toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Leroy, C.; Gueroult, M.; Wahyuni, N.S.; Escoute, J.; Cereghino, R.; Sabatier, S.; Auclair, D. openurl 
  Title Morphogenetic trends in the morphological, optical and biochemical features of phyllodes in Acacia mangium Willd (Mimosaceae) Type Journal Article
  Year 2009 Publication Trees-Structure and Function Abbreviated Journal Trees-Struct. Funct.  
  Volume 23 Issue 1 Pages 37-49  
  Keywords Chlorophyll; Phyllode morphology; Phyllode anatomy; Nitrogen; Optical properties; Plant architecture  
  Abstract Endogenous variations in the annual growth of trees suggest that similar trends would occur in phyllodes. In comparison to leaves, the characteristics of phyllodes are less well known, hence this study examines the effects of architectural position and age of tree on the phyllodes of Acacia mangium. Phyllodes were investigated on 1-, 2-, and 3-year-old trees from three axis positions within the crown. We focused on the morphological, optical and biochemical traits of the phyllodes. The increase in phyllode area and lamina thickness is more pronounced in the older trees. Leaf mass area (LMA), stomatal density, nitrogen and chlorophyll content increase with tree age. The values of these characteristics decrease from the main stem to the lower branches for the older trees. Phyllode light absorptance increased with tree age whereas reflectance was higher for the upper position compared to the lower position within the crown. Carotenoid content and chlorophyll a/b ratio were higher for the younger phyllodes of younger trees. Increasing tree size induced modifications in the phyllode characteristics which are influenced by both morphogenetic and light gradients within the crown. This study demonstrated pronounced changes in terms of morphological and functional indicators of photosynthetic capacity in relation to phyllode position within the crown and to tree age. These morphogenetic effects on the phyllode characteristics should be taken into account in studies on phenotypic plasticity.  
  Address [Sabatier, Sylvie] CIRAD, UMR AMAP BotAnique & BioinforMat Architecture, F-34398 Montpellier 5, France, Email: sylvie-annabel.sabatier@cirad.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0931-1890 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000262538700005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 206  
Permanent link to this record
 

 
Author (down) Leroy, C.; Gril, E.; Si Ouali, L.; Coste, S.; Gérard, B.; Maillard, P.; Mercier, H.; Stahl, C. url  doi
openurl 
  Title Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads Type Journal Article
  Year 2019 Publication Environmental and Experimental Botany Abbreviated Journal Environ. Exp. Bot.  
  Volume 163 Issue Pages 112-123  
  Keywords 15 N labelling; Carbon metabolism; Nutrient uptake; Plant performance; Tank bromeliad; Water status; Aechmea  
  Abstract The water and nutrient uptake mechanisms used by vascular epiphytes have been the subject of a few studies. While leaf absorbing trichomes (LATs) are the main organ involved in resource uptake by bromeliads, little attention has been paid to the absorbing role of epiphytic bromeliad roots. This study investigates the water and nutrient uptake capacity of LATs vs. roots in two epiphytic tank bromeliads Aechmea aquilega and Lutheria splendens. The tank and/or the roots of bromeliads were watered, or not watered at all, in different treatments. We show that LATs and roots have different functions in resource uptake in the two species, which we mainly attributed to dissimilarities in carbon acquisition and growth traits (e.g., photosynthesis, relative growth rate, non-structural carbohydrates, malate), to water relation traits (e.g., water and osmotic potentials, relative water content, hydrenchyma thickness) and nutrient uptake (e.g., 15 N-labelling). While the roots of A. aquilega did contribute to water and nutrient uptake, the roots of L. splendens were less important than the role played by the LATs in resource uptake. We also provide evidenced for a synergistic effect of combined watering of tank and root in the Bromelioideae species. These results call for a more complex interpretation of LATs vs. roots in resource uptake in bromeliads. © 2019 Elsevier B.V.  
  Address INRA, UMR EcoFoG, CNRS, CIRAD, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00988472 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 871  
Permanent link to this record
 

 
Author (down) Leroy, C.; Corbara, B.; Pélozuelo, L.; Carrias, J.-F.; Dejean, A.; Céréghino, R. url  openurl
  Title Ant species identity mediates reproductive traits and allocation in an ant-garden bromeliad Type Journal Article
  Year 2012 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 109 Issue 1 Pages 145-152  
  Keywords δ15N; Aechmea mertensii; Bromeliaceae; bromeliad; Camponotus femoratus; floral traits; fruit-set; mutualistic ants; Pachycondyla goeldii; reproductive allocation; stable isotopes  
  Abstract •Background and Aims: Determining the sources of variation in floral morphology is crucial to understanding the mechanisms underlying Angiosperm evolution. The selection of floral and reproductive traits is influenced by the plants abiotic environment, florivores and pollinators. However, evidence that variations in floral traits result from mutualistic interactions with insects other than pollinators is lacking in the published literature and has rarely been investigated. We aimed to determine whether the association with either Camponotus femoratus or Pachycondyla goeldii (both involved in seed dispersal and plant protection) mediates the reproductive traits and allocation of Aechmea mertensii, an obligatory ant-garden tank-bromeliad, differently.•Methods: Floral and reproductive traits were compared between the two A. mertensii ant-gardens. The nitrogen flux from the ants to the bromeliads was investigated through experimental enrichments with stable isotopes (15N).•Key Results: Camponotus femoratus-associated bromeliads produced inflorescences up to four times longer than did P. goeldii-associated bromeliads. Also, the numbers of flowers and fruits were close to four times higher, and the number of seeds and their mass per fruit were close to 1·5 times higher in C. femoratus than in P. goeldii-associated bromeliads. Furthermore, the 15N-enrichment experiment showed that C. femoratus-associated bromeliads received more nitrogen from ants than did P. goeldii-associated bromeliads, with subsequent positive repercussions on floral development. Greater benefits were conferred to A. mertensii by the association with C. femoratus compared with P. goeldii ants.•Conclusions: We show for the first time that mutualistic associations with ants can result in an enhanced reproductive allocation for the bromeliad A. mertensii. Nevertheless, the strength and direction of the selection of floral and fruit traits change based on the ant species and were not related to light exposure. The different activities and ecological preferences of the ants may play a contrasting role in shaping plant evolution and speciation. © The Author 2011.  
  Address Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 January 2012; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mcr253; Language of Original Document: English; Correspondence Address: Leroy, C.; CNRS, UMR Ecologie des Forêts de Guyane (UMR-CNRS 8172), Campus Agronomique, F-97379 Kourou Cedex, France; email: celine.leroy@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 378  
Permanent link to this record
 

 
Author (down) Leroy, C.; Corbara, B.; Dezerald, O.; Trzcinski, M.K.; Carrias, J.-F.; Dejean, A.; Céréghino, R. url  doi
openurl 
  Title What drives detrital decomposition in neotropical tank bromeliads? Type Journal Article
  Year 2017 Publication Hydrobiologia Abbreviated Journal Hydrobiologia  
  Volume 802 Issue 1 Pages 85-95  
  Keywords Context dependency; Ecosystem function; Food webs; Leaf litter; Phytotelmata; Rainforest  
  Abstract Decomposition experiments that control leaf litter species across environments help to disentangle the roles of litter traits and consumer diversity, but once we account for leaf litter effects, they tell us little about the variance in decomposition explained by shifts in environmental conditions versus food-web structure. We evaluated how habitat, food-web structure, leaf litter species, and the interactions between these factors affect litter mass loss in a neotropical ecosystem. We used water-filled bromeliads to conduct a reciprocal transplant experiment of two litter species between an open and a forested habitat in French Guiana, and coarse- and fine-mesh enclosures embedded within bromeliads to exclude invertebrates or allow them to colonize leaf litter disks. Soft Melastomataceae leaves decomposed faster in their home habitat, whereas tough Eperua leaves decomposed equally in both habitats. Bacterial densities did not differ significantly between the two habitats. Significant shifts in the identity and biomass of invertebrate detritivores across habitats did not generate differences in leaf litter decomposition, which was essentially microbial. Despite the obvious effects of habitats on food-web structure, ecosystem processes are not necessarily affected. Our results pose the question of when does environmental determinism matter for ecosystem functions, and when does it not. © 2017, Springer International Publishing Switzerland.  
  Address IRD – UMR AMAP, Campus agronomique, BP 316, Kourou Cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 December 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 775  
Permanent link to this record
 

 
Author (down) Leroy, C.; Corbara, B.; Dejean, A.; Cereghino, R. openurl 
  Title Ants mediate foliar structure and nitrogen acquisition in a tank-bromeliad Type Journal Article
  Year 2009 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 183 Issue 4 Pages 1124-1133  
  Keywords Aechmea mertensii; antgardens; Camponotus femoratus; foliar structure; delta N-15; Pachycondyla goeldii; phytotelmata contents  
  Abstract Aechmea mertensii is a tank-bromeliad that roots on ant-gardens initiated by the ants Camponotus femoratus and Pachycondyla goeldii. Its leaves form compartments acting as phytotelmata that hold rainwater and provide habitats for invertebrates. In this article, we aimed to determine whether the association with either C. femoratus or P. goeldii influenced the vegetative traits of A. mertensii, invertebrate diversity and nutrient assimilation by the leaves. Transmitted light, vegetative traits and phytotelmata contents were compared between the two A. mertensii ant-gardens. Camponotus femoratus colonized partially shaded areas, whereas P. goeldii colonized exposed areas. The bromeliads' rosettes had a large canopy (C. femoratus ant-gardens), or were smaller and amphora shaped (P. goeldii ant-gardens). There were significant differences in leaf anatomy, as shaded leaves were thicker than exposed leaves. The mean volumes of water, fine particulate organic matter and detritus in C. femoratus-associated bromeliads were three to five times higher than in P. goeldii-associated bromeliads. Moreover, the highest invertebrate diversity and leaf delta N-15 values were found in C. femoratus-associated bromeliads. This study enhances our understanding of the dynamics of biodiversity, and shows how ant-plant interactions can have trophic consequences and thus influence the architecture of the interacting plant via a complex feedback loop.  
  Address [Leroy, Celine; Dejean, Alain] EcoFoG, CNRS, UMR 8172, F-97379 Kourou, France, Email: Celine.Leroy@ecofog.gf  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000268855300020 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 106  
Permanent link to this record
 

 
Author (down) Leroy, C.; Corbara, B.; Dejean, A.; Céréghino, R. openurl 
  Title Potential sources of nitrogen in an ant-garden tank-bromeliad Type Journal Article
  Year 2009 Publication Plant Signaling and Behavior Abbreviated Journal Plant. Signal. Behav.  
  Volume 4 Issue 9 Pages 868-870  
  Keywords Aechmea mertensii Camponotus femoratus nitrogen nitrogen stable isotope Pachycondyla goeldii plant-insect interactions phytotelmata  
  Abstract Epiphytic plants in general and bromeliads in particular live in a water and nutrient-stressed environment often limited in nitrogen. Thus, these plants have developed different ways to survive in such an environment. We focused on Aechmea mertensii (Bromeliaceae), which is both a tank-bromeliad and an ant-garden (AG) epiphyte initiated by either the ants Camponotus femoratus or Pachycondyla goeldii. By combining a study of plant morphology and physiology associated with aquatic insect biology, we demonstrate that the ant species influences the leaf structure of the bromeliad, the structure of the aquatic community in its tank, and nutrient assimilation by the leaves. Based on nitrogen and nitrogen stable isotope measurements of the A. mertensii leaves, the leaf litter inside of the tank and the root-embedded carton nest, we discuss the potential sources of available nitrogen for the plant based on the ant partner. We demonstrate the existence of a complex ant-plant interaction that subsequently affects the biodiversity of a broader range of organisms that are themselves likely to influence nutrient assimilation by the A. mertensii leaves in a kind of plant-invertebrate-plant feedback loop.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Potential sources of nitrogen in an ant-garden tank-bromeliad Approved no  
  Call Number EcoFoG @ eric.marcon @ 12 Serial 186  
Permanent link to this record
 

 
Author (down) Leroy, C.; Cereghino, R.; Camas, J.F.; Pelozuelo, L.; Dejean, A.; Corbara, B. openurl 
  Title Several aspects of the life of vascular epiphytes Type Journal Article
  Year 2010 Publication Biofutur Abbreviated Journal Biofutur  
  Volume 315 Issue Pages 38-41  
  Keywords  
  Abstract  
  Address [Leroy, Celine] CNRS, UMR Ecol Forets Guyane, Kourou 97379, French Guiana  
  Corporate Author Thesis  
  Publisher ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0294-3506 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284987300005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 18  
Permanent link to this record
 

 
Author (down) Leroy, C.; Carrias, J.-F.; Corbara, B.; Pélozuelo, L.; Dezerald, O.; Brouard, O.; Dejean, A.; Céréghino, R. url  openurl
  Title Mutualistic ants contribute to tank-bromeliad nutrition Type Journal Article
  Year 2013 Publication Annals of Botany Abbreviated Journal Ann. Bot.  
  Volume 112 Issue 5 Pages 919-926  
  Keywords δ15N; Algae; ants; Bromeliaceae; food webs; Formicinae; French Guiana; mutualistic interactions; nitrogen; phytotelmata; stable isotopes; tank bromeliad  
  Abstract Background and AimsEpiphytism imposes physiological constraints resulting from the lack of access to the nutrient sources available to ground-rooted plants. A conspicuous adaptation in response to that lack is the phytotelm (plant-held waters) of tank-bromeliad species that are often nutrient-rich. Associations with terrestrial invertebrates also result in higher plant nutrient acquisition. Assuming that tank-bromeliads rely on reservoir-assisted nutrition, it was hypothesized that the dual association with mutualistic ants and the phytotelm food web provides greater nutritional benefits to the plant compared with those bromeliads involved in only one of these two associations.MethodsQuantitative (water volume, amount of fine particulate organic matter, predator/prey ratio, algal density) and qualitative variables (ant-association and photosynthetic pathways) were compared for eight tank- and one tankless-bromeliad morphospecies from French Guiana. An analysis was also made of which of these variables affect nitrogen acquisition (leaf N and δ15N).Key ResultsAll variables were significantly different between tank-bromeliad species. Leaf N concentrations and leaf δ15N were both positively correlated with the presence of mutualistic ants. The amount of fine particulate organic matter and predator/prey ratio had a positive and negative effect on leaf δ15N, respectively. Water volume was positively correlated with leaf N concentration whereas algal density was negatively correlated. Finally, the photosynthetic pathway (C3 vs. CAM) was positively correlated with leaf N concentration with a slightly higher N concentration for C 3-Tillandsioideae compared with CAM-Bromelioideae.ConclusionsThe study suggests that some of the differences in N nutrition between bromeliad species can be explained by the presence of mutualistic ants. From a nutritional standpoint, it is more advantageous for a bromeliad to use myrmecotrophy via its roots than to use carnivory via its tank. The results highlight a gap in our knowledge of the reciprocal interactions between bromeliads and the various trophic levels (from bacteria to large metazoan predators) that intervene in reservoir-assisted nutrition. © The Author 2013.  
  Address CNRS, UMR 8172, Écologie des Forêts de Guyane, Campus Agronomique, F-97379 Kourou cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 03057364 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 September 2013; Source: Scopus; Coden: Anboa; doi: 10.1093/aob/mct147; Language of Original Document: English; Correspondence Address: Leroy, C.; IRD, UMR AMAP (BotAnique et BioinforMatique de l'Architecture des Plantes), Boulevard de la Lironde, TA A-51/PS2, F-34398 Montpellier Cedex 5, France; email: celine.leroy@ird.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 501  
Permanent link to this record
 

 
Author (down) Leroy, C.; Carrias, J.-F.; Céréghino, R.; Corbara, B. url  doi
openurl 
  Title The contribution of microorganisms and metazoans to mineral nutrition in bromeliads Type Journal Article
  Year 2016 Publication Journal of Plant Ecology Abbreviated Journal Journal of Plant Ecology  
  Volume 9 Issue 3 Pages 241-255  
  Keywords digestive mutualism; insect-assisted nutrients; leaf δ15N; multiple N sources; myrmecotrophy  
  Abstract Aims One critical challenge for plants is to maintain an adequate nutrient supply under fluctuating environmental conditions. This is particularly true for epiphytic species that have limited or no access to the pedosphere and often live in harsh climates. Bromeliads have evolved key innovations such as epiphytism, water-absorbing leaf trichomes, tank habit and Crassulacean acid metabolism (CAM) photosynthesis that enable them to survive under various environmental conditions. Bromeliads encompass diverse ecological types that live on different substrates (they can be terrestrial, epilithic or epiphytic) and vary in their ability to retain water (they can be tank-forming or tankless) and photosynthetic pathway (i.e. C3 or CAM). In this review, we outline the nutritional modes and specializations that enable bromeliads to thrive in a wide range of nutrient-poor (mostly nitrogen-depleted) environments. Important Findings Bromeliads have evolved a great diversity of morphologies and functional adaptations leading to the existence of numerous nutritional modes. Focusing on species that have absorptive foliar trichomes, we review evidence that bromeliads have evolved multi-faceted nutritional strategies to respond to fluctuations in the supply of natural nitrogen (N). These plants have developed mutualistic associations with many different and functionally diverse terrestrial and aquatic microorganisms and metazoans that contribute substantially to their mineral nutrition and, thus, their fitness and survival. Bacterial and fungal microbiota-assisted N provisioning, protocarnivory, digestive mutualisms and myrmecotrophic pathways are the main strategies used by bromeliads to acquire nitrogen. The combination of different nutritional pathways in bromeliads represents an important adaptation enabling them to exploit nutrient-poor habitats. Nonetheless, as has been shown for several other vascular plants, multiple partners are involved in nutrient acquisition indicating that there have been convergent adaptations to nutrient scarcity. Finally, we point out some gaps in the current knowledge of bromeliad nutrition that offer fascinating research opportunities. © The Author 2015. Published by Oxford University Press on behalf of the Institute of Botany, Chinese Academy of Sciences and the Botanical Society of China.  
  Address CNRS, EcoLab, 118 Route de Narbonne, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 28 June 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 683  
Permanent link to this record
 

 
Author (down) Leponce, Maurice ; Dejean, Alain ; Mottl, Ondrej ; Klimes, Petr doi  openurl
  Title Rapid assessment of the three-dimensional distribution of dominant arboreal ants in tropical forests Type Journal Article
  Year 2021 Publication Insect Conservation and Diversity Abbreviated Journal  
  Volume 14 Issue 4 Pages 426-438  
  Keywords  
  Abstract Ants are omnipresent in tropical forests, especially territorially dominant arboreal ants whose territories are spatially segregated forming ‘ant mosaics’. These ecologically important species are rarely used in conservation monitoring because of the difficulty in collecting them. We developed a standardised baitline protocol to study the distribution of dominant ants on canopy trees and also a procedure to objectively define species dominance, even in unknown ant assemblages.
Besides eliminating the need to climb trees, this protocol allows live arboreal ant specimens to be sampled at different heights. Behavioural aggressiveness assays between the collected workers provide data on the three-dimensional distribution of colonies and on interactions between species. We compared the results of the behavioural tests to those from null models.
In the New Guinean lowland forest studied, we show that the canopy was either shared by multiple territorial species or inhabited by a single species with a large territory. The baitline protocol collected up to half of the arboreal ant species found in a felling census. However, the proportion of species collected at baits decreased with the increasing spatial dominance of single territorial species.
Behavioural observations used in the protocol allowed a more efficient detection of ant mosaics than null models. Territorially dominant ants were active on both understorey and canopy trees.
The protocol is fast and easy to replicate. It is a potential tool for understanding and monitoring the spatiotemporal dynamics of arboreal ant assemblages and can detect populous colonies, including those of invasive species
 
  Address  
  Corporate Author Thesis  
  Publisher Royal Entomological Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1047  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: