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Abstract

entropart is a package for R designed to estimate diversity based on HCDT entropy or
similarity-based entropy. It allows calculating species-neutral, phylogenetic and functional
entropy and diversity, partitioning them and correcting them for estimation bias.
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1. Introduction

Diversity measurement can be done through a quite rigorous framework based on entropy,
i.e., the amount of uncertainty calculated from the frequency distribution of a community
(Patil and Taillie 1982; Jost 2006; Marcon, Scotti, Hérault, Rossi, and Lang 2014a). Tsallis
entropy, also known as HCDT entropy (Havrda and Charvát 1967; Daróczy 1970; Tsallis
1988), is of particular interest (Jost 2006; Marcon et al. 2014a) namely because it gathers the
number of species and Shannon (1948a,b) and Simpson (1949) indices of diversity into a single
framework. Interpretation of entropy is not straightforward but one can easily transform it
into Hill numbers (Hill 1973) which have many desirable properties (Jost 2007): mainly, they
are the number of equally-frequent species that would give the same level of diversity as the
data.
Marcon and Hérault (2015a) generalized the duality of entropy and diversity, deriving the
relation between phylogenetic or functional diversity (Chao, Chiu, and Jost 2010) and phy-
logenetic or functional entropy (we will write phylodiversity and phyloentropy for short), as
introduced by Pavoine, Love, and Bonsall (2009). Special cases are the well-known indices
PD for phylogenetic diversity (Faith 1992) and FD for functional diversity (Petchey and Gas-
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ton 2002) and Rao’s (1982) quadratic entropy. The same relation holds between Ricotta
and Szeidl entropy of a community (Ricotta and Szeidl 2006) and similarity-based diversity
(Leinster and Cobbold 2012).

The entropart package (Marcon and Hérault 2015b) for R (R Core Team 2015) enables calcula-
tion of all these measures of diversity and entropy and their partitioning and is available from
the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=
entropart.

Diversity partitioning means that, in a given area, the γ diversity Dγ of all individuals found
may be split into within (α diversity, Dα) and between (β diversity, Dβ) local assemblages. α
diversity reflects the diversity of individuals in local assemblages whereas β diversity reflects
the diversity of the local assemblages. Marcon et al. (2014a) derived the decomposition of
Tsallis γ entropy into its α and β components, generalized to phylodiversity (Marcon and
Hérault 2015a) and similarity-based diversity (Marcon, Zhang, and Hérault 2014b).

Estimators of diversity are biased because of unseen species and also because they are not
linear functions of probabilities (Marcon et al. 2014a). α and γ diversities are underestimated
by naive estimators (Chao and Shen 2003; Dauby and Hardy 2012). β diversity is severely
biased too when sampling is not sufficient (Beck, Holloway, and Schwanghart 2013). Bias-
corrected estimators of phylodiversity have been developed by Marcon and Hérault (2015a).
Estimators of similarity-based diversity were derived by Marcon et al. (2014b). The package
includes them all.

In summary, the framework supported by the package is as follows. First, an information
function is chosen to describe the amount of surprise brought by the observation of each
individual. In the simplest case of species-neutral diversity, it is just a decreasing function
of probability: Observing an individual of a rarer species brings more surprise. Various
information functions allow evaluating species-neutral, phylogenetic or functional entropy.
Surprise is averaged among all individuals of a community to obtain its entropy. Entropy is
systematically transformed into diversity for interpretation. Diversity is an effective number
of species, i.e., the number of equally-different and equally-frequent species that would give
the same entropy as the data. The average entropy of communities of an assemblage is α
entropy, while the entropy of the assemblage is γ entropy. Their difference is β entropy.
After transformation, β diversity is the ratio of γ to α diversity. It is an effective number of
communities, i.e., the number of equally-weighted communities with no species in common
necessary to obtain the same diversity as the data. correction of estimation bias is more easily
applied to entropy before transforming it into diversity.

This framework is somehow different from that of Chao, Chiu, and Jost (2014) who define
α diversity in another way (see Marcon and Hérault 2015a, for a detailed comparison), such
that α entropy is not the average surprise of an assemblage. They also propose a definition
of functional diversity (Chiu and Chao 2014) based on the information brought by pairs of
individuals that is not supported in the package.

The subsequent sections of this paper present the package features, illustrated by worked
examples based on the data included in the package.

http://CRAN.R-project.org/package=entropart
http://CRAN.R-project.org/package=entropart
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2. Package organization

2.1. Data

Most functions of the package calculate entropy or diversity of a community or of an as-
semblage of communities called a “meta-community”. Community functions accept a vector
of probabilities or of abundances for species data. Each element of the vector contains the
probability or the number of occurrences of a species in a given community. Meta-community
functions require a particular data organization in a ‘MetaCommunity’ object described here.
A ‘MetaCommunity’ object is basically a list. Its main components are Nsi, a matrix con-
taining the species abundances whose rows are species, columns are communities and Wi,
a vector containing community weights. Creating a ‘MetaCommunity’ object is the purpose
of the MetaCommunity() function. Arguments are a dataframe containing the number of
individuals per species (rows) in each community (columns), and a vector containing the
community weights. The following example creates a ‘MetaCommunity’ object consisting of
three communities of unequal weights with 4 species. The weighted average probabilities of
occurrence of species and the total number of individuals define the meta-community as the
assemblage of communities.

R> library("entropart")
R> (df <- data.frame(C1 = c(10, 10, 10, 10), C2 = c(0, 20, 35, 5),
+ C3 = c(25, 15, 0, 2), row.names = c("sp1", "sp2", "sp3", "sp4")))

C1 C2 C3
sp1 10 0 25
sp2 10 20 15
sp3 10 35 0
sp4 10 5 2

R> w <- c(1, 2, 1)
R> MC <- MetaCommunity(Abundances = df, Weights = w)

A meta-community is partitioned into several local communities (indexed by i = 1, 2, . . . , I).
ni individuals are sampled in community i. Let s = 1, 2, . . . , S denote the species that
compose the meta-community, ns,i the number of individuals of species s sampled in the local
community i, ns =

∑
i ns,i the total number of individuals of species s, n =

∑
s

∑
i ns,i the

total number of sampled individuals. Within each community i, the probability ps,i for an
individual to belong to species s is estimated by p̂s,i = ns,i/ni. The same probability for
the meta-community is ps. Communities have a weight wi, satisfying ps =

∑
iwips,i. The

commonly used wi = ni/n is a possible weight, but the weighting may be arbitrary (e.g.,
depending on the sampled areas). The component Ps of a ‘MetaCommunity’ object contains
the probability of occurrence of each species in the meta-community, calculated in this way:

R> MC$Ps

sp1 sp2 sp3 sp4
0.2113095 0.3184524 0.3541667 0.1160714
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Figure 1: Plot of a ‘MetaCommunity’ object. Communities (named C1, C2 ad C3) are rep-
resented in the left part of the figure, the meta-community to the right. Bar widths are
proportional to community weights. Species abundances are represented vertically: 4 species
are present in the meta-community, only 3 of them in communities C2 and C3.

A ‘MetaCommunity’ object can be summarized and plotted (Figure 1).
The package contains an example dataset containing the inventory of two 1-ha tropical forest
plots in Paracou, French Guiana (Marcon, Hérault, Baraloto, and Lang 2012):

R> data("Paracou618", package = "entropart")
R> summary(Paracou618.MC)

Meta-community (class 'MetaCommunity') made of 1124 individuals in 2
communities and 425 species.

Its sample coverage is 0.92266748426447

Community weights are:
[1] 0.5720641 0.4279359
Community sample numbers of individuals are:
P006 P018
643 481

Community sample coverages are:
P006 P018

0.8943859 0.8463782

Paracou618.MC is a meta-community made of two communities named “P006” and “P018”,
containing 425 species (their name is Family_Genus_Species, abbreviated to 4 characters).
The values of the abundance matrix are the number of individuals of each species in each
community. Sample coverage will be explained later.
The dataset also contains a taxonomy and a functional tree. Paracou618.Taxonomy is an
object of class ‘phylog’, defined in package ade4 (Dray and Dufour 2007), namely a phyloge-
netic tree. This example data is only a taxonomy, containing family, genus and species levels
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for the sake of simplicity. Paracou618.Functional is an object of class ‘hclust’ containing
a functional tree based on leaf, height, stem and seed functional traits (Hérault and Honnay
2007; Marcon and Hérault 2015a). The package accepts any ultrametric tree of class ‘phylog’
or ‘hclust’. Paracou618.dist is the distance matrix (actually a ‘dist’ object) used to build
the functional tree.

2.2. Utilities

The deformed logarithm formalism (Tsallis 1994) is very convenient to manipulate entropies.
The deformed logarithm of order q is defined as:

lnq x = x1−q − 1
1− q . (1)

It converges to ln when q → 1.
The inverse function of lnq x is the deformed exponential:

exq = [1 + (1− q)x]
1

1−q . (2)

The corresponding functions in the package are lnq(x, q) and expq(x, q).

3. Species-neutral diversity

3.1. Community functions

HCDT entropy

Species-neutral HCDT entropy of order q of a community is defined as:

qH = 1−
∑
s p

q
s

q − 1 = −
∑
s

pqs lnq ps. (3)

q is the order of diversity (e.g., 1 for Shannon). Entropy can be calculated by the Tsallis
function. Paracou meta-community entropy of order 1 is:

R> Tsallis(Ps = Paracou618.MC$Ps, q = 1)

[1] 4.736023

For convenience, special cases of entropy of order q have their own functions with clear names:
Richness for q = 0, Shannon for q = 1, Simpson for q = 2.

R> Shannon(Ps = Paracou618.MC$Ps)

[1] 4.736023
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Entropy values have no intuitive interpretation in general, except for the number of species
0H and Simpson entropy 2H which is the probability for two randomly chosen individuals to
belong to different species.

Sample coverage
A useful indicator of sampling quality is the sample coverage (Good 1953; Chao, Lee, and
Chen 1988; Zhang and Huang 2007), that is the probability for a species of the community
to be observed in the actual sample. It equals the sum of the probability of occurrences of all
observed species. Its historical estimator is (Good 1953):

Ĉ = 1− S1

n
. (4)

S1 is the number of singletons (species observed once) of the sample, and n is its size. The
estimator has been improved by taking into account the whole distribution of species (Zhang
and Huang 2007). The Coverage function calculates it, allowing to choose the estimator,
using Zhang and Huang’s method by default:

R> Coverage(Ns = Paracou618.MC$Ns)

[1] 0.9220438

The sample coverage cannot be estimated from probability data; abundances are required.
Its interpretation is straightforward: Some species have not been sampled. Their number
is unknown but their total probability of occurrence can be estimated accurately. Here, it
is a bit less than 8%. From another point of view, the probability for an individual of the
community to belong to a sampled species is C: 8% of them belong to missed species. If the
number of missed species are of interest, they can be estimated using other software packages
(e.g., the R package SPECIES, Wang 2011), but we will not discuss this in detail here. The
sample coverage is the foundation of many estimators of entropy.

Bias-corrected estimators
Correction of estimation bias is used to improve the estimation of entropy despite unob-
served species and also mathematical issues (Bonachela, Hinrichsen, and Muñoz 2008). Bias-
corrected estimators (often relying on sample coverage) are returned by functions whose names
are prefixed by bc, such as bcTsallis. They are similar to the non-corrected ones but they
use abundance data and propose several bias correction techniques which can be selected by
the Correction argument. A “Best” correction is calculated by default as detailed in the
help file of each function.

R> bcTsallis(Ns = Paracou618.MC$Ns, q = 1)

[1] 4.898061

The best correction for Tsallis entropy follows Marcon et al. (2014a). bcSimpson returns
Lande’s correction (Lande 1996) and bcShannon returns the very efficient correction by Chao,
Wang, and Jost (2013), so that their results are different (and more accurate) than those of
the general bcTsallis function.
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R> bcShannon(Ns = Paracou618.MC$Ns)

[1] 4.892159

Bias-corrected entropy is ready to be transformed into explicit diversity.

Effective numbers of species

Entropy should be converted into “true diversity” (Jost 2007), i.e., effective number of species
equal to Hill (1973) numbers:

qD =
(∑

s

pqs

) 1
1−q

. (5)

This can be done by the deformed exponential function, or using directly the Diversity
or bcDiversity functions (equal to the deformed exponential of order q of Tsallis or
bcTsallis)

R> expq(Simpson(Ps = Paracou618.MC$Ps), q = 2)

[1] 68.7215

R> Diversity(Ps = Paracou618.MC$Ps, q = 2)

[1] 68.7215

R> expq(bcTsallis(Ns = Paracou618.MC$Ns, q = 2), q = 2)

[1] 73.19676

R> bcDiversity(Ns = Paracou618.MC$Ns, q = 2)

[1] 73.19676

The effective number of species of the Paracou dataset is estimated to be 73 after bias cor-
rection (rather than 69 without it). It means that a community made of 73 equally-frequent
species has the same Simpson entropy as the actual one. This is much less than the actual
425 sampled species but Simpson’s entropy focuses on dominant species.

3.2. Meta-community functions

Meta-community functions allow partitioning diversity according to Patil and Taillie’s concept
of diversity of a mixture (Patil and Taillie 1982), i.e., α entropy of a meta-community is defined
as the weighted average of community entropy, following Routledge (1979):

qHα =
∑
i

wi
q
iHα. (6)
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q
iHα is the entropy of community i:

q
iHα =

1−
∑
s p

q
s,i

q − 1 = −
∑
s

pqs,i lnq ps,i. (7)

Jost’s (2007) definition of α entropy is not supported explicitly in the package since it only
allows partitioning of equally weighted communities. In this particular case, both definitions
are identical.
γ entropy of the meta-community is defined as α entropy of a community. β entropy, the
difference between γ and α, is the generalized Jensen-Shannon divergence between the species
distribution of the meta-community and those of communities (Marcon et al. 2014a):

qHβ =qHγ −qHα =
∑
s

pqs,i lnq
ps,i
ps
. (8)

β entropy should be transformed into diversity, i.e., an effective number of communities:

qDβ = e

qHβ
1−(q−1)qHα
q . (9)

Basic meta-community functions
These values can be estimated by the meta-community functions named AlphaEntropy,
AlphaDiversity, BetaEntropy, BetaDiversity. They accept a ‘MetaCommunity’ object and
an order of diversity q as arguments, and return an ‘MCentropy’ or ‘MCdiversity’ object
which can be summarized and plotted. GammaEntropy and GammaDiversity return a num-
ber. Corrections of estimation bias are applied by default:

R> e <- AlphaEntropy(Paracou618.MC, q = 1)
R> summary(e)

Neutral alpha entropy of order 1 of metaCommunity Paracou618.MC
with correction: Best

Entropy of communities:
P006 P018

4.403435 4.673620
Average entropy of the communities:
[1] 4.519057

The Shannon α entropy of the meta-community is 4.52. It is the weighted average entropy of
communities.

Diversity partition of a meta-community
The DivPart function calculates everything at once. Its arguments are the same, but bias
correction is not applied by default. It can be, using the argument Biased = FALSE, and the
correction is chosen by the argument Correction. It returns a ‘DivPart’ object which can
be summarized (entropy is not printed by summary) and plotted:
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Figure 2: Plot of the diversity partition of the meta-community Paracou618.MC. The long
rectangle of height 1 represents γ diversity, equal to 134 effective species. The narrower and
higher rectangle has the same area: its horizontal size is α diversity (92 effective species) and
its height is β diversity (1.46 effective communities).

R> p <- DivPart(q = 1, MC = Paracou618.MC, Biased = FALSE)
R> summary(p)

HCDT diversity partitioning of order 1 of metaCommunity Paracou618.MC
with correction: Best

Alpha diversity of communities:
P006 P018

81.73115 107.08473
Total alpha diversity of the communities:
[1] 91.74905
Beta diversity of the communities:
[1] 1.460828
Gamma diversity of the metacommunity:
[1] 134.0296

R> p$CommunityAlphaEntropies

P006 P018
4.403435 4.673620

The α diversity of communities is 92 effective species, which is the exponential of the entropy
calculated previously. This is more than Simpson diversity (73 species, calculated above),
because less frequent species are taken into account. γ diversity of the meta-community is
134 effective species. β diversity is 1.46 effective communities, i.e., the two actual communities
are as different from each other as 1.46 ones with equal weights and no species in common.

Diversity estimation of a meta-community
The DivEst function decomposes diversity and estimates confidence intervals of α, β and γ
diversity following Marcon et al. (2012). If the observed species frequencies of a community
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are assumed to be a realization of a multinomial distribution, they can be drawn again to
obtain a distribution of entropy.

R> de <- DivEst(q = 1, Paracou618.MC, Biased = FALSE, Correction = "Best",
+ Simulations = 1000)

======================================================================

R> summary(de)

Diversity partitioning of order 1 of MetaCommunity MC
with correction: Best

Alpha diversity of communities:
P006 P018

81.73115 107.08473
Total alpha diversity of the communities:
[1] 91.74905
Beta diversity of the communities:
[1] 1.460828
Gamma diversity of the metacommunity:
[1] 134.0296
Quantiles of simulations (alpha, beta and gamma diversity):

0% 1% 2.5% 5% 10% 25% 50%
80.67265 83.71585 84.62767 85.59966 87.15648 89.44841 91.89227

75% 90% 95% 97.5% 99% 100%
94.14842 96.49882 97.55203 98.98351 100.59886 103.39811

0% 1% 2.5% 5% 10% 25% 50% 75%
1.388795 1.403627 1.416081 1.421326 1.430602 1.444479 1.461347 1.477984

90% 95% 97.5% 99% 100%
1.492434 1.499196 1.505406 1.512316 1.526236

0% 1% 2.5% 5% 10% 25% 50% 75%
119.4739 122.1538 124.1964 125.9115 127.6125 130.7931 134.1313 137.4341

90% 95% 97.5% 99% 100%
140.3785 142.1482 143.7599 145.5349 149.8479

The result is a ‘Divest’ object which can be summarized and plotted (Figure 3).
The uncertainty of estimation is due to sampling: The distribution of the estimators corre-
sponds to the simulated repetitions of sampling from the original multinomial distribution of
species. It ignores the remaining bias of the estimator, which is unknown. Yet, except for
q = 2, the corrected estimators are biased (even though much less than the non-corrected
ones), especially when q is small. New estimators to reduce the bias are included in the
package regularly.

Diversity profile of a meta-community

DivProfile calculates diversity profiles, i.e., the value of diversity against its order (Figure 4).
The result is a ‘DivProfile’ object which can be summarized and plotted.
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Figure 3: Plot of the diversity estimation of the meta-community Paracou618.MC. α, β and
γ diversity probability densities are plotted, with a 95% confidence interval.

R> dp <- DivProfile(seq(0, 2, 0.2), Paracou618.MC, Biased = FALSE)
R> summary(dp)

Diversity profile of MetaCommunity MC
with correction: Best

Diversity against its order:
Order Alpha Diversity Beta Diversity Gamma Diversity

[1,] 0.0 205.84226 1.441996 296.82368
[2,] 0.2 181.63811 1.424471 258.73825
[3,] 0.4 157.35277 1.413780 222.46224
[4,] 0.6 133.77507 1.413903 189.14504
[5,] 0.8 111.70847 1.428705 159.59848
[6,] 1.0 91.74905 1.460828 134.02961
[7,] 1.2 75.51773 1.500587 113.32093
[8,] 1.4 63.95522 1.549024 99.06819
[9,] 1.6 55.37376 1.590012 88.04495

[10,] 1.8 48.97244 1.626123 79.63520
[11,] 2.0 44.21244 1.655569 73.19676
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Figure 4: Diversity profile of the meta-community Paracou618.MC. Values are the number of
effective species (α and γ diversity) and the effective number of communities (β diversity).
Community P006 is represented by the solid line and community P018 by the dotted line.
α and γ diversity decrease from q = 0 (number of species) to q = 2 (Simpson diversity) by
construction.

Small orders of diversity give more weight to rare species. P018 can be considered more
diverse than P006 because their profiles (Figure 4, top right) do not cross (Tothmeresz 1995):
Its diversity is systematically higher. The shape of the β diversity profile shows that the
communities are more diverse when their dominant species are considered.

Alternative functions

β entropy can also be calculated by a set of functions named after the community functions,
such as TsallisBeta, bcTsallisBeta, SimpsonBeta, etc., which require two vectors of abun-
dances or probabilities instead of a ‘MetaCommunity’ object: that of the community and the
expected one (usually that of the meta-community). Bias correction is currently limited to
Chao and Shen’s correction. The example below calculates the Shannon β entropy of the first
community of Paracou618 and the meta-community.

R> ShannonBeta(Paracou618.MC$Psi[, 1], Paracou618.MC$Ps)

[1] 0.3499358
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Figure 5: Hypothetical ultrametric tree. (a) The whole tree contains three slices, delimited
by two nodes. The length of slices is Tk. (b) Focus on slice 2. The tree without slice 1 is
reduced to 3 leaves. Frequencies of collapsed species are uk,l. (c) Slice 3 only.

These functions are available to be particularly used, when a ‘MetaCommunity’ object is not
available or not convenient to use (e.g., simulations). Meta-community functions are preferred
in general.

4. Phylogenetic diversity
Phylogenetic or functional diversity generalizes HCDT diversity, considering the distance
between species (Marcon and Hérault 2015a). Here, all species take place in an ultrametric
phylogenetic or functional tree (Figure 5). The tree is cut into slices, delimited by two nodes.
The first slice starts at the bottom of the tree and ends at the first node. In slice k, Lk
leaves are found. The probabilities of occurrence of the species belonging to branches that
were below leaf l in the original tree are summed to give the grouped probability uk,l. HCDT
entropy can be calculated in slice k:

q
kH = −

∑
l

uqk,l lnq uk,l. (10)

Then, it is summed over the tree slices. Phyloentropy can be normalized or not. We normalize
it so that it does not depend on the tree height:

qH (T ) =
K∑
k=1

Tk
T
q
kH. (11)

Unnormalized values are multiplied by the tree height, such as qPD(T ) (Chao et al. 2010).



14 entropart: Measure and Partition Diversity in R

Phyloentropy is calculated as HCDT entropy along the slices of the trees applying possible
corrections of estimation bias, summed, possibly normalized, and finally transformed into
diversity:

qD (T ) = e
qH(T )
q . (12)

4.1. Community functions

PhyloEntropy and the estimation bias corrected bcPhyloEntropy are the phylogenetic analogs
of Tsallis and bcTsallis. They accept the same arguments plus an ultrametric tree of class
‘hclust’ or ‘phylog’, and Normalize, a Boolean to normalize the tree height to 1 (by default).
Phylogenetic diversity is calculated by PhyloDiversity or bcPhyloDiversity, analogous to
the species-neutral diversity functions Diversity and bcDiversity.
Results are either a ‘PhyloDiversity’ or a ‘PhyloEntropy’ object, which can be plotted
(Figure 6) and summarized.

R> phd <- bcPhyloDiversity(Paracou618.MC$Ns, q = 1,
+ Tree = Paracou618.Taxonomy, Normalize = TRUE)
R> summary(phd)

alpha or gamma phylogenetic or functional diversity of order 1
of distribution Paracou618.MC$Ns
with correction: Best

Phylogenetic or functional diversity was calculated according to the tree
Paracou618.Taxonomy

Diversity is normalized

Diversity equals: 55.13383

The phylogenetic diversity of order 1 of the Paracou dataset is 55 effective species: 55 totally
different species (only connected by the root of the tree) with equal probabilities would have
the same entropy. It can be compared to its species-neutral diversity, 134 species. The latter is
the diversity of the first slice of the tree. When going up the tree, diversity decreases because
species collapse. On Figure 6, diversity of the second slice, between T = 1 and T = 2, is
that of genera (64 effective genera) and the last slice contains (20 effective families). The
phylogenetic entropy of the community is the average of the entropy along slices, weighted
by the slice lengths. Diversity cannot be averaged in the same way.
A less trivial phylogeny would contain many slices, resulting in as many diversity levels with
respect to T .
The AllenH function is similar to PhyloEntropy: It also calculates phyloentropy but the
algorithm is that of Allen, Kon, and Bar-Yam (2009) for q = 1 and that of Leinster and
Cobbold (2012) for q 6= 1. It is much faster since it does not require calculating entropy for
each slice of the tree but it does not allow correction of estimation bias. ChaoPD calculates
phylodiversity according to Chao et al. (2010), with the same advantages and limits compared
to PhyloDiversity.
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Figure 6: Plot of the γ phylodiversity estimation of the meta-community Paracou618.MC.
The effective number of taxa of Shannon diversity is plotted against the distance from the
leaves of the phylogenetic tree. Here, the tree is based on a rough taxonomy, so diversity of
species, genera and families are the three levels of the curve. The dotted line represents the
value of phylodiversity.

For convenience, functions PDFD and Rao are provided to calculate unnormalized phyloentropy
of order 0 and 2.

4.2. Meta-community functions

Functions DivPart, DivEst and DivProfile return phylogenetic entropy and diversity values
instead of species-neutral ones if a tree is provided in the arguments.

R> dp <- DivPart(q = 1, Paracou618.MC, Biased = FALSE, Correction = "Best",
+ Tree = Paracou618.Taxonomy)
R> summary(dp)

HCDT diversity partitioning of order 1 of metaCommunity Paracou618.MC
with correction: Best

Phylogenetic or functional diversity was calculated
according to the tree
Paracou618.Taxonomy

Diversity is normalized

Alpha diversity of communities:
P006 P018

37.22132 51.31045
Total alpha diversity of the communities:
[1] 42.70238
Beta diversity of the communities:
[1] 1.291119
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Gamma diversity of the metacommunity:
[1] 55.13383

The decomposition is interpreted as the species-neutral one: γ diversity is 55 effective species,
made of 1.3 effective communities of 43 effective species.
Other meta-community functions, such as AlphaEntropy behave in the same way:

R> summary(BetaEntropy(Paracou618.MC, q = 2, Tree = Paracou618.Taxonomy,
+ Correction = "None", Normalize = FALSE))

HCDT beta entropy of order 2 of metaCommunity Paracou618.MC
with correction: None

Phylogenetic or functional entropy was calculated according to the tree
Paracou618.Taxonomy

Entropy is not normalized
Entropy of communities:

P006 P018
0.04117053 0.02325883
Average entropy of the communities:
[1] 0.03350547

Compare with Rao’s divc from package ade4:

R> library("ade4")
R> divc(as.data.frame(Paracou618.MC$Wi), disc(as.data.frame(
+ Paracou618.MC$Nsi), Paracou618.Taxonomy$Wdist))

diversity
Paracou618.MC$Wi 0.03350547

5. Similarity-based diversity
Leinster and Cobbold (2012) introduced similarity-based diversity of a community qDZ . A
matrix Z describes the similarity between pairs of species, defined between 0 and 1. A
species’ ordinariness is its average similarity with all species (weighted by species frequencies),
including similarity with itself (equal to 1). Similarity-based diversity is the reciprocal of the
generalized average of order q (Hardy, Littlewood, and Pólya 1952) of the community species’
ordinariness.
The Dqz function calculates similarity-based diversity. Its arguments are the vector of prob-
abilities of occurrences of the species, the order of diversity and the similarity matrix Z. The
bcDqz function allows correction of estimation bias.
This example calculates the γ diversity of the meta-community Paracou. First, the simi-
larity matrix is calculated from the distance matrix between all pairs of species as 1 minus
normalized dissimilarity.
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R> DistanceMatrix <- as.matrix(Paracou618.dist)
R> Z <- 1 - DistanceMatrix/max(DistanceMatrix)
R> bcDqz(Paracou618.MC$Ns, q = 2, Z)

[1] 1.483027

If Z is the identity matrix, similarity-based diversity equals HCDT diversity:

R> Dqz(Paracou618.MC$Ps, q = 2, Z = diag(length(Paracou618.MC$Ps)))

[1] 68.7215

R> Diversity(Paracou618.MC$Ps, q = 2)

[1] 68.7215

Functional diversity of order 2 is only 1.48 effective species, which is very small compared to
69 effective species for Simpson diversity. 1.48 equally-frequent species with similarity equal
to 0 would have the same functional diversity as the actual community (made of 425 species).
This means that species are very similar from a functional point of view. The very low values
returned by qDZ are questioned by Chao et al. (2014) and discussed in depth by Marcon
et al. (2014b): The choice of the similarity matrix is not trivial.
The similarity-based entropy of a community qHZ (Leinster and Cobbold 2012; Ricotta and
Szeidl 2006) has the same relations with diversity as HCDT entropy and Hill numbers. The
Hqz function calculates it:

R> Hqz(Paracou618.MC$Ps, q = 2, Z)

[1] 0.3208152

R> lnq(Dqz(Paracou618.MC$Ps, q = 2, Z), q = 2)

[1] 0.3208152

As species-neutral entropy, qHZ has no straightforward interpretation beyond the average
surprise of a community.
All meta-community functions can be used to estimate similarity-based diversity. Argument
Z must be provided:

R> e <- AlphaEntropy(Paracou618.MC, q = 1, Z = Z)
R> summary(e)

Similarity-based alpha entropy of order 1 of metaCommunity
Paracou618.MC with correction: Best

Phylogenetic or functional entropy was calculated according to the similarity
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matrix Z

Entropy of communities:
P006 P018

0.3945541 0.3934725
Average entropy of the communities:
[1] 0.3940912

The α functional entropy of the meta-community is the average entropy of communities.

6. Advanced tools
The package comes with a set of tools to realize frequents tasks: run Monte Carlo simula-
tions on a community, quickly calculate its diversity profile, apply a function to a species
distribution along a tree, and manipulate meta-communities.

6.1. Entropy of Monte Carlo simulated communities

The EntropyCI function is a versatile tool to simplify simulations. Simulated communities
are obtained by random draws from a multinomial distribution of species and their entropy
is calculated. The arguments of EntropyCI are an entropy function (any entropy function
of the package accepting a vector of species abundances, such as bcTsallis), the number
of simulations to run and the observed species frequencies. The result is a numeric vector
containing the entropy value of each simulated community. Entropy can be finally transformed
into diversity (but it is not correct to use a diversity function in simulations because the
average simulated value must be calculated and only entropy can be averaged).
This example shows how to use the function. First, the distribution of the γ HCDT entropy
of order 1 (Shannon entropy) of the Paracou meta-community is calculated and transformed
into diversity. Then, the actual diversity is calculated and completed by the 95% confidence
interval of the simulated values.

R> SimulatedDiversity <- expq(EntropyCI(FUN = bcTsallis,
+ Simulations = 1000, Ns = Paracou618.MC$Ns, q = 1), q = 1)

======================================================================

R> bcDiversity(Paracou618.MC$Ns, q = 1)

[1] 134.0296

R> quantile(SimulatedDiversity, probs = c(0.025, 0.975))

2.5% 97.5%
124.7128 144.3154
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Figure 7: γ diversity profile of the the meta-community Paracou618.MC, without bias correc-
tion (dotted line) and with correction (solid line). .

These results are identical to those of the DivEst function but a single community can be
addressed (DivEst requires a ‘MetaCommunity’ object).

6.2. Diversity or entropy profile of a community

This function is used to calculate diversity or entropy profiles based on community functions
such as Tsallis or ChaoPD. It is similar to DivProfile but does not require a ‘MetaCommunity’
as argument. It returns a list which can be plotted.
This example evaluates bias correction on the diversity profile of the Paracou dataset. First,
diversity profiles are calculated with and without bias correction:

R> bcProfile <- CommunityProfile(bcDiversity, Paracou618.MC$Ns)
R> Profile <- CommunityProfile(Diversity, Paracou618.MC$Ps)

Then, they can be plotted together (Figure 7):

R> plot(bcProfile, type = "l", main = "", xlab = "q", ylab = "Diversity")
R> lines(y ~ x, data = Profile, lty = 3)
R> legend("topright", c("Bias Corrected", "Biased"), lty = c(1, 3),
+ inset = 0.02)

6.3. Applying a function over a phylogenetic tree

The PhyloApply function is used to apply an entropy community function (generally bcTsallis)
along a tree, the same way lapply works with a list.
This example shows how to calculate Shannon entropy along the tree containing the taxonomy
to obtain species, genus and family entropy shown in Figure 6:

R> pa <- PhyloApply(Tree = Paracou618.Taxonomy, FUN = bcTsallis,
+ NorP = Paracou618.MC$Ns)
R> summary(pa)
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bcTsallis applied to Paracou618.MC$Ns along the tree
Paracou618.Taxonomy

Results are normalized

The average value is: 4.009764

Values along the tree are:
1 2 3

4.898061 4.154182 2.977048

R> exp(pa$Cuts)

1 2 3
134.02961 63.69982 19.62979

R> exp(pa$Total)

[1] 55.13383

6.4. Manipulation of meta-communities

Several meta-communities, combined in a list, can be merged in two different ways. The
MergeMC function simplifies hierarchical partitioning of diversity: It considers the aggregated
data of each meta-community as a community and builds an upper-level meta-community
with them. The α entropy of the new meta-community is the weighted average γ entropy of
the original meta-communities.
MergeC combines the communities of several meta-communities to create a single meta-
community containing them all. Finally, ShuffleMC randomly shuffles communities across
meta-communities to allow simulations to test differences between meta-communities.
This example shows how to do this. First, one meta-community is created, with weights of
communities proportional to their number of individuals:

R> (df <- data.frame(C1 = c(10, 10, 10, 10), C2 = c(0, 20, 35, 5),
+ C3 = c(25, 15, 0, 2), row.names = c("sp1", "sp2", "sp3", "sp4")))

C1 C2 C3
sp1 10 0 25
sp2 10 20 15
sp3 10 35 0
sp4 10 5 2

R> w <- colSums(df)
R> MC1 <- MetaCommunity(Abundances = df, Weights = w)

Then a second one:
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R> (df <- data.frame(C1 = c(10, 4), C2 = c(3, 4), row.names = c("sp1",
+ "sp5")))

C1 C2
sp1 10 3
sp5 4 4

R> w <- colSums(df)
R> MC2 <- MetaCommunity(Abundances = df, Weights = w)

They can be merged to obtain a single meta-community containing all original communities:

R> mergedMC1 <- MergeC(list(MC1, MC2))
R> mergedMC1$Nsi

MC1.C1 MC1.C2 MC1.C3 MC2.C1 MC2.C2
sp1 10 0 25 10 3
sp2 10 20 15 0 0
sp3 10 35 0 0 0
sp4 10 5 2 0 0
sp5 0 0 0 4 4

They can also be merged considering each of them as a community of a higher-level meta-
community:

R> mergedMC2 <- MergeMC(list(MC1, MC2), Weights = sapply(list(MC1, MC2),
+ function(x) (x$N)))
R> mergedMC2$Nsi

MC1 MC2
sp1 35 13
sp2 45 0
sp3 45 0
sp4 17 0
sp5 0 8

Hierarchical diversity partitioning can then be achieved:

R> dpAll <- DivPart(q = 1, MC = mergedMC2)
R> summary(dpAll)

HCDT diversity partitioning of order 1 of metaCommunity mergedMC2

Alpha diversity of communities:
MC1 MC2

3.772161 1.943574
Total alpha diversity of the communities:
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[1] 3.463277
Beta diversity of the communities:
[1] 1.236351
Gamma diversity of the metacommunity:
[1] 4.281826

The γ diversity of the top assemblage (MC1 and MC2) is 4.28 effective species, made of 1.24
effective meta-communities of 3.46 effective species. The α diversity of each meta-community
of the top assemblage is their γ diversity when it is partitioned in turn:

R> dpMC1 <- DivPart(q = 1, MC = MC1)
R> summary(dpMC1)

HCDT diversity partitioning of order 1 of metaCommunity MC1

Alpha diversity of communities:
C1 C2 C3

4.000000 2.429521 2.273918
Total alpha diversity of the communities:
[1] 2.741671
Beta diversity of the communities:
[1] 1.375862
Gamma diversity of the metacommunity:
[1] 3.772161

The γ diversity of MC1 is 3.77 effective species, made of 1.38 effective meta-communities of
2.74 effective species. The same decomposition can be done for MC2.

7. Conclusion
The entropart package allows estimating biodiversity according to the framework based on
HCDT entropy, the correction of its estimation bias (Grassberger 1988; Chao and Shen 2003)
and its transformation into equivalent numbers of species (Hill 1973; Jost 2006; Marcon et al.
2014a). Phylogenetic or functional diversity (Marcon and Hérault 2015a) can be estimated,
considering phyloentropy as the average species-neutral diversity over slices of a phylogenetic
or functional tree (Pavoine et al. 2009). Similarity-based diversity (Leinster and Cobbold
2012) can be used to estimate (Marcon et al. 2014b) functional diversity from a similarity
or dissimilarity matrix between species without requiring building a dendrogram and thus
preserving the topology of species (Pavoine, Ollier, and Dufour 2005; Podani and Schmera
2007).
The classical diversity estimators (Shannon and Simpson entropy) can be found in many R
packages. Package vegetarian (Charney and Record 2012) allows calculating Hill numbers
and partitioning them according to Jost’s framework. Bias correction is never available except
in the package EntropyEstimation (Cao and Grabchak 2015), which provides the Zhang and
Grabchak’s estimators of entropy and diversity and their asymptotic variances (not included
in package entropart). Phylodiversity and similarity-based diversity are not available in any
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package as far as we know. So we believe entropart is a useful toolbox for ecologists who
need to estimate the diversity of actual, undersampled communities and to partition it.
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