Division of Plant Sciences, Research School of Biology, The Australian National University, ACT, Australian Capital Territory, 0200, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14329840 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 October 2013; Source: Scopus; Coden: Ecosf; doi: 10.1007/s10021-013-9684-x; Language of Original Document: English; Correspondence Address: Rowland, L.; School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom; email: lucy.rowland@ed.ac.uk; Funding Details: NE/F002149/1, NERC, Natural Environment Research Council; Funding Details: NE/J011002/1, NERC, Natural Environment Research Council; Funding Details: FT110100457, ARC, Australian Research Council Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 506  
Permanent link to this record
 

 
Author ter Steege, H.; Pitman, N.C.A.; Sabatier, D.; Baraloto, C.; Salomão, R.P.; Guevara, J.E.; Phillips, O.L.; Castilho, C.V.; Magnusson, W.E.; Molino, J.-F.; Monteagudo, A.; Núñez Vargas, P.; Montero, J.C.; Feldpausch, T.R.; Coronado, E.N.H.; Killeen, T.J.; Mostacedo, B.; Vasquez, R.; Assis, R.L.; Terborgh, J.; Wittmann, F.; Andrade, A.; Laurance, W.F.; Laurance, S.G.W.; Marimon, B.S.; Marimon, B.-H.; Guimarães Vieira, I.C.; Amaral, I.L.; Brienen, R.; Castellanos, H.; Cárdenas López, D.; Duivenvoorden, J.F.; Mogollón, H.F.; Matos, F.D. de A.; Dávila, N.; García-Villacorta, R.; Stevenson Diaz, P.R.; Costa, F.; Emilio, T.; Levis, C.; Schietti, J.; Souza, P.; Alonso, A.; Dallmeier, F.; Montoya, A.J.D.; Fernandez Piedade, M.T.; Araujo-Murakami, A.; Arroyo, L.; Gribel, R.; Fine, P.V.A.; Peres, C.A.; Toledo, M.; Aymard C., G.A.; Baker, T.R.; Cerón, C.; Engel, J.; Henkel, T.W.; Maas, P.; Petronelli, P.; Stropp, J.; Zartman, C.E.; Daly, D.; Neill, D.; Silveira, M.; Paredes, M.R.; Chave, J.; Lima Filho, D. de A.; Jørgensen, P.M.; Fuentes, A.; Schöngart, J.; Cornejo Valverde, F.; Di Fiore, A.; Jimenez, E.M.; Peñuela Mora, M.C.; Phillips, J.F.; Rivas, G.; van Andel, T.R.; von Hildebrand, P.; Hoffman, B.; Zent, E.L.; Malhi, Y.; Prieto, A.; Rudas, A.; Ruschell, A.R.; Silva, N.; Vos, V.; Zent, S.; Oliveira, A.A.; Schutz, A.C.; Gonzales, T.; Trindade Nascimento, M.; Ramirez-Angulo, H.; Sierra, R.; Tirado, M.; Umaña Medina, M.N.; van der Heijden, G.; Vela, C.I.A.; Vilanova Torre, E.; Vriesendorp, C.; Wang, O.; Young, K.R.; Baider, C.; Balslev, H.; Ferreira, C.; Mesones, I.; Torres-Lezama, A.; Urrego Giraldo, L.E.; Zagt, R.; Alexiades, M.N.; Hernandez, L.; Huamantupa-Chuquimaco, I.; Milliken, W.; Palacios Cuenca, W.; Pauletto, D.; Valderrama Sandoval, E.; Valenzuela Gamarra, L.; Dexter, K.G.; Feeley, K.; Lopez-Gonzalez, G.; Silman, M.R. url  doi
openurl 
  Title Hyperdominance in the Amazonian Tree Flora Type Journal Article
  Year 2013 Publication Science Abbreviated Journal Science  
  Volume 342 Issue 6156 Pages 1243092  
  Keywords  
  Abstract The vast extent of the Amazon Basin has historically restricted the study of its tree communities to the local and regional scales. Here, we provide empirical data on the commonness, rarity, and richness of lowland tree species across the entire Amazon Basin and Guiana Shield (Amazonia), collected in 1170 tree plots in all major forest types. Extrapolations suggest that Amazonia harbors roughly 16,000 tree species, of which just 227 (1.4%) account for half of all trees. Most of these are habitat specialists and only dominant in one or two regions of the basin. We discuss some implications of the finding that a small group of species—less diverse than the North American tree flora—accounts for half of the world’s most diverse tree community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 507  
Permanent link to this record
 

 
Author Dejean, A.; Revel, M.; Azémar, F.; Roux, O. url  openurl
  Title Altruism during predation in an assassin bug Type Journal Article
  Year 2013 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 100 Issue 10 Pages 913-922  
  Keywords Conspecific tolerance; Predation; Prey sharing; Reduviidae; Zelus annulosus  
  Abstract Zelus annulosus is an assassin bug species mostly noted on Hirtella physophora, a myrmecophyte specifically associated with the ant Allomerus decemarticulatus known to build traps on host tree twigs to ambush insect preys. The Z. annulosus females lay egg clutches protected by a sticky substance. To avoid being trapped, the first three instars of nymphs remain grouped in a clutch beneath the leaves on which they hatched, yet from time to time, they climb onto the upper side to group ambush preys. Long-distance prey detection permits these bugs to capture flying or jumping insects that alight on their leaves. Like some other Zelus species, the sticky substance of the sundew setae on their forelegs aids in prey capture. Group ambushing permits early instars to capture insects that they then share or not depending on prey size and the hunger of the successful nymphs. Fourth and fifth instars, with greater needs, rather ambush solitarily on different host tree leaves, but attract siblings to share large preys. Communal feeding permits faster prey consumption, enabling small nymphs to return sooner to the shelter of their leaves. By improving the regularity of feeding for each nymph, it likely regulates nymphal development, synchronizing molting and subsequently limiting cannibalism. © 2013 Springer-Verlag Berlin Heidelberg.  
  Address IRD, Maladies Infectieuses et Vecteurs, Ecologie, Genetique, Evolution et Controle (UMR-IRD 224), IRD 01, BP 171, Bobo-Dioulasso, Burkina Faso  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00281042 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 October 2013; Source: Scopus; Coden: Natwa; doi: 10.1007/s00114-013-1091-9; Language of Original Document: English; Correspondence Address: Dejean, A.; Écologie des Forêts de Guyane, Campus Agronomique, BP 316, 97379 Kourou cedex, France; email: alain.dejean@wanadoo.fr Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 508  
Permanent link to this record
 

 
Author Michalet, S.; Rohr, J.; Warshan, D.; Bardon, C.; Roggy, J.-C.; Domenach, A.-M.; Czarnes, S.; Pommier, T.; Combourieu, B.; Guillaumaud, N.; Bellvert, F.; Comte, G.; Poly, F. url  openurl
  Title Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy Type Journal Article
  Year 2013 Publication Plant Physiology and Biochemistry Abbreviated Journal Plant Physiol. Biochem.  
  Volume 72 Issue Pages 169-177  
  Keywords Chemical ecology; Denitrification; Eperua falcata; Metabolic profiling; Mycorrhizae; Plant-microbes interactions; Root exudates  
  Abstract Eperua falcata (Aublet), a late-successional species in tropical rainforest and one of the most abundant tree in French Guiana, has developed an original strategy concerning N-acquisition by largely preferring nitrate, rather than ammonium (H. Schimann, S. Ponton, S. Hättenschwiler, B. Ferry, R. Lensi, A.M. Domenach, J.C. Roggy, Differing nitrogen use strategies of two tropical rainforest tree species in French Guiana: evidence from 15N natural abundance and microbial activities, Soil Biol. Biochem. 40 (2008) 487-494). Given the preference of this species for nitrate, we hypothesized that root exudates would promote nitrate availability by (a) enhancing nitrate production by stimulating ammonium oxidation or (b) minimizing nitrate losses by inhibiting denitrification.Root exudates were collected in situ in monospecific planted plots. The phytochemical analysis of these exudates and of several of their corresponding root extracts was achieved using UHPLC/DAD/ESI-QTOF and allowed the identification of diverse secondary metabolites belonging to the flavonoid family.Our results show that (i) the distinct exudation patterns observed are related to distinct root morphologies, and this was associated with a shift in the root flavonoid content, (ii) a root extract representative of the diverse compounds detected in roots showed a significant and selective metabolic inhibition of isolated denitrifiers invitro, and (iii) in soil plots the abundance of nirK-type denitrifiers was negatively affected in rhizosphere soil compared to bulk. Altogether this led us to formulate hypothesis concerning the ecological role of the identified compounds in relation to N-acquisition strategy of this species. © 2013 Elsevier Masson SAS.  
  Address SOLICAZ, c/o Guyane Technopole 16 bis rue du 14 Juillet, 97300 Cayenne, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09819428 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 November 2013; Source: Scopus; Coden: Ppbie; doi: 10.1016/j.plaphy.2013.05.003; Language of Original Document: English; Correspondence Address: Michalet, S.; Université Lyon1, CNRS, UMR5557, INRA, USC1364, Ecologie Microbienne, Centre d'Etude des Substances Naturelles, Pavillon Nétien, ISPB, 8 Avenue Rockefeller, 69373 Lyon cedex, France; email: sergemichalet@yahoo.fr Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 509  
Permanent link to this record
 

 
Author Vedel, V.; Rheims, C.; Murienne, J.; Brescovit, A.D. pdf  url
openurl 
  Title Biodiversity baseline of the French Guiana spider fauna Type Journal Article
  Year 2013 Publication SpringerPlus Abbreviated Journal SpringerPlus  
  Volume 2 Issue 1 Pages 1-19  
  Keywords Arachnids; Araneae; Bio monitoring; French Guiana; Neotropics; Species richness  
  Abstract The need for an updated list of spiders found in French Guiana rose recently due to many upcoming studies planned. In this paper, we list spiders from French Guiana from existing literature (with corrected nomenclature when necessary) and from 2142 spiders sampled in 12 sites for this baseline study. Three hundred and sixty four validated species names of spider were found in the literature and previous authors' works. Additional sampling, conducted for this study added another 89 identified species and 62 other species with only a genus name for now. The total species of spiders sampled in French Guiana is currently 515. Many other Morphospecies were found but not described as species yet. An accumulation curve was drawn with seven of the sampling sites and shows no plateau yet. Therefore, the number of species inhabiting French Guiana cannot yet be determined. As the very large number of singletons found in the collected materials suggests, the accumulation curve indicates nevertheless that more sampling is necessary to discover the many unknown spider species living in French Guiana, with a focus on specific periods (dry season and wet season) and on specific and poorly studied habitats such as canopy, inselberg and cambrouze (local bamboo monospecific forest). © 2013 Vedel et al.  
  Address CNRS, EFA, UMR 5174 EDB (Laboratoire Evolution et Diversité Biologique), Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21931801 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 November 2013; Source: Scopus; doi: 10.1186/2193-1801-2-361; Language of Original Document: English; Correspondence Address: Vedel, V.; Laboratoire d'entomologie Entobios, 5 Bis rue François Thomas, 97310 Kourou, Guyane Française, France; email: vincent.vedel@ecofog.gf Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 510  
Permanent link to this record
 

 
Author Chartier, M.; Pélozuelo, L.; Buatois, B.; Bessière, J.-M.; Gibernau, M. url  openurl
  Title Geographical variations of odour and pollinators, and test for local adaptation by reciprocal transplant of two European Arum species Type Journal Article
  Year 2013 Publication Functional Ecology Abbreviated Journal Funct. Ecol.  
  Volume 27 Issue 6 Pages 1367-1381  
  Keywords Deception; Diptera; Floral scent; Geographical mosaic; Psychodidae; Sapromyophily; Transplant experiment  
  Abstract Interactions between entomophilous plants and their pollinators are one of the major factors shaping the evolution of floral features. As species are distributed in more or less connected populations, they have evolved in a geographical mosaic of co-evolution were the outcome of the plant-pollinator interaction is likely to vary as a result of local adaptations. Arum italicum and Arum maculatum are two species of Araceae which deceive their fly pollinators by mimicking the odour of their oviposition sites. Whereas A. italicum is known to be pollinated by flies belonging to different families (i.e. opportunist), A. maculatum relies on only two pollinating species of the family Psychodidae throughout its European repartition area (i.e. specialist). The interannual and geographical variations of pollinators and pollinator-attractive odours were described in several populations of the two species over two consecutive years. Furthermore, local adaptation to pollinators was tested by transplanting inflorescence-bearing plants between two different sites and by recording the number and composition of the insect fauna trapped inside the inflorescences during anthesis as a measure of a fitness component. Pollinators and pollinator-attractive odours of the two Arum species varied in time and space, but there was no clear odour structure between populations. When transplanted, inflorescences of both species trapped the same composition and number of insects as native inflorescences at a given site; this indicates that pollinator composition is highly dependent on the local availability of insects. No pattern of local adaptation was found for these two species, but local pollination conditions were shown to strongly affect the degree of geographical variations of these interactions. The lack of a clear odour geographical structure might be due to high gene flow or to similar selective pressures exerted by pollinators, and the high interindividual odour variation may be linked to the deceptive strategy adopted by the two plant species. © 2013 British Ecological Society.  
  Address Center for Functional and Evolutive Ecology, Université Montpellier 2, 1919 route de Mende, 34293 Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 02698463 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 29 November 2013; Source: Scopus; Coden: Fecoe; doi: 10.1111/1365-2435.12122; Language of Original Document: English; Correspondence Address: Gibernau, M.; Joint Research Unit Ecology of Guiana Forests, CNRS-UMR 8172, Campus agronomique, BP 316, Kourou cedex, 97379, France; email: marc.gibernau@ecofog.gf; References: Ackerman, J.D., Cuevas, A.A., Hof, D., Are deception-pollinated species more variable than those offering a reward? (2011) Plant Systematics and Evolution, 293, pp. 91-99; Ackerman, J.D., Meléndez-Ackerman, E.J., Salguero-Faria, J., Variation in pollinator abundance and selection on fragrance phenotypes in an epiphytic orchid (1997) American Journal of Botany, 84, pp. 1383-1390; Adams, R.P., (2007) Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, , 4th edn. Allured Publishing, Carol Stream; Albre, J., Gibernau, M., Reproductive biology of Arum italicum (Araceae) in the South of France (2008) Botanical Journal of the Linnean Society, 156, pp. 43-49; Albre, J., Quilichini, A., Gibernau, M., Pollination ecology of Arum italicum (Araceae) (2003) Botanical Journal of the Linnean Society, 141, pp. 205-214; Anderson, M.J., A new method for non-parametric multivariate analysis of variance (2001) Austral Ecology, 26, pp. 32-46; Anderson, B., Johnson, S.F., The geographic mosaic of coevolution in a plant-pollinator mutualism (2007) Evolution, 62, pp. 220-225; Angert, A.L., Bradshaw, H.D., Schemske, D.W., Using experimental evolution to investigate geographic range limits in monkey flowers (2008) Evolution, 62, pp. 2660-2675; Ayasse, M., Schiestl, F.P., Paulus, H.F., Löfstedt, C., Hannson, B., Ibarra, F., Francke, W., Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: how does flower-specific variation of odor signals influence reproductive success? (2000) Evolution, 54, pp. 1995-2006; Blionis, G.J., Vokou, D., Structural and functional divergence of Campanula spatulata subspecies on Mt Olympos (Greece) (2002) Plant Systematics and Evolution, 232, pp. 89-105; Boyce, P.C., Arum – a decade of change (2006) Aroideana, 29, pp. 132-137; Bradshaw, H.D., Schemske, D.W., Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers (2003) Nature, 426, pp. 176-178; Brown, M., Downs, C.T., Johnson, S.D., Covariation of flower traits and bird pollinator assemblages among pollinations of Kniphofia linearifolia (Asphodelaceae) (2011) Plant Systematics and Evolution, 294, pp. 199-206; Campbell, D.R., Natural selection in Ipomopsis hybrid zones: implications for ecological speciation (2003) New Phytologist, 161, pp. 83-90; Chartier, M., Pelozuelo, L., Gibernau, M., Do floral odor profiles geographically vary with the degree of specificity for pollinators? Investigation in two sapromyophilous Arum species (Araceae) (2011) Annales de la Société Entomologique de France, 47, pp. 71-77; Cosacov, A., Nattero, J., Cocucci, A.A., Variation of pollinator assemblages and pollen limitation in a locally specialized system: the oil-producing Nierembergia liariifolia (Solanaceae) (2008) Annals of Botany, 102, pp. 723-734; Diaz, A., Kite, G.C., A comparison of the pollination ecology of Arum maculatum and A. italicum in England (2002) Watsonia, 24, pp. 171-181; Dormont, L., Jay-Robert, P., Bessière, J.-M., Rapior, S., Lumaret, J.-P., Innate olfactory preferences in dung beetles (2010) The Journal of Experimental Biology, 213, pp. 3177-3185; Dötterl, S., Wolfe, L.M., Jürgens, A., Qualitative and quantitative analyses of flower scent in Silene latifolia (2005) Phytochemistry, 66, pp. 203-213; Elle, E., Carney, R., Reproductive assurance varies with flower size in Collinsia parviflora (Scrophulariaceae) (2003) American Journal of Botany, 90, pp. 888-896; Ellis, A.G., Johnson, S.D., The evolution of floral variation without pollinator shifts in Gorteria diffusa (Asteraceae) (2009) American Journal of Botany, 96, pp. 793-801; Espìndola, A., Pellissier, L., Alvarez, N., Variation in the proportion of flore visitors of Arum maculatum along its distributional range in relation with community-based climatic niche analyses (2011) Oikos, 120, pp. 728-734; Faegri, K., Van Der Pijl, L., (1971) The Principles of Pollination Ecology, , Pergamon Press, Oxford; Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., Thomson, J.D., Pollination syndromes and floral specialization (2004) Annual Reviews of Ecology, Evolution and Systematics, 35, pp. 375-403; Geber, M.A., Eckhart, V.M., Experimental studies of adaptation in Clarkia xantiana. II. Fitness variation across a subspecies border (2005) Evolution, 59, pp. 521-531; Geber, M.A., Moeller, D.A., Pollinator responses to plant communities and implications for reproductive character evolution (2006) Ecology and Evolution of Flowers, pp. 102-119. , eds L.D. Harder & S.C.H. Barrett. Oxford University Press, Oxford; Gibernau, M., (1997), Odeurs et spécificité dans les mutualismes figuier pollinisateur: Le cas de Ficus carica L. et de Blastophaga psenes L. PhD thesis, University of Montpellier, MontpellierGibernau, M., Macquart, D., Przetak, G., Pollination in the genus Arum – a review (2004) Aroideana, 27, pp. 148-166; Gomez, J.M., Bosh, J., Perfectti, F., Fernández, J.D., Abdelaziz, M., Camacho, J.P.M., Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators (2008) Proceedings of the Royal Society B, 275, pp. 2241-2249; Gomez, J.M., Abdelaziz, M., Camacho, J.P.M., Munoz-Pajares, A.J., Perfectti, F., Local adaptation and maladaptation to pollinators in a generalist geographic mosaic (2009) Ecology Letters, 12, pp. 672-682; Gould, S.J., Johnston, R.F., Geographic variation (1972) Annual Review of Ecology, Evolution, and Systematics, 3, pp. 457-498; Hentrich, H., Kaiser, R., Gottsberger, G., Floral biology and reproductive isolation by floral scent in three sympatric Aroid species in French Guyana (2010) Plant Biology, 12, pp. 587-596; Herrera, C.M., Castellanos, M.C., Medrano, M., Geographical context of floral evolution: towards an improved research programme in floral diversification (2006) Ecology and Evolution of Flowers, pp. 278-294. , eds L.D. Harder & S.C.H. Barrett) Oxford University Press, Oxford; Hodgins, K.A., Barrett, C.H., Geographic variation in floral morphology and style-morph ratios in a sexually polymorphic daffodil (2008) American Journal of Botany, 95, pp. 185-195; Ibanez, S., Dötterl, S., Anstett, M.-C., Baudino, S., Caissard, J.C., Gallet, C., Després, L., The role of volatile organic compounds, morphology and pigments of globeflowers in the attraction of their specific pollinating flies (2010) New Phytologist, 188, pp. 451-463; Ježek, J., Redescriptions of nine common palaeartic and holartic species of Psychodini End. (Diptera: Psychodidae) (1990) Acta Entomologica Musei Nationalis Pragae, 43, pp. 33-83; Ježek, J., Hájek, J., Psychodidae (Diptera) of the Orlické hory protected landscape area and neighbouring areas with descriptions of two new species from the Czech Republic (2007) Acta Entomologica Musei Nationalis Pragae, 47, pp. 237-285; Johnson, S.D., Pollinator-driven speciation in plants (2006) Ecology and Evolution of Flowers, pp. 295-310. , eds L.D. Harder & S.C.H. Barrett Oxford University Press, Oxford; Johnson, S.D., Jürgens, A., Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus (2010) South African Journal of Botany, 76, pp. 796-807; Johnson, S.D., Steiner, K.E., Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae) (1997) Evolution, 51, pp. 45-53; Jürgens, A., Dötterl, S., Meve, U., The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae) (2006) New Phytologist, 172, pp. 452-468; Kato, M., Itioka, T., Sakai, S., Momose, K., Yamane, S., Hamid, A.A., Inoue, T., Various population fluctuation patterns of light-attracted beetles in a tropical lowland dipterocarp forest in Sarawak (2000) Population Ecology, 42, pp. 97-104; Kiester, A.R., Lande, R., Schemske, D.W., Models of coevolution and speciation in plants and their pollinators (1984) The American Naturalist, 1242, pp. 220-243; Kite, G.C., The floral odour of Arum maculatum (1995) Biochemical Systematics and Ecology, 23, pp. 343-354; Kite, G.C., Hetterscheid, W.L.A., Lewis, M.J., Boyce, P.C., Ollerton, J., Cocklin, E., Diaz, A., Simmonds, M.S.J., Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae) (1998) Reproductive Biology, pp. 295-315. , (eds S.J. Owens & P.J. Rudall) Royal Botanical Gardens, Kew; Knudsen, J.T., Variation in floral scent composition within and between populations of Geonoma macrostachys (Arecaceae) in the western Amazon (2002) American Journal of Botany, 89, pp. 1772-1778; Knudsen, J.T., Eriksson, R., Gershenzon, J., Ståhl, B., Diversity and distribution of floral scent (2006) The Botanical Review, 72, pp. 1-120; Lack, A.J., Diaz, A., The pollination of Arum maculatum L. – a historical review and new observations (1991) Watsonia, 18, pp. 333-342; Levin, D.A., (2000) The Origin, Expansion and Demise of Plant Species, , Oxford University Press, Oxford; Levin, D.A., Anderson, W.W., Competition for pollinators between simultaneously flowering species (1970) The American Naturalist, 104, pp. 455-467; Linz, J., Stökl, J., Urru, I., Krügel, T., Stensmyr, M.C., Hansson, B.S., Molecular phylogeny of the genus Arum (Araceae) inferred from multi-locus sequence data and AFLPs (2010) Taxon, 59, pp. 405-415; Maia, A.C.D., Dötterl, S., Kaiser, R., Silberbauer-Gottsberger, I., Teichert, H., Gibernau, M., Navarro, D.M.D.F., Gottsberger, G., The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae (2012) Journal of Chemical Ecology, 38, pp. 1072-1080; Maia, A.C.D., Gibernau, M., Dötterl, S., Navarro, DM., Seifert, K., Müller, T., Schlindwein, C., The floral scent of Taccarum ulei (araceae): attraction of scarab beetle pollinators to an unusual aliphatic acyloin (2013) Phytochemistry, , http://dx.doi.org/10.1016/j.phytochem.2013.03.005, (in press); Mant, J., Peakall, R., Schiestl, F.P., Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys? (2005) Evolution, 59, pp. 1449-1463; Méndez, M., Obeso, J.R., Influencia del osmoforo en la produccion de infrutescencias en Arum italicum Miller (Araceae) (1992) Anales del Jardín Botánico de Madrid, 50, pp. 229-237; Mitchell, R.J., Flanagan, R.J., Brown, B.J., Waser, N.M., Karron, J.D., New frontiers in competition for pollination (2009) Annals of Botany, 103, pp. 1403-1413; Morgan, M.T., Selection on reproductive characters: conceptual foundations and their extension to pollinator interactions (2006) Ecology and Evolution of Flowers, pp. 25-40. , eds L.D. Harder & S.C.H. Barrett) Oxford University Press, Oxford; Nattero, J., Cocussi, A.A., Medel, R., Pollinator-mediated selection in a specialized pollination system: matches and mismatches across populations (2010) Journal of Evolutionary Biology, 23, pp. 1957-1968; Pettersson, S., Knudsen, J.T., Floral scent and nectar production in Parkia biglobosa Jacq. (Leguminosae: Mimosoideae) (2001) Botanical Journal of the Linnean Society, 135, pp. 97-106; Pichersky, E., Gershenzon, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense (2002) Plant Biology, 5, pp. 237-243; Prime, C.T., (1960) Lords and Ladies, , Harper Collins Publishers, London; Proctor, M., Leo, P., Lack, A., (1996) Natural History of Pollination, , Harper Collins Publishers, London; Raguso, R.A., Wake up and smell the roses: the ecology and evolution of floral scent (2008) Annual Review of Ecology, Evolution, and Systematics, 39, pp. 549-569; (2012) R: A language and environment for statistical computing, , http://www.R-project.org/, R Core Team R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, URL University of Chicago Press, Chicago, IL; Renner, S.S., Rewardless flowers in the Angiosperms and the role of insect cognition in their evolution (2006) Plant-Pollinator Interactions: From Specialization to Generalization, pp. 123-144. , eds N.M. Waser & J. Ollerton University of Chicago Press, Chicago, IL; Rohacek, J., Beck-Haug, I., Dobat, K., Sphaeroceridae associated with flowering Arum maculatum (Araceae) in the vicinity of Tübingen, SW-Germany (1990) Senckenbergiana biologie, 71, pp. 259-268; Schaeffer, H.M., Ruxton, G.D., (2011) Plant-Animal Communication, , Oxford University Press, Oxford; Schiestl, F.P., Ayasse, M., Do changes in floral odor cause speciation in sexually deceptive orchids? (2002) Plant Systematics and Evolution, 234, pp. 111-119; Schiestl, F.P., Schlüter, P.M., Floral isolation, specialized pollination, and pollinator behavior in Orchids (2009) Annual Review of Entomology, 54, pp. 425-446; Schlumpberger, B.O., Raguso, R.A., Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction (2008) Oikos, 117, pp. 801-814; Schlumpberger, B.O., Cocussi, A.A., Moré, M., Sérsic, A.N., Raguso, R.A., Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus (2009) Annals of Botany, 103, pp. 1489-1500; Solers, C., Hossaert-McKey, M., Buatois, B., Bessière, J.-M., Schatz, B., Proffit, M., Geographic variation of floral scent in a highly specialized pollination mutualism (2011) Phytochemistry, 72, pp. 74-81; Stebbins, G.L., Adaptive radiation of reproductive characteristics in Angiosperms, I: pollination mechanisms (1970) Annual Review of Ecology and Systematics, 1, pp. 307-326; Stökl, J., Strutz, A., Dafni, A., Svatos, A., Doubsky, J., Knaden, M., Sachse, S., Stensmyr, M.C., A deceptive pollination system targeting drosophilids through olfactory mimicry of yeast (2010) Current Biology, 20, pp. 1846-1852; Stökl, J., Schlüter, P.M., Stuessy, T.F., Paulus, H.F., Assum, G., Ayasse, M., Scent variation and hybridization cause the displacement of a sexually deceptive orchid species (2008) American Journal of Botany, 95, pp. 472-481; Svensson, G.P., Pellmyr, O., Raguso, R.A., Strong conservation of floral scent composition in two allopatric yuccas (2006) Journal of Chemical Ecology, 32, pp. 2657-2665; Svensson, G.P., Pellmyr, O., Raguso, R.A., Pollinator attraction to volatiles from virgin and pollinated host flowers in a yucca/moth obligate mutualism (2011) Oikos, 120, pp. 1577-1583; Svensson, G.P., Hickman, M.O., Bartram, S., Boland, W., Pellmyr, O., Raguso, R.A., Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae) (2005) American Journal of Botany, 92, pp. 1624-1631; Thompson, J.N., (2005) The Geographic Mosaic of Coevolution, , University Chicago Press, Chicago, IL; Urru, I., Stensmyr, M.C., Hansson, B.S., Pollination by brood-site deception (2011) Phytochemistry, 72, pp. 1655-1666; Vaillant, F., Diptères psychodidae coprophiles et coprobiontes d'Europe (1988) Bulletin Romand d'Entomologie, 6, pp. 1-43; Valiente-Banuet, A., Molina-Freaner, F., Torres, A., del Coro Arizmendi, M., Casas, A., Geographic differentiation in the pollination system of the columnar cactus Pachycereus pecten-aboriginum (2004) American Journal of Botany, 91, pp. 850-855; Volis, S., Adaptive genetic differentiation in a predominantly self-pollinating species analyzed by transplanting into natural environment, crossbreeding and Qst-Fst test (2011) New Phytologist, 192, pp. 237-248; Waelti, M.O., Muhlemann, J.K., Widmer, A., Schiestl, F.P., Floral odour and reproductive isolation in two species of Silene (2008) Journal of Evolutionary Biology, 21, pp. 111-121; Waser, N.M., Interspecific pollen transfer and competition between co-occurring plant species (1978) Oecologia, 36, pp. 223-236; Waterman, R.J., Bidartondo, M.I., Stofberg, J., Combs, J.K., Gebauer, G., Savolainen, V., Barraclough, T.G., Pauw, A., The effects of above- and belowground mutualisms on orchid speciation and coexistence (2011) The American Naturalist, 177, pp. E54-E68; Withers, P., Roth flies. Diptera: Psychodidae (1989) Dipterist Digest, 4, pp. 1-83 Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 511  
Permanent link to this record
 

 
Author Wagner, F.; Rossi, V.; Stahl, C.; Bonal, D.; Herault, B. pdf  url
openurl 
  Title Asynchronism in leaf and wood production in tropical forests: A study combining satellite and ground-based measurements Type Journal Article
  Year 2013 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 10 Issue 11 Pages 7307-7321  
  Keywords  
  Abstract The fixation of carbon in tropical forests mainly occurs through the production of wood and leaves, both being the principal components of net primary production. Currently field and satellite observations are independently used to describe the forest carbon cycle, but the link between satellite-derived forest phenology and field-derived forest productivity remains opaque. We used a unique combination of a MODIS enhanced vegetation index (EVI) dataset, a wood production model based on climate data and direct litterfall observations at an intra-annual timescale in order to question the synchronism of leaf and wood production in tropical forests. Even though leaf and wood biomass fluxes had the same range (respectively 2.4 ± 1.4 and 2.2 ± 0.4 Mg C ha-1 yr-1), they occurred separately in time. EVI increased with leaf renewal at the beginning of the dry season, when solar irradiance was at its maximum. At this time, wood production stopped. At the onset of the rainy season, when new leaves were fully mature and water available again, wood production quickly increased to reach its maximum in less than a month, reflecting a change in carbon allocation from short-lived pools (leaves) to long-lived pools (wood). The time lag between peaks of EVI and wood production (109 days) revealed a substantial decoupling between the leaf renewal assumed to be driven by irradiance and the water-driven wood production. Our work is a first attempt to link EVI data, wood production and leaf phenology at a seasonal timescale in a tropical evergreen rainforest and pave the way to develop more sophisticated global carbon cycle models in tropical forests. © 2013 Author(s).  
  Address INRA, UMR EEF 1137, 54280 Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17264170 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 December 2013; Source: Scopus; doi: 10.5194/bg-10-7307-2013; Language of Original Document: English; Correspondence Address: Wagner, F.; CIRAD, UMR Ecologie des Forêts de Guyane, Kourou, French Guiana, French Guiana; email: wagner.h.fabien@gmail.com; References: Allen, R., Smith, M., Pereira, L., Perrier, A., An update for the calculation of reference evapotranspiration (1994) Journal of the ICID, 43, pp. 35-92; Anderson, L.O., Biome-scale forest properties in Amazonia based on field and satellite observations (2012) Remote Sens., 4, pp. 1245-1271. , doi:10.3390/rs4051245; Arias, P.A., Fu, R., Hoyos, C.D., Li, W., Zhou, L., Changes in cloudiness over the Amazon rainforests during the last two decades: Diagnostic and potential causes (2011) Clim. Dynam., 37, pp. 1151-1164. , doi:10.1007/s00382-010-0903-2; Asner, G., Townsend, A., Braswell, B., Satellite observation of El Nino effects on Amazon forest phenology and productivity (2000) Geophys. Res. Lett., 27, pp. 981-984. , doi:10.1029/1999GL011113; Asner, G.P., Nepstad, D., Cardinot, G., Ray, D., Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (16), pp. 6039-6044. , DOI 10.1073/pnas.0400168101; Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D., Hackler, J., Houghton, R.A., Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps (2012) Nat. Clim. Change, 2, pp. 182-185. , doi:10.1038/NCLIMATE1354; Baker, T.R., Burslem, D.F.R.P., Swaine, M.D., Associations between tree growth, soil fertility and water availability at local and regional scales in Ghanaian tropical rain forest (2003) Journal of Tropical Ecology, 19 (2), pp. 109-125. , DOI 10.1017/S0266467403003146; Baraloto, C., Paine, C.E.T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Herault, B., Chave, J., Decoupled leaf and stem economics in rain forest trees (2010) Ecol. Lett., 13, pp. 1338-1347. , doi:10.1111/j.1461- 0248.2010.01517.x; Barnett, A., Dobson, A., (2010) Analysing Seasonal Health Data, , Springer; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B.T., Gross, P., Bonnefond, J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Global Change Biology, 14 (8), pp. 1917-1933. , DOI 10.1111/j.1365-2486.2008.01610.x; Bradley, A.V., Gerard, F.F., Barbier, N., Weedon, G.P., Anderson, L.O., Huntingford, C., Aragao, L.E.O.C., Arai, E., Relationships between phenology, radiation and precipitation in the Amazon region (2011) Glob. Change Biol., 17, pp. 2245-2260. , doi:10.1111/j.1365-2486.2011.02405.x; Brando, P.M., Goetz, S.J., Baccini, A., Nepstad, D.C., Beck, P.S.A., Christman, M.C., Seasonal and interannual variability of climate and vegetation indices across the Amazon (2010) P. Natl. Acad. Sci. USA, 107, pp. 14685-14690. , doi:10.1073/pnas.0908741107; Caldararu, S., Palmer, P.I., Purves, D.W., Inferring Amazon leaf demography from satellite observations of leaf area index (2012) Biogeosciences, 9, pp. 1389-1404. , doi:10.5194/bg-9-1389-2012; Chambers, J.Q., Silver, W.L., Some aspects of ecophysiological and biogeochemical responses of tropical forests to atmospheric change (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 463-476. , DOI 10.1098/rstb.2003.1424; Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L.E.O.C., Bonal, D., Châtelet, P., Malhi, Y., Regional and seasonal patterns of litterfall in tropical South America (2010) Biogeosciences, 7, pp. 43-55. , doi:10.5194/bg-7-43-2010; Clark, D.B., Clark, D.A., Oberbauer, S.F., Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2 (2010) Glob. Change Biol., 16, pp. 747-759. , doi:10.1111/j.1365-2486.2009.02004.x; Delegido, J., Vergara, C., Verrelst, J., Gandia, S., Moreno, J., Remote estimation of crop chlorophyll content by means of highspectral- resolution reflectance techniques (2011) Agron. J., 103, pp. 1834-1842. , doi:10.2134/agronj2011.0101; De Weirdt, M., Verbeeck, H., Maignan, F., Peylin, P., Poulter, B., Bonal, D., Ciais, P., Steppe, K., Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model (2012) Geosci. Model Dev., 5, pp. 1091-1108. , doi:10.5194/gmd-5-1091-2012; Doughty, C.E., An in situ leaf and branch warming experiment in the amazon (2011) Biotropica, 43, pp. 658-665. , doi:10.1111/j.1744- 7429.2010.00746.x; Doughty, C.E., Goulden, M.L., Are tropical forests near a high temperature threshold? (2008) J. Geophys. Res.-Biogeo., 113, pp. G00B07. , doi:10.1029/2007JG000632; Ekstrom, M., Jones, P.D., Fowler, H.J., Lenderink, G., Buishand, T.A., Conway, D., Regional climate model data used within the SWURVE project projected changes in seasonal patterns and estimation of PET (2007) Hydrology and Earth System Sciences, 11 (3), pp. 1069-1083; Enquist, B.J., Leffler, A.J., Long-term tree ring chronologies from sympatric tropical dry-forest trees: Individualistic responses to climatic variation (2001) Journal of Tropical Ecology, 17 (1), pp. 41-60. , DOI 10.1017/S0266467401001031; (2008) ESA SP-1313/4 Candidate Earth Explorer Core Missions – Reports for Assessment: FLEX – FLuorescence Explorer, , http://esamultimedia.esa.int/docs/SP1313-4_FLEX.pdf, European Space Agency, Tech. rep., published by ESA Communication Production Office, Noordwijk, The Netherlands; Fichtler, E., Clark, D.A., Worbes, M., Age and Long-term Growth of Trees in an Old-growth Tropical Rain Forest, Based on Analyses of Tree Rings and 14C (2003) Biotropica, 35 (3), pp. 306-317; Figueira, A., Miller, S., De Sousa, C., Menton, M., Maia, A., Da Rocha, H., Goulden, M., (2011) LBA-ECO CD-04 Dendrometry, Km 83 Tower Site, , http://daac.ornl.gov, Tapajos National Forest, Brazil, Data set, Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA, doi:10.3334/ORNLDAAC/989; Galvao, L.S., Breunig, F.M., Dos Santos, J.R., De Moura, Y.M., View-illumination effects on hyperspectral vegetation indices in the Amazonian tropical forest (2013) Int. J. Appl. Earth Obs., 21, pp. 291-300. , doi:10.1016/j.jag.2012.07.005; Gao, X., Huete, A.R., Ni, W., Miura, T., Optical-biophysical relationships of vegetation spectra without background contamination (2000) Remote Sensing of Environment, 74 (3), pp. 609-620. , DOI 10.1016/S0034-4257(00)00150-4, PII S0034425700001504; Gond, V., Freycon, V., Molino, J.-F., Brunaux, O., Ingrassia, F., Joubert, P., Pekel, J.-F., Sabatier, D., Broad-scale spatial pattern of forest landscape types in the Guiana Shield (2011) Int. J. Appl. Earth Obs., 13, pp. 357-367. , doi:10.1016/j.jag.2011.01.004; Gourlet-Fleury, S., Guehl, J.M., Laroussinie, O., (2004) Ecology and Management of A Neotropical Rainforest – Lessons Drawn from Paracou, A Long-term Experimental Research Site in French Guiana, , Elsevier; Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G., Wright, S.J., Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (2), pp. 572-576. , DOI 10.1073/pnas.0133045100; Grogan, J., Schulze, M., The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil (2012) Biotropica, 44, pp. 331-340. , doi:10.1111/j.1744-7429.2011.00825.x; Harris, P.P., Huntingford, C., Cox, P.M., Amazon Basin climate under global warming: The role of the sea surface temperature (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1753-1759. , DOI 10.1098/rstb.2007.0037, PII M322R63897015H77; Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices (2002) Remote Sensing of Environment, 83 (1-2), pp. 195-213. , DOI 10.1016/S0034-4257(02)00096-2, PII S0034425702000962; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W.Z., Myneni, R., Amazon rainforests green-up with sunlight in dry season (2006) Geophys. Res. Lett., 33, pp. L06405. , doi:10.1029/2005GL025583; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) Journal of Geophysical Research G: Biogeosciences, 112 (3), pp. G03008. , DOI 10.1029/2006JG000365; Janzen, D., Wilson, D., The cost of being dormant in the tropics (1974) Biotropica, 6, pp. 260-262; Justice, C.O., Vermote, E., Townshend, J.R.G., Defries, R., Roy, D.P., Hall, D.K., Salomonson, V.V., Barnsley, M.J., The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research (1998) IEEE Transactions on Geoscience and Remote Sensing, 36 (4), pp. 1228-1249. , PII S0196289298047512; Kozlowski, T., Carbohydrate sources and sinks in woody-plants (1992) Bot. Rev., 58, pp. 107-222. , doi:10.1007/BF02858600; Krepkowski, J., Bräuning, A., Gebrekirstos, A., Strobl, S., Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia (2011) Trees, 25, pp. 59-70. , doi:10.1007/s00468-010-0460-7; Lewis, S.L., Malhi, Y., Phillips, O.L., Fingerprinting the impacts of global change on tropical forests (2004) Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (1443), pp. 437-462. , DOI 10.1098/rstb.2003.1432; Lisi, C.S., Tomazello Fo., M., Botosso, P.C., Roig, F.A., Maria, V.R.B., Ferreira-Fedele, L., Voigt, A.R.A., Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil (2008) IAWA Journal, 29 (2), pp. 189-207; Lloyd, J., Farquhar, G.D., Effects of rising temperatures and [CO2] on the physiology of tropical forest trees (2008) Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1498), pp. 1811-1817. , DOI 10.1098/rstb.2007.0032, PII C14L2U757H282731; Da Costa Lola, A.C., Galbraith, D., Almeida, S., Tanaka Portela, B.T., Da Costa, M., De Athaydes Silva Jr., J., Braga, A.P., Meir, P., Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest (2010) New Phytol., 187, pp. 579-591. , doi:10.1111/j.1469-8137.2010.03309.x; Loubry, D., Phenology of deciduous trees in a French-Guianan forest (5 degrees latitude North) – Case of a determinism with endogenous and exogenous components (1994) Can. J. Bot., 72, pp. 1843-1857; Malhi, Y., Grace, J., Tropical forests and atmospheric carbon dioxide (2000) Trends in Ecology and Evolution, 15 (8), pp. 332-337. , DOI 10.1016/S0169-5347(00)01906-6, PII S0169534700019066; Malhi, Y., Aragao, L.E.O.C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., Meir, P., Exploring the likelihood and mechanism of a climatechange- induced dieback of the Amazon rainforest (2009) P. Natl. Acad. Sci. USA, 106, pp. 20610-20615. , doi:10.1073/pnas.0804619106; Malhi, Y., Doughty, C., Galbraith, D., The allocation of ecosystem net primary productivity in tropical forests (2011) Philos. T. R. Soc. B, 366, pp. 3225-3245. , doi:10.1098/rstb.2011.0062; Meroni, M., Busetto, L., Colombo, R., Guanter, L., Moreno, J., Verhoef, W., Performance of spectral fitting methods for vegetation fluorescence quantification (2010) Remote Sens. Environ., 114, pp. 363-374. , doi:10.1016/j.rse.2009.09.010; Michelot, A., Simard, S., Rathgeber, C., Dufrene, E., Damesin, C., Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and nonstructural carbohydrate dynamics (2012) Tree Physiol., 32, pp. 1033-1045. , doi:10.1093/treephys/tps052; Mitchell, T.D., Jones, P.D., An improved method of constructing a database of monthly climate observations and associated high-resolution grids (2005) International Journal of Climatology, 25 (6), pp. 693-712. , DOI 10.1002/joc.1181; Molto, Q., Rossi, V., Blanc, L., Error propagation in biomass estimation in tropical forests (2013) Meth. Ecol. Evolut., 4, pp. 175-183. , doi:10.1111/j.2041-210x.2012.00266.x; Moura, Y.M., Galvao, L.S., Dos Santos, J.R., Roberts, D.A., Breunig, F.M., Use of MISR/Terra data to study intra- and interannual EVI variations in the dry season of tropical forest (2012) Remote Sens. Environ., 127, pp. 260-270. , doi:10.1016/j.rse.2012.09.013; Myneni, R.B., Hall, F.G., Sellers, P.J., Marshak, A.L., The meaning of spectral vegetation indices (1995) IEEE T. Geosci. Remote, 33, pp. 481-486; Myneni, R.B., Yang, W., Nemani, R.R., Huete, A.R., Dickinson, R.E., Knyazikhin, Y., Didan, K., Salomonson, V.V., Large seasonal swings in leaf area of Amazon rainforests (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (12), pp. 4820-4823. , DOI 10.1073/pnas.0611338104; Nath, C.D., Dattaraja, H.S., Suresh, H.S., Joshi, N.V., Sukumar, R., Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India (2006) Journal of Biosciences, 31 (5), pp. 651-669. , http://www.ias.ac.in/jbiosci/dec2006/651-669.pdf, DOI 10.1007/BF02708418; Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B., Running, S.W., Climate-driven increases in global terrestrial net primary production from 1982 to 1999 (2003) Science, 300 (5625), pp. 1560-1563. , DOI 10.1126/science.1082750; Nepstad, D., Moutinho, P., Dias, M., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res.-Atmos., 107, p. 8085. , doi:10.1029/2001JD000360; O'Brien, J.J., Oberbauer, S.F., Clark, D.B., Clark, D.A., Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest (2008) Biotropica, 40 (2), pp. 151-159. , DOI 10.1111/j.1744-7429.2007.00354.x; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333, pp. 988-993. , doi:10.1126/science.1201609; Pennec, A., Gond, V., Sabatier, D., Tropical forest phenology in French Guiana from MODIS time series (2011) Remote Sens. Lett., 2, pp. 337-345; Phillips, O.L., Aragao, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., Lopez-Gonzalez, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon rainforest (2009) Science, 323, pp. 1344-1347. , doi:10.1126/science.1164033; Poorter, L., Kitajima, K., Carbohydrate storage and light requirements of tropical moist and dry forest tree species (2007) Ecology, 88 (4), pp. 1000-1011. , http://www.esajournals.org/pdfserv/i0012-9658-088-04-1000.pdf, DOI 10.1890/06-0984; Rice, A.H., Pyle, E.H., Saleska, S.R., Hutyra, L., Palace, M., Keller, M., De Camargo, P.B., Wofsy, S.C., Carbon balance and vegetation dynamics in an old-growth Amazonian forest (2004) Ecological Applications, 14 (4 SUPPL.), pp. S55-S71; Richardson, A.D., Carbone, M.S., Keenan, T.F., Czimczik, C.I., Hollinger, D.Y., Murakami, P., Schaberg, P.G., Xu, X., Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees (2013) New Phytol., 197, pp. 850-861. , doi:10.1111/nph.12042; Rocha, A.V., Tracking carbon within the trees (2013) New Phytol., 197, pp. 685-686. , doi:10.1111/nph.12095; Rutishauser, E., Wagner, F., Herault, B., Nicolini, E.-A., Blanc, L., Contrasting above-ground biomass balance in a neotropical rain forest (2010) J. Veg. Sci., 21, pp. 672-682. , doi:10.1111/j.1654-1103.2010.01175.x; Rowland, L., Hill, T.C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Williams, M., Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest (2013) Glob. Change Biol., , doi:10.1111/gcb.12375; Sabatier, D., Puig, H., Phénologie et saisonnalité de la floraison et de la fructification en forêt dense guyanaise (1986) Memoir. Mus. Natl. Hist. A-Zool., 132, pp. 173-184; Sabatier, D., Grimaldi, M., Prevost, M., Guillaume, J., Godron, M., Dosso, M., Curmi, P., The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest (1997) Plant Ecol., 131, pp. 81-108; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M.L., Wofsy, S.C., Da Rocha, H.R., De Camargo, P.B., Silva, H., Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses (2003) Science, 302 (5650), pp. 1554-1557. , DOI 10.1126/science.1091165; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (5850), p. 612. , DOI 10.1126/science.1146663; Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., Knyazikhin, Y., Nemani, R.R., Myneni, R.B., Amazon forests did not green-up during the 2005 drought (2010) Geophys. Res. Lett., 37, pp. L05401. , doi:10.1029/2009GL042154; Schongart, J., Piedade, M.T.F., Ludwigshausen, S., Horna, V., Worbes, M., Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests (2002) Journal of Tropical Ecology, 18 (4), pp. 581-597. , DOI 10.1017/S0266467402002389; Solano, R., Didan, K., Jacobson, A., Huete, A., (2010) Terrestrial Biophysics and Remote Sensing Lab – The University of Arizona, MODIS Vegetation Indices (MOD13) C5 User's Guide, Version 1.00; Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.H., Leroy Miller, J., Chen, Z., (2007) Climate Change 2007, the Fourth Assessment Report (AR4), Intergovernmental Panel on Climate Change; Solomon, S., Plattner, G.-K., Knutti, R., Friedlingstein, P., Irreversible climate change due to carbon dioxide emissions (2009) P. Natl. Acad. Sci. USA, 106, pp. 1704-1709. , doi:10.1073/pnas.0812721106; Stahl, C., Burban, B., Bompy, F., Jolin, Z.B., Sermage, J., Bonal, D., Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana (2010) J. Trop. Ecol., 26, pp. 393-405. , doi:10.1017/S0266467410000155; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees (2013) Biotropica, 45, pp. 155-164; Tian, H., Melillo, J.M., Kicklighter, D.W., David McGuire, A., Helfrich III, J.V.K., Moore III, B., Vorosmarty, C.J., Effect of interannual climate variability on carbon storage in Amazonian ecosystems (1998) Nature, 396 (6712), pp. 664-667. , DOI 10.1038/25328; Verbeeck, H., Peylin, P., Bacour, C., Bonal, D., Steppe, K., Ciais, P., Seasonal patterns of CO2 fluxes in Amazon forests: Fusion of eddy covariance data and the ORCHIDEE model (2011) J. Geophys. Res.-Biogeo., 116, pp. G02018. , doi:10.1029/2010JG001544; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2010) Agr. Forest Meteorol., pp. 1202-1213. , doi:10.1016/j.agrformet.2011.04.012; Wagner, F., Rutishauser, E., Blanc, L., Herault, B., Effects of plot size and census interval on descriptors of forest structure and dynamics (2010) Biotropica, 42, pp. 664-671; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Herault, B., Water availability is the main climate driver of neotropical tree growth (2012) Plos One, 7, pp. e34074. , doi:10.1371/journal.pone.0034074; Worbes, M., Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela (1999) Journal of Ecology, 87 (3), pp. 391-403. , DOI 10.1046/j.1365-2745.1999.00361.x; Wright, S., Vanschaik, C., Light and the phenology of tropical trees (1994) Am. Nat., 143, pp. 192-199. , doi:10.1086/285600; Wurth, M.K.R., Pelaez-Riedl, S., Wright, S.J., Korner, C., Non-structural carbohydrate pools in a tropical forest (2005) Oecologia, 143 (1), pp. 11-24. , DOI 10.1007/s00442-004-1773-2; Zalamea, M., Gonzalez, G., Leaffall phenology in a subtropical wet forest in Puerto Rico: From species to community patterns (2008) Biotropica, 40 (3), pp. 295-304. , DOI 10.1111/j.1744-7429.2007.00389.x; Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., Huete, A., Monitoring vegetation phenology using MODIS (2003) Remote Sensing of Environment, 84 (3), pp. 471-475. , DOI 10.1016/S0034-4257(02)00135-9, PII S0034425702001359 Approved no  
  Call Number (up) EcoFoG @ webmaster @ Serial 512  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: