toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Falkowski, M.; Jahn-Oyac, A.; Odonne, G.; Flora, C.; Estevez, Y.; Touré, S.; Boulogne, I.; Robinson, J.-C.; Béreau, D.; Petit, P.; Azam, D.; Coke, M.; Issaly, J.; Gaborit, P.; Stien, D.; Eparvier, V.; Dusfour, I.; Houël, E. url  doi
openurl 
  Title Towards the optimization of botanical insecticides research: Aedes aegypti larvicidal natural products in French Guiana Type Journal Article
  Year 2020 Publication Acta Tropica Abbreviated Journal  
  Volume 201 Issue 105179 Pages  
  Keywords Amazonian chemodiversity; Chemical defense; Culicidae; Mosquito larvicides; Quasi-Poisson generalized linear model; Screening optimization  
  Abstract Natural products have proven to be an immeasurable source of bioactive compounds. The exceptional biodiversity encountered in Amazonia, alongside a rich entomofauna and frequent interactions with various herbivores is the crucible of a promising chemodiversity. This prompted us to search for novel botanical insecticides in French Guiana. As this French overseas department faces severe issues linked to insects, notably the strong incidence of vector-borne infectious diseases, we decided to focus our research on products able to control the mosquito Aedes aegypti. We tested 452 extracts obtained from 85 species originating from 36 botanical families and collected in contrasted environments against an Ae. aegypti laboratory strain susceptible to all insecticides, and a natural population resistant to both pyrethroid and organophosphate insecticides collected in Cayenne for the most active of them. Eight species (Maytenus oblongata Reissek, Celastraceae; Costus erythrothyrsus Loes., Costaceae; Humiria balsamifera Aubl., Humiriaceae; Sextonia rubra (Mez) van der Werff, Lauraceae; Piper hispidum Sw., Piperaceae; Laetia procera (Poepp.) Eichl., Salicaceae; Matayba arborescens (Aubl.) Radlk., Sapindaceae; and Cupania scrobitulata Rich., Sapindaceae) led to extracts exhibiting more than 50% larval mortality after 48 h of exposition at 100 µg/mL against the natural population and were considered active. Selectivity and phytochemistry of these extracts were therefore investigated and discussed, and some active compounds highlighted. Multivariate analysis highlighted that solvents, plant tissues, plant family and location had a significant effect on mortality while light, available resources and vegetation type did not. Through this case study we highlighted that plant defensive chemistry mechanisms are crucial while searching for novel insecticidal products.  
  Address INRS-Institut Armand Frappier, Groupe recherche en écologie microbienne, 531 boulevard des prairies, Laval, QC H7V 1B7, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 888  
Permanent link to this record
 

 
Author (up) Falster, D.S.; Duursma, R.A.; Ishihara, M.I.; Barneche, D.R.; FitzJohn, R.G.; Vårhammar, A.; Aiba, M.; Ando, M.; Anten, N.; Aspinwall, M.J.; Baltzer, J.L.; Baraloto, C.; Battaglia, M.; Battles, J.J.; Lamberty, B.B.; Van Breugel, M.; Camac, J.; Claveau, Y.; Coll, L.; Dannoura, M.; Delagrange, S.; Domec, J.C.; Fatemi, F.; Feng, W.; Gargaglione, V.; Goto, Y.; Hagihara, A.; Hall, J.S.; Hamilton, S.; Harja, D.; Hiura, T.; Holdaway, R.; Hutley, L.B.; Ichie, T.; Jokela, E.J.; Kantola, A.; Kelly, J.W.G.; Kenzo, T.; King, D.; Kloeppel, B.D.; Kohyama, T.; Komiyama, A.; Laclau, J.P.; Lusk, C.H.; Maguire, D.A.; Le Maire, G.; Mäkelä, A.; Markesteijn, L.; Marshall, J.; McCulloh, K.; Miyata, I.; Mokany, K.; Mori, S.; Myster, R.W.; Nagano, M.; Naidu, S.L.; Nouvellon, Y.; O'Grady, A.P.; O'Hara, K.L.; Ohtsuka, T.; Osada, N.; Osunkoya, O.O.; Peri, P.L.; Petritan, A.M.; Poorter, L.; Portsmuth, A.; Potvin, C.; Ransijn, J.; Reid, D.; Ribeiro, S.C.; Roberts, S.D.; Rodríguez, R.; Acosta, A.S.; Santa-Regina, I.; Sasa, K.; Selaya, N.G.; Sillett, S.C.; Sterck, F.; Takagi, K.; Tange, T.; Tanouchi, H.; Tissue, D.; Umehara, T.; Utsugi, H.; Vadeboncoeur, M.A.; Valladares, F.; Vanninen, P.; Wang, J.R.; Wenk, E.; Williams, R.; De Aquino Ximenes, F.; Yamaba, A.; Yamada, T.; Yamakura, T.; Yanai, R.D.; York, R.A. url  doi
openurl 
  Title BAAD: a Biomass And Allometry Database for woody plants Type Journal Article
  Year 2015 Publication Ecology Abbreviated Journal Ecology  
  Volume 96 Issue 5 Pages 1445  
  Keywords Allometric equations; Biomass allocation; Biomass partitioning; Global carbon cycle; Plant allometry; Plant traits  
  Abstract Understanding how plants are constructed; i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals; is essential for modeling plant growth, estimating carbon stocks, and mapping energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass and allometry database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at time of publication. Thus the BAAD contains individual level data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) inclusion of plants from 0.01-100 m in height; and (iii) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed subsampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem crosssection including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the world's vegetation.  
  Address Department of Disturbance Ecology, University of Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 686  
Permanent link to this record
 

 
Author (up) Fang, C.H.; Clair, B.; Gril, J.; Almeras, T. openurl 
  Title Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain Type Journal Article
  Year 2007 Publication Wood Science and Technology Abbreviated Journal Wood Sci. Technol.  
  Volume 41 Issue 8 Pages 659-671  
  Keywords  
  Abstract Transverse drying shrinkage was measured at microscopic and mesoscopic levels in poplar wood characterised by an increasing growth strain (GS), from normal to tension wood. Results show that: (a) the drying shrinkage, measured as a relative thickness decrease, was significantly higher for G-layer (GL) than for the other layers (OL), GL shrinkage was not significantly correlated with GS, and OL shrinkage was negatively correlated with GS. (b) In gelatinous fibre (G-fibre), lumen size increased during drying and this increase was positively related with GS, but in normal wood fibre, lumen size decreased during drying. These findings suggest that GL shrank outwards (i.e., its internal perimeter increases), so that its shrinkage weakly affected the total cell shrinkage and the mesoscopic shrinkage was controlled by the OL shrinkage which shrank inwards (i.e., its external perimeter decreases). (c) Measurements done on 7 x 7 mm(2) thin sections evidenced a negative correlation between transverse shrinkage and GS, significant in T direction but weak in R direction. These observations at both levels allow to discuss the contribution of GL to the mesoscopic shrinkage of tension wood.  
  Address Univ Montpellier 2, Lab Mech & Gene Civil, F-34095 Montpellier, France, Email: fang1979@gmail.com  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-7719 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000250381500003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 155  
Permanent link to this record
 

 
Author (up) Fanin, N.; Barantal, S.; Fromin, N.; Schimann, H.; Schevin, P.; Hattenschwiler, S. pdf  url
openurl 
  Title Distinct Microbial Limitations in Litter and Underlying Soil Revealed by Carbon and Nutrient Fertilization in a Tropical Rainforest Type Journal Article
  Year 2012 Publication PLoS ONE Abbreviated Journal  
  Volume 7 Issue 12 Pages e49990  
  Keywords  
  Abstract Human-caused alterations of the carbon and nutrient cycles are expected to impact tropical ecosystems in the near future. Here we evaluated how a combined change in carbon (C), nitrogen (N) and phosphorus (P) availability affects soil and litter microbial respiration and litter decomposition in an undisturbed Amazonian rainforest in French Guiana. In a fully factorial C (as cellulose), N (as urea), and P (as phosphate) fertilization experiment we analyzed a total of 540 litterbag-soil pairs after a 158-day exposure in the field. Rates of substrate-induced respiration (SIR) measured in litter and litter mass loss were similarly affected by fertilization showing the strongest stimulation when N and P were added simultaneously. The stimulating NP effect on litter SIR increased considerably with increasing initial dissolved organic carbon (DOC) concentrations in litter, suggesting that the combined availability of N, P, and a labile C source has a particularly strong effect on microbial activity. Cellulose fertilization, however, did not further stimulate the NP effect. In contrast to litter SIR and litter mass loss, soil SIR was reduced with N fertilization and showed only a positive effect in response to P fertilization that was further enhanced with additional C fertilization. Our data suggest that increased nutrient enrichment in the studied Amazonian rainforest can considerably change microbial activity and litter decomposition, and that these effects differ between the litter layer and the underlying soil. Any resulting change in relative C and nutrient fluxes between the litter layer and the soil can have important consequences for biogeochemical cycles in tropical forest ecosystems. © 2012 Fanin et al.  
  Address UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 3 January 2013; Source: Scopus; Art. No.: e49990 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 454  
Permanent link to this record
 

 
Author (up) Fanin, N.; Hattenschwiler, S.; Barantal, S.; Schimann, H.; Fromin, N. openurl 
  Title Does variability in litter quality determine soil microbial respiration in an Amazonian rainforest? Type Journal Article
  Year 2011 Publication Soil Biology & Biochemistry Abbreviated Journal Soil Biol. Biochem.  
  Volume 43 Issue 5 Pages 1014-1022  
  Keywords Carbon forms; French Guiana; Litter quality; Microbial respiration process; Nitrogen; Phosphorus; Stoichiometry  
  Abstract Tree species-rich tropical rainforests are characterized by a highly variable quality of leaf litter input to the soil at small spatial scales. This diverse plant litter is a major source of energy and nutrients for soil microorganisms, particularly in rainforests developed on old and nutrient-impoverished soils. Here we tested the hypothesis that the variability in leaf litter quality produced by a highly diverse tree community determines the spatial variability of the microbial respiration process in the underlying soil. We analyzed a total of 225 litter-soil pairs from an undisturbed Amazonian rainforest in French Guiana using a hierarchical sampling design. The microbial respiration process was assessed using substrate-induced respiration (SIR) and compared to a wide range of quality parameters of the associated litter layer (litter nutrients, carbon forms, stoichiometry, litter mass and pH). The results show that the variability of both litter quality and SIR rates was more important at large than at small scales. SIR rates varied between 1.1 and 4.0 μg h(-1) and were significantly correlated with litter layer quality (up to 50% of the variability explained by the best mixed linear model). Total litter P content was the individual most important factor explaining the observed spatial variation in soil SIR, with higher rates associated to high litter P. SIR rates also correlated positively with total litter N content and with increasing proportions of labile C compounds. However, contrary to our expectation, SIR rates were not related to litter stoichiometry. These data suggest that in the studied Amazonian rainforest, tree canopy composition is an important driver of the microbial respiration process via leaf litter fall, resulting in potentially strong plant-soil feedbacks. (C) 2011 Elsevier Ltd. All rights reserved.  
  Address [Fanin, Nicolas; Haettenschwiler, Stephan; Barantal, Sandra; Fromin, Nathalie] CNRS, CEFE, UMR 5175, F-34293 Montpellier 5, France, Email: nicolas.fanin@cefe.cnrs.fr  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-0717 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289219500019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 304  
Permanent link to this record
 

 
Author (up) Fanin, N.; Hättenschwiler, S.; Schimann, H.; Fromin, N. url  openurl
  Title Interactive effects of C, N and P fertilization on soil microbial community structure and function in an Amazonian rain forest Type Journal Article
  Year 2015 Publication Functional Ecology Abbreviated Journal Funct. Ecol.  
  Volume 29 Issue 1 Pages 140-150  
  Keywords Ecosystem functioning; Functional significance; Microbial community structure; Multiple resource limitation; Phospholipid fatty acids (PLFA); Phosphorus; Soil functioning; Tropical forest  
  Abstract Resource control over abundance, structure and functional diversity of soil microbial communities is a key determinant of soil processes and related ecosystem functioning. Copiotrophic organisms tend to be found in environments which are rich in nutrients, particularly carbon, in contrast to oligotrophs, which survive in much lower carbon concentrations. We hypothesized that microbial biomass, activity and community structure in nutrient-poor soils of an Amazonian rain forest are limited by multiple elements in interaction. We tested this hypothesis with a fertilization experiment by adding C (as cellulose), N (as urea) and P (as phosphate) in all possible combinations to a total of 40 plots of an undisturbed tropical forest in French Guiana. After 2 years of fertilization, we measured a 47% higher biomass, a 21% increase in substrate-induced respiration rate and a 5-fold higher rate of decomposition of cellulose paper discs of soil microbial communities that grew in P-fertilized plots compared to plots without P fertilization. These responses were amplified with a simultaneous C fertilization suggesting P and C colimitation of soil micro-organisms at our study site. Moreover, P fertilization modified microbial community structure (PLFAs) to a more copiotrophic bacterial community indicated by a significant decrease in the Gram-positive : Gram-negative ratio. The Fungi : Bacteria ratio increased in N fertilized plots, suggesting that fungi are relatively more limited by N than bacteria. Changes in microbial community structure did not affect rates of general processes such as glucose mineralization and cellulose paper decomposition. In contrast, community level physiological profiles under P fertilization combined with either C or N fertilization or both differed strongly from all other treatments, indicating functionally different microbial communities. While P appears to be the most critical from the three major elements we manipulated, the strongest effects were observed in combination with either supplementary C or N addition in support of multiple element control on soil microbial functioning and community structure. We conclude that the soil microbial community in the studied tropical rain forest and the processes it drives is finely tuned by the relative availability in C, N and P. Any shifts in the relative abundance of these key elements may affect spatial and temporal heterogeneity in microbial community structure, their associated functions and the dynamics of C and nutrients in tropical ecosystems.  
  Address INRA, UMR 614 Fractionnement des AgroRessources et Environnement, 2 esplanade Roland GarrosReims, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 4 February 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 583  
Permanent link to this record
 

 
Author (up) Fargeon, H.; Aubry-Kientz, M.; Brunaux, O.; Descroix, L.; Gaspard, R.; Guitet, S.; Rossi, V.; Herault, B. pdf  url
doi  openurl
  Title Vulnerability of commercial tree species to water stress in logged forests of the Guiana shield Type Journal Article
  Year 2016 Publication Forests Abbreviated Journal Forests  
  Volume 7 Issue 5 Pages  
  Keywords Climate change; Growth rates; Mortality rates; Paracou; Selective logging  
  Abstract The future of tropical managed forests is threatened by climate change. In anticipation of the increase in the frequency of drought episodes predicted by climatic models for intertropical regions, it is essential to study commercial trees' resilience and vulnerability to water stress by identifying potential interaction effects between selective logging and stress due to a lack of water. Focusing on 14 species representing a potential or acknowledged commercial interest for wood production in the Guiana Shield, a joint model coupling growth and mortality for each species was parametrized, including a climatic variable related to water stress and the quantity of aboveground biomass lost after logging. For the vast majority of the species, water stress had a negative impact on growth rate, while the impact of logging was positive. The opposite results were observed for the mortality. Combining results from growth and mortality models, we generate vulnerability profiles and ranking from species apparently quite resistant to water stress (Chrysophyllum spp., Goupia glabra Aubl., Qualea rosea Aubl.), even under logging pressure, to highly vulnerable species (Sterculia spp.). In light of our results, forest managers in the Guiana Shield may want to conduct (i) a conservation strategy of the most vulnerable species and (ii) a diversification of the logged species. Conservation of the already-adapted species may also be considered as the most certain way to protect the tropical forests under future climates. © 2016 by the authors.  
  Address Université de Yaoundé I, UMMISCO (UMI 209), Yaoundé, Cameroon  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 11 June 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 682  
Permanent link to this record
 

 
Author (up) Farjalla, V.F.; González, A.L.; Céréghino, R.; Dezerald, O.; Marino, N.A.C.; Piccoli, G.C.O.; Richardson, B.A.; Richardson, M.J.; Romero, G.Q.; Srivastava, D.S. doi  openurl
  Title Terrestrial support of aquatic food webs depends on light inputs: A geographically-replicated test using tank bromeliads Type Journal Article
  Year 2016 Publication Ecology Abbreviated Journal Ecology  
  Volume 97 Issue 8 Pages 2147-2156  
  Keywords Allochthonous carbon; Allochthony; Aquatic food webs; Autochthonous carbon; Autochthony; Natural microcosms; Stable isotopic analysis; Tank bromeliads; Tropics  
  Abstract Food webs of freshwater ecosystems can be subsidized by allochthonous resources. However, it is still unknown which environmental factors regulate the relative consumption of allochthonous resources in relation to autochthonous resources. Here, we evaluated the importance of allochthonous resources (litterfall) for the aquatic food webs in Neotropical tank bromeliads, a naturally replicated aquatic microcosm. Aquatic invertebrates were sampled in more than 100 bromeliads within either open or shaded habitats and within five geographically distinct sites located in four different countries. Using stable isotope analyses, we determined that allochthonous sources comprised 74% (±17%) of the food resources of aquatic invertebrates. However, the allochthonous contribution to aquatic invertebrates strongly decreased from shaded to open habitats, as light incidence increased in the tanks. The density of detritus in the tanks had no impact on the importance of allochthonous sources to aquatic invertebrates. This overall pattern held for all invertebrates, irrespective of the taxonomic or functional group to which they belonged. We concluded that, over a broad geographic range, aquatic food webs of tank bromeliads are mostly allochthonous-based, but the relative importance of allochthonous subsidies decreases when light incidence favors autochthonous primary production. These results suggest that, for other freshwater systems, some of the between-study variation in the importance of allochthonous subsidies may similarly be driven by the relative availability of autochthonous resources. © 2016 by the Ecological Society of America.  
  Address Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), PO Box 6109, Campinas-SP, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 687  
Permanent link to this record
 

 
Author (up) Faucheux, M.J.; Gibernau, M. url  openurl
  Title Antennal sensilla in five Psychodini moth flies (Diptera: Psychodidae: Psychodinae) pollinators of Arum spp. (Araceae) Type Journal Article
  Year 2011 Publication Annales de la Societe Entomologique de France Abbreviated Journal Ann. Soc. Entomol. Fr.  
  Volume 47 Issue 1-2 Pages 89-100  
  Keywords Chodopsycha; Deceptive pollination; Logima; Psycha; Psychoda  
  Abstract The pollination of the genus Arum (Araceae) is mainly achieved by deception, the floral odour mimicking the pollinator ovipositing site. In order to discover the sensory organs involved in this attraction, we have studied the antennae of five species of psychodine moth-flies (former Psychoda sensu lato = Psychodini), pollinators of Arum spp. The antennae of the five Psychodini reveal seven types of sensilla: multiporous tribranched sensilla basiconica (sensilla ascoidea), multiporous sensilla basiconica, multiporous sensilla coeloconica, multiporous sensilla auricillica, uniporous sensilla basiconica, aporous sensilla chaetica, aporous Böhm's sensilla. Each species possesses three, five or six of these sensillum types. All the multiporous sensilla are probably olfactory receptors while the uniporous sensilla basiconica must possess a contact chemoreceptive function. The multiporous tribranched sensilla basiconica (s. ascoidea), present in all the species, are the best candidates for the reception of the odours given off by the ovipositing sites and the inflorescences of Arum. The multiporous sensilla basiconica and the multiporous sensilla coeloconica may be involved respectively as CO2 receptors or thermoreceptors. Psychoda phalaenoides, which is the main pollinator of A. maculatum, is the species which possesses the largest number of antennal sensilla. The sexual dimorphism, studied only in Psycha grisescens, as concerns the number of sensilla and the absence of a sensillum type which differ according to sex, is difficult to interpret.  
  Address CNRS – Ecofog UMR 8172, BP 709, F-97387 Kourou, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00379271 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 26 October 2011; Source: Scopus; Language of Original Document: English; Correspondence Address: Faucheux, M.J.; Université de Nantes, Laboratoire d'Endocrinologie des Insectes Sociaux, 2 rue de la Houssinière, F-44322 Nantes Cedex 03, France; email: faucheux.michel@free.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 365  
Permanent link to this record
 

 
Author (up) Fauset, S.; Johnson, M.O.; Gloor, M.; Baker, T.R.; Monteagudo M., A.; Brienen, R.J.W.; Feldpausch, T.R.; Lopez-Gonzalez, G.; Malhi, Y.; Ter Steege, H.; Pitman, N.C.A.; Baraloto, C.; Engel, J.; Petronelli, P.; Andrade, A.; Camargo, J.L.C.; Laurance, S.G.W.; Laurance, W.F.; Chave, J.; Allie, E.; Vargas, P.N.; Terborgh, J.W.; Ruokolainen, K.; Silveira, M.; Aymard C., G.A.; Arroyo, L.; Bonal, D.; Ramirez-Angulo, H.; Araujo-Murakami, A.; Neill, D.; Herault, B.; Dourdain, A.; Torres-Lezama, A.; Marimon, B.S.; Salomão, R.P.; Comiskey, J.A.; Réjou-Méchain, M.; Toledo, M.; Licona, J.C.; Alarcón, A.; Prieto, A.; Rudas, A.; Van Der Meer, P.J.; Killeen, T.J.; Marimon Junior, B.-H.; Poorter, L.; Boot, R.G.A.; Stergios, B.; Torre, E.V.; Costa, F.R.C.; Levis, C.; Schietti, J.; Souza, P.; Groot, N.; Arets, E.; Moscoso, V.C.; Castro, W.; Coronado, E.N.H.; Peña-Claros, M.; Stahl, C.; Barroso, J.; Talbot, J.; Vieira, I.C.G.; Van Der Heijden, G.; Thomas, R.; Vos, V.A.; Almeida, E.C.; Davila, E.Á.; Aragão, L.E.O.C.; Erwin, T.L.; Morandi, P.S.; De Oliveira, E.A.; Valadão, M.B.X.; Zagt, R.J.; Van Der Hout, P.; Loayza, P.A.; Pipoly, J.J.; Wang, O.; Alexiades, M.; Cerón, C.E.; Huamantupa-Chuquimaco, I.; Di Fiore, A.; Peacock, J.; Camacho, N.C.P.; Umetsu, R.K.; De Camargo, P.B.; Burnham, R.J.; Herrera, R.; Quesada, C.A.; Stropp, J.; Vieira, S.A.; Steininger, M.; Rodríguez, C.R.; Restrepo, Z.; Muelbert, A.E.; Lewis, S.L.; Pickavance, G.C.; Phillips, O.L. pdf  url
openurl 
  Title Hyperdominance in Amazonian forest carbon cycling Type Journal Article
  Year 2015 Publication Nature Communications Abbreviated Journal Nature Communications  
  Volume 6 Issue 6857 Pages  
  Keywords  
  Abstract While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few â € hyperdominantâ €™ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only â ‰1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region. © 2015 Macmillan Publishers Limited. All rights reserved.  
  Address Instituto de Biologia, Universidade Estadual de CampinasCampinas, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 May 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 602  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: