toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Malé, P.-J.G.; Leroy, C.; Humblot, P.; Dejean, A.; Quilichini, A.; Orivel, J. doi  openurl
  Title Limited gene dispersal and spatial genetic structure as stabilizing factors in an ant-plant mutualism Type Journal Article
  Year 2016 Publication Journal of Evolutionary Biology Abbreviated Journal J. Evol. Biol.  
  Volume 29 Issue 12 Pages 2519-2529  
  Keywords gene flow; local adaptation; metapopulation; myrmecophyte; population genetics  
  Abstract Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co-evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species-specific and obligatory mutualism: the Neotropical ant-plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-9101 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 710  
Permanent link to this record
 

 
Author (up) Malé, P.-J.G.; Leroy, C.; Lusignan, L.; Petitclerc, F.; Quilichini, A.; Orivel, J. doi  openurl
  Title The reproductive biology of the myrmecophyte, Hirtella physophora, and the limitation of negative interactions between pollinators and ants Type Journal Article
  Year 2015 Publication Arthropod-Plant Interactions Abbreviated Journal Arthropod-Plant Interactions  
  Volume 9 Issue 1 Pages 23-31  
  Keywords Ant-plant; Ant–pollinator interactions; Floral structure and display; Plant reproductive biology; Spatial and temporal segregation  
  Abstract Myrmecophytism occurs in plants that offer ants a nesting space and, often, food rewards in exchange for protection from predators and competitors. Such biotic protection by ants can, however, interfere with the activity of pollinators leading to potential negative consequences for the plant’s reproduction. In this study, we focused on the association between the understory myrmecophyte, Hirtella physophora (Chrysobalanaceae), and its obligate ant partner, Allomerus decemarticulatus (Myrmicinae). We investigated the reproductive biology of H. physophora and the putative mechanisms that may limit ant–pollinator conflict. Our results show that H. physophora is an obligate outcrosser, self-incompatible, and potentially insect-pollinated species. The reproduction of H. physophora relies entirely on pollen transfer by pollinators that are likely quite specific. Potential interference between flower-visiting insects during pollination may also be lessened by a spatial and temporal segregation of ant and pollinator activities, thus enabling pollen transfer and fruit production. © 2014, Springer Science+Business Media Dordrecht.  
  Address IRD, UMR AMAP (botAnique et bioinforMatique de l’Architecture des Plantes), Boulevard de la Lironde, TA A-51/PS2Montpellier Cedex 5, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 9 April 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 593  
Permanent link to this record
 

 
Author (up) Male, P.J.G.; Loiseau, A.; Estoup, A.; Quilichini, A.; Orivel, J. openurl 
  Title Characterization of polymorphic microsatellite loci in the neotropical plant-ant Allomerus decemarticulatus (Formicidae: Myrmicinae) and multiplexing with other microsatellites from the ant subfamily Myrmicinae Type Journal Article
  Year 2010 Publication European Journal of Entomology Abbreviated Journal Eur. J. Entomol.  
  Volume 107 Issue 4 Pages 673-675  
  Keywords Hymenoptera; Formicidae; Myrmicinae; Allomerus; ant-plant mutualism; microsatellites; plant-ant  
  Abstract Five polymorphic microsatellite loci of the arboreal ant Allomerus decemarticulatus (Myrmicinae) were isolated and characterized. The amplification and polymorphism of seven additional microsatellite loci, previously developed for the ant species A. octoarticulatus and Wasmannia auropunctata, were also tested and the amplification conditions necessary for genotyping the complete set of 12 multiplexed markers in A. decemarticulatus determined. The number of alleles per locus ranged from three to 15 and observed heterozygosity varied front 0.09 to 0.95. Cross-species amplification of these loci was also successfully achieved in additional species of the same ant subfamily, Myrmicinae. This set of microsatellite markers will be used in studies on the mating system and population genetic structure of Myrmicinae in general and A. decemarticulatus in particular.  
  Address [Male, Pierre-Jean G.; Orivel, Jerome] Univ Toulouse, Lab Evolut & Divers Biol EDB, UMR 5174, F-31062 Toulouse 9, France, Email: pjmale@cict.fr  
  Corporate Author Thesis  
  Publisher CZECH ACAD SCI, INST ENTOMOLOGY Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1210-5759 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000284434300020 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 19  
Permanent link to this record
 

 
Author (up) Malhi, Y.; Aragao, L.E.O.C.; Metcalfe, D.B.; Paiva, R.; Quesada, C.A.; Almeida, S.; Anderson, L.; Brando, P.; Chambers, J.Q.; da Costa, A.C.L.; Hutyra, L.R.; Oliveira, P.; Patino, S.; Pyle, E.H.; Robertson, A.L.; Teixeira, L.M. openurl 
  Title Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests Type Journal Article
  Year 2009 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume 15 Issue 5 Pages 1255-1274  
  Keywords allocation; Amazonia; carbon; growth; litterfall; productivity; respiration; roots; soil; tropical forest  
  Abstract The allocation and cycling of carbon (C) within forests is an important component of the biospheric C cycle, but is particularly understudied within tropical forests. We synthesise reported and unpublished results from three lowland rainforest sites in Amazonia (in the regions of Manaus, Tapajos and Caxiuana), all major sites of the Large-Scale Biosphere-Atmosphere Programme (LBA). We attempt a comprehensive synthesis of the C stocks, nutrient status and, particularly, the allocation and internal C dynamics of all three sites. The calculated net primary productivities (NPP) are 10.1 +/- 1.4 Mg C ha(-1) yr(-1) (Manaus), 14.4 +/- 1.3 Mg C ha(-1) yr(-1) (Tapajos) and 10.0 +/- 1.2 Mg C ha(-1) yr(-1) (Caxiuana). All errors bars report standard errors. Soil and leaf nutrient analyses indicate that Tapajos has significantly more plant-available phosphorus and calcium. Autotrophic respiration at all three sites (14.9-21.4 Mg C ha yr(-1)) is more challenging to measure, with the largest component and greatest source of uncertainty being leaf dark respiration. Comparison of measured soil respiration with that predicted from C cycling measurements provides an independent constraint. It shows general good agreement at all three sites, with perhaps some evidence for measured soil respiration being less than expected. Twenty to thirty percent of fixed C is allocated belowground. Comparison of gross primary productivity (GPP), derived from ecosystem flux measurements with that derived from component studies (NPP plus autotrophic respiration) provides an additional crosscheck. The two approaches are in good agreement, giving increased confidence in both approaches to estimating GPP. The ecosystem carbon-use efficiency (CUEs), the ratio of NPP to GPP, is similar at Manaus (0.34 +/- 0.10) and Caxiuana (0.32 +/- 0.07), but may be higher at Tapajos (0.49 +/- 0.16), although the difference is not significant. Old growth or infertile tropical forests may have low CUE compared with recently disturbed and/or fertile forests.  
  Address [Malhi, Yadvinder; Aragao, Luiz Eduardo O. C.; Metcalfe, Daniel B.; Anderson, Liana] Sch Geog & Environm, Environm Change Inst, Oxford OX1 3QY, England, Email: yadvinder.malhi@ouce.ox.ac.uk  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000265033700015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 117  
Permanent link to this record
 

 
Author (up) Maréchaux, I.; Bartlett, M.K.; Sack, L.; Baraloto, C.; Engel, J.; Joetzjer, E.; Chave, J. url  openurl
  Title Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest Type Journal Article
  Year 2015 Publication Functional Ecology Abbreviated Journal Functional Ecology  
  Volume 29 Issue 10 Pages 1268-1277  
  Keywords Climate change; French Guiana; Functional traits; Plant-water relations; Tropical trees; Wilting  
  Abstract Amazonian droughts are predicted to become increasingly frequent and intense, and the vulnerability of Amazonian trees has become increasingly documented. However, little is known about the physiological mechanisms and the diversity of drought tolerance of tropical trees due to the lack of quantitative measurements. Leaf water potential at wilting or turgor loss point (π<inf>tlp</inf>) is a determinant of the tolerance of leaves to drought stress and contributes to plant-level physiological drought tolerance. Recently, it has been demonstrated that leaf osmotic water potential at full hydration (π<inf>o</inf>) is tightly correlated with π<inf>tlp</inf>. Estimating π<inf>tlp</inf> from osmometer measurements of π<inf>o</inf> is much faster than the standard pressure-volume curve approach of π<inf>tlp</inf> determination. We used this technique to estimate π<inf>tlp</inf> for 165 trees of 71 species, at three sites within forests in French Guiana. Our data set represents a significant increase in available data for this trait for tropical tree species. Tropical trees showed a wider range of drought tolerance than previously found in the literature, π<inf>tlp</inf> ranging from -1·4 to -3·2 MPa. This range likely corresponds in part to adaptation and acclimation to occasionally extreme droughts during the dry season. Leaf-level drought tolerance varied across species, in agreement with the available published observations of species variation in drought-induced mortality. On average, species with a more negative π<inf>tlp</inf> (i.e. with greater leaf-level drought tolerance) occurred less frequently across the region than drought-sensitive species. Across individuals, π<inf>tlp</inf> correlated positively but weakly with leaf toughness (R2 = 0·22, P = 0·04) and leaf thickness (R2 = 0·03, P = 0·03). No correlation was detected with other functional traits (leaf mass per area, leaf area, nitrogen or carbon concentrations, carbon isotope ratio, sapwood density or bark thickness). The variability in π<inf>tlp</inf> among species indicates a potential for highly diverse species responses to drought within given forest communities. Given the weak correlations between π<inf>tlp</inf> and traditionally measured plant functional traits, vegetation models seeking to predict forest response to drought should integrate improved quantification of comparative drought tolerance among tree species. © 2015 British Ecological Society.  
  Address CNRM-GAME – URA1357, 42 avenue G. Coriolis, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 12 October 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 629  
Permanent link to this record
 

 
Author (up) Maréchaux, I.; Bonal, D.; Bartlett, M.K.; Burban, B.; Coste, S.; Courtois, E.A.; Dulormne, M.; Goret, J.-Y.; Mira, E.; Mirabel, A.; Sack, L.; Stahl, C.; Chave, J. url  doi
openurl 
  Title Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest Type Journal Article
  Year 2018 Publication Functional Ecology Abbreviated Journal Funct Ecol  
  Volume 32 Issue 10 Pages 2285-2297  
  Keywords drought tolerance; hydraulic conductance; sap flow; sapflux density; tropical trees; turgor loss point; water potential; wilting point  
  Abstract Water availability is a key determinant of forest ecosystem function and tree species distributions. While droughts are increasing in frequency in many ecosystems, including in the tropics, plant responses to water supply vary with species and drought intensity and are therefore difficult to model. Based on physiological first principles, we hypothesized that trees with a lower turgor loss point (pi-tlp), that is, a more negative leaf water potential at wilting, would maintain water transport for longer into a dry season. We measured sapflux density of 22 mature trees of 10 species during a dry season in an Amazonian rainforest, quantified sapflux decline as soil water content decreased and tested its relationship to tree pi-tlp, size and leaf predawn and midday water potentials measured after the onset of the dry season. The measured trees varied strongly in the response of water use to the seasonal drought, with sapflux at the end of the dry season ranging from 37 to 117% (on average 83 +/- 5 %) of that at the beginning of the dry season. The decline of water transport as soil dried was correlated with tree pi-tlp (Spearman's rho > 0.63), but not with tree size or predawn and midday water potentials. Thus, trees with more drought-tolerant leaves better maintained water transport during the seasonal drought. Our study provides an explicit correlation between a trait, measurable at the leaf level, and whole-plant performance under drying conditions. Physiological traits such as pi-tlp can be used to assess and model higher scale processes in response to drying conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley/Blackwell (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/1365-2435.13188 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 830  
Permanent link to this record
 

 
Author (up) Marchal, R.; Mothe, F.; Denaud, L.E.; Thibaut, B.; Bleron, L. openurl 
  Title Cutting forces in wood machining – Basics and applications in industrial processes. A review COST Action E35 2004-2008: Wood machining – micromechanics and fracture Type Journal Article
  Year 2009 Publication Holzforschung Abbreviated Journal Holzforschung  
  Volume 63 Issue 2 Pages 157-167  
  Keywords cutting forces; online control; peeling process; physico-mechanical model; sound; vibrations; wood industry; wood machining  
  Abstract The data available in the literature concerning wood cutting forces permits to build models or to simulate the main wood machining processes ( milling, sawing, peeling, etc.). This approach contributes to a better understanding of formation of wood surfaces and chips and the data may be helpful to optimise cutting geometry, reduce tool wear, improve tool material, and to size tool-machines. The models may also be useful for industrial application in two ways: ( 1) providing data to optimise the settings for a given operation ( batch approach), and ( 2) building predictive models that could be the basis of an online control system for the machining processes ( interactive approach). A prerequisite for this is that numerous machining tests on different wood materials are performed based on experiences with different kind of tools and experimental devices. With a focus on potential industrial applications, the emphasis of this review was on the wood peeling process, which is a very demanding special case of wood cutting. Although not so many industrial machines are equipped with expensive force sensors, there is a lot of high quality information available about cutting forces which may be useful to improve the scientific or technological knowledge in wood machining. Alternative parameters, such as vibration or sound measurements, appear to be promising substitutes in the praxis, particularly to feed online control systems of any wood cutting process.  
  Address [Marchal, Remy; Bleron, Laurent] Arts & Metiers ParisTech, LABOMAP, F-71250 Cluny, France, Email: remy.marchal@cluny.ensam.fr  
  Corporate Author Thesis  
  Publisher WALTER DE GRUYTER & CO Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-3830 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000263932200006 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 205  
Permanent link to this record
 

 
Author (up) Marcon, E. url  doi
openurl 
  Title Entropy as a common measure of biodiversity and the spatial structure of economic activity Type Journal Article
  Year 2019 Publication Revue Economique Abbreviated Journal Rev. Econ.  
  Volume 70 Issue 3 Pages 305-326  
  Keywords Diversity; Economic geography; Spatial concentration; Specialization  
  Abstract Measures of spatial concentration and specialization in economics are similar to those of biodiversity and ubiquity of species in ecology. Entropy is the fundamental tool that originated in statistical physics and information theory. The definition of number equivalents or effective numbers, that is the number of types in an ideal, simplified distribution, is introduced along with the partitioning of the joint diversity of a bi-dimensional distribution into absolute and relative concentration or specialization and replication. The whole framework is theoretically robust and allows measuring the spatial structure of a discrete space.  
  Address AgroParisTech, UMR Écologie des forêts de Guyane, CNRS, Cirad, INRA, Université des Antilles, Université de Guyane, Campus Agronomique, BP 701, Kourou, 97310, French Guiana  
  Corporate Author Thesis  
  Publisher Presses de Sciences Po Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00352764 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 912  
Permanent link to this record
 

 
Author (up) Marcon, E.; Herault, B. url  openurl
  Title Decomposing phylodiversity Type Journal Article
  Year 2015 Publication Methods in Ecology and Evolution Abbreviated Journal Methods in Ecology and Evolution  
  Volume 6 Issue 3 Pages 333-339  
  Keywords Biodiversity; Entropy; Functional diversity; Phylogenetic diversity  
  Abstract Measuring functional or phylogenetic diversity is the object of an active literature. The main issues to address are relating measures to a clear conceptual framework, allowing unavoidable estimation-bias correction and decomposing diversity along spatial scales. We provide a general mathematical framework to decompose measures of species-neutral, phylogenetic or functional diversity into α and β components. We first unify the definitions of phylogenetic and functional entropy and diversity as a generalization of HCDT entropy and Hill numbers when an ultrametric tree is considered. We then derive the decomposition of diversity. We propose a bias correction of the estimates allowing meaningful computation from real, often undersampled communities. Entropy can be transformed into true diversity, that is an effective number of species or communities. Estimators of α- and β-entropy, phylogenetic and functional entropy are provided. Proper definition and estimation of diversity is the first step towards better understanding its underlying ecological and evolutionary mechanisms. © 2015 British Ecological Society.  
  Address Cirad, UMR EcoFoG, BP 709Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 31 March 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 590  
Permanent link to this record
 

 
Author (up) Marcon, E.; Herault, B. pdf  url
openurl 
  Title entropart: An R package to measure and partition diversity Type Journal Article
  Year 2015 Publication Journal of Statistical Software Abbreviated Journal Journal of Statistical Software  
  Volume 67 Issue 8 Pages 1-26  
  Keywords Biodiversity; Entropy; Partitioning  
  Abstract entropart is a package for R designed to estimate diversity based on HCDT entropy or similarity-based entropy. It allows calculating species-neutral, phylogenetic and functional entropy and diversity, partitioning them and correcting them for estimation bias. © 2015, American Statistical Association. All rights reserved.  
  Address Cirad, Campus agronomique, BP 316, Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 22 October 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 633  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: