toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Staudt, K.; Serafimovich, A.; Siebicke, L.; Pyles, R.D.; Falge, E. url  openurl
  Title Vertical structure of evapotranspiration at a forest site (a case study) Type Journal Article
  Year 2011 Publication Agricultural and Forest Meteorology Abbreviated Journal Agric. For. Meterol.  
  Volume 151 Issue 6 Pages 709-729  
  Keywords Eddy-covariance; Evapotranspiration; In-canopy profiles; Model; Picea abies L.; Sap flux; coniferous forest; ecosystem modeling; eddy covariance; evapotranspiration; forest canopy; sap flow; Fichtelgebirge; Germany; Picea abies  
  Abstract (down) The components of ecosystem evapotranspiration of a Norway spruce forest (Picea abies L.) as well as the vertical structure of canopy evapotranspiration were analyzed with a combination of measurements and models for a case study of 5 days in September 2007. Eddy-covariance and sap flux measurements were performed at several heights within the canopy at the FLUXNET site Waldstein-Weidenbrunnen (DE-Bay) in the Fichtelgebirge mountains in Germany. Within and above canopy fluxes were simulated with two stand-scale models, the 1D multilayer model ACASA that includes a third-order turbulence closure and the 3D model STANDFLUX. The soil and understory evapotranspiration captured with the eddy-covariance system in the trunk space constituted 10% of ecosystem evapotranspiration measured with the eddy-covariance system above the canopy. A comparison of transpiration measured with the sap flux technique and inferred from below and above canopy eddy-covariance systems revealed higher estimates from eddy-covariance measurements than for sap flux measurements. The relative influences of possible sources of this mismatch, such as the assumption of negligible contribution of evaporation from intercepted water, and differences between the eddy-covariance flux footprint and the area used for scaling sap flux measurements, were discussed. Ecosystem evapotranspiration as well as canopy transpiration simulated with the two models captured the dynamics of the measurements well, but slightly underestimated eddy-covariance values. Profile measurements and models also gave us the chance to assess in-canopy profiles of canopy evapotranspiration and the contributions of in-canopy layers. For daytime and a coupled or partly coupled canopy, mean simulated profiles of both models agreed well with eddy-covariance measurements, with a similar performance of the ACASA and the STANDFLUX model. Both models underestimated profiles for nighttime and decoupled conditions. During daytime, the upper half of the canopy contributed approximately 80% to canopy evapotranspiration, whereas during nighttime the contribution shifted to lower parts of the canopy. © 2010 Elsevier B.V.  
  Address Max Planck Institute for Chemistry, Biogeochemistry Department, Joh.-J.-Becherweg 27, 55128 Mainz, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 01681923 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 3; Export Date: 21 October 2011; Source: Scopus; Coden: Afmee; doi: 10.1016/j.agrformet.2010.10.009; Language of Original Document: English; Correspondence Address: Staudt, K.; University of Bayreuth, Department of Micrometeorology, 95440 Bayreuth, Germany; email: katharina.staudt@uni-bayreuth.de Approved no  
  Call Number EcoFoG @ webmaster @ Serial 349  
Permanent link to this record
 

 
Author Boisse, P.; Aimene, Y.; Dogui, A.; Dridi, S.; Gatouillat, S.; Hamila, N.; Khan, M.A.; Mabrouki, T.; Morestin, F.; Vidal-Sallé, E. doi  openurl
  Title Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming Type Journal Article
  Year 2010 Publication International Journal of Material Forming Abbreviated Journal  
  Volume 3 Issue Supplement 2 Pages 1229-1240  
  Keywords Textile composites Forming simulations Continuous/discrete approaches Hyperelasticity Hypoelasticity Semi-discrete finite element  
  Abstract (down) The clear multi-scale structure of composite textile reinforcements leads to develop continuous and discrete approaches for their forming simulations. In this paper two continuous modelling respectively based on a hypoelastic and hyperelastic constitutive model are presented. A discrete approach is also considered in which each yarn is modelled by shell finite elements and where the contact with friction and possible sliding between the yarns are taken into account. Finally the semi-discrete approach is presented in which the shell finite element interpolation involves continuity of the displacement field but where the internal virtual work is obtained as the sum of tension, in-plane shear and bending ones of all the woven unit cells within the element. The advantages and drawbacks of the different approaches are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming Approved no  
  Call Number EcoFoG @ eric.marcon @ 8 Serial 90  
Permanent link to this record
 

 
Author Tremolieres, M.; Noel, V.; Herault, B. openurl 
  Title Phosphorus and nitrogen allocation in Allium ursinum on an alluvial floodplain (Eastern France). Is there an effect of flooding history? Type Journal Article
  Year 2009 Publication Plant and Soil Abbreviated Journal Plant Soil  
  Volume 324 Issue 1-2 Pages 279-289  
  Keywords Allium ursinum; Flooding history; Nitrogen; Nutrient bioavailability; Phosphorus; Rhine  
  Abstract (down) The change in phosphorus and nitrogen content in a common geophyte spring species, Allium ursinum, is studied in alluvial forests in relation to three flooding histories related to river regulation: (1) annually flooded, (2) unflooded for 30 years, and (3) unflooded for 200 years. Flood suppression leads to a reduction of available P soil content as well as decreasing the biomass and the amount of phosphorus in plants, but has no significant effect on N plant content. Plant N:P ratio increases with the suppression of floods and is primarily driven by soil N:P ratios, in turn markedly linked to the total nitrogen in the soil. We highlighted a lower nutrient accumulation in leaves during plant growth in unflooded forests. Overall, our results suggest that P was the main limiting factor in unflooded forests while nitrogen was the main limiting factor in annually flooded forests. Flood suppression strongly affects the morphology and nutrient uptake by Allium ursinum and thus nutrient cycling in riverine forests.  
  Address [Tremolieres, Michele; Noel, Valerie] Inst Bot, LHYGES, UMR 7517, F-67083 Strasbourg, France, Email: michele.tremolieres@bota-ulp.u-strasbg.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-079X ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000271028800020 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 99  
Permanent link to this record
 

 
Author Nirma, C.; Rodrigues, A.M.S.; Basset, C.; Chevolot, L.; Girod, R.; Moretti, C.; Stien, D.; Dusfour, I.; Eparvier, V. doi  openurl
  Title Larvicidal activity of isoflavonoids from Muellera frutescens extracts against Aedes aegypti Type Journal Article
  Year 2012 Publication Natural Product Communications Abbreviated Journal  
  Volume 7 Issue 10 Pages 1319-1322  
  Keywords Aedes aegypti; French Guiana; Insecticides; Isoflavonoids; Muellera frutescens  
  Abstract (down) The biological activity of extracts from the leaves, bark and roots of Muellera frutescens, an Amazonian ichtyotoxic plant, were evaluated to find new environmentally safe insecticides. The n-hexane extracts of bark, leaf, and root showed a strong toxic activity against Aedes aegypti mosquito larvae. Bioguided fractionation of the bark extract led to the isolation of seven isoflavonoids (12a-hydroxyelliptone, elliptone, (-)-variabilin, rotenone, rotenolone, tephrosin and deguelin). Rotenone and deguelin are responsible for the larvicidal activity of the plant. M. frutescens leaves contain up to 0.6%, w/w, deguelin. These results justify the traditional ichtyotoxic use of M. frutescens. The leaves contain a relatively high proportion of deguelin and, therefore, can be considered as a renewable source of this environmentally friendly insecticidal isoflavonoid.  
  Address CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 6 December 2012; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 448  
Permanent link to this record
 

 
Author Verheyen, K.; Vanhellemont, M.; Auge, H.; Baeten, L.; Baraloto, C.; Barsoum, N.; Bilodeau-Gauthier, S.; Bruelheide, H.; Castagneyrol, B.; Godbold, D.; Haase, J.; Hector, A.; Jactel, H.; Koricheva, J.; Loreau, M.; Mereu, S.; Messier, C.; Muys, B.; Nolet, P.; Paquette, A.; Parker, J.; Perring, M.; Ponette, Q.; Potvin, C.; Reich, P.; Smith, A.; Weih, M.; Scherer-Lorenzen, M. url  openurl
  Title Contributions of a global network of tree diversity experiments to sustainable forest plantations Type Journal Article
  Year 2016 Publication Ambio Abbreviated Journal Ambio  
  Volume 45 Issue 1 Pages 29-41  
  Keywords Biodiversity experiments; Ecological restoration; Functional biodiversity research; Plantation forest; Sustainable forest management  
  Abstract (down) The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1–15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network. © 2015, Royal Swedish Academy of Sciences.  
  Address Department of Crop Production Ecology, Swedish University of Agricultural Sciences, PO Box 7043, Uppsala, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 29 January 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 652  
Permanent link to this record
 

 
Author Bremaud, I.; Gril, J.; Thibaut, B. openurl 
  Title Anisotropy of wood vibrational properties: dependence on grain angle and review of literature data Type Journal Article
  Year 2011 Publication Wood Science and Technology Abbreviated Journal Wood Sci. Technol.  
  Volume 45 Issue 4 Pages 735-754  
  Keywords  
  Abstract (down) The anisotropy of vibrational properties influences the acoustic behaviour of wooden pieces and their dependence on grain angle (GA). As most pieces of wood include some GA, either for technological reasons or due to grain deviations inside trunks, predicting its repercussions would be useful. This paper aims at evaluating the variability in the anisotropy of wood vibrational properties and analysing resulting trends as a function of orientation. GA dependence is described by a model based on transformation formulas applied to complex compliances, and literature data on anisotropic vibrational properties are reviewed. Ranges of variability, as well as representative sets of viscoelastic anisotropic parameters, are defined for mean hardwoods and softwoods and for contrasted wood types. GA-dependence calculations are in close agreement with published experimental results and allow comparing the sensitivity of different woods to GA. Calculated trends in damping coefficient (tan delta) and in specific modulus of elasticity (E'/rho) allow reconstructing the general tan delta-E'/rho statistical relationships previously reported. Trends for woods with different mechanical parameters merge into a single curve if anisotropic ratios (both elastic and of damping) are correlated between them, and with axial properties, as is indicated by the collected data. On the other hand, varying damping coefficient independently results in parallel curves, which coincide with observations on chemically modified woods, either “artificially”, or by natural extractives.  
  Address [Bremaud, I; Gril, J] Univ Montpellier 2, Lab Mecan & Genie Civil, CNRS, CC048, F-34095 Montpellier 5, France, Email: iris_bremaud@hotmail.com  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-7719 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000296006000009 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 369  
Permanent link to this record
 

 
Author Ruelle, J.; Clair, B.; Beauchene, J.; Prevost, M.F.; Fournier, M. openurl 
  Title Tension wood and opposite wood in 21 tropical rain forest species 2. Comparison of some anatomical and ultrastructural criteria Type Journal Article
  Year 2006 Publication IAWA Journal Abbreviated Journal IAWA J.  
  Volume 27 Issue 4 Pages 341-376  
  Keywords tension wood; opposite wood; tropical rain forest; vessels; wood anatomy; wood fibre  
  Abstract (down) The anatomy of tension wood and opposite wood was compared in 21 tropical rain forest trees from 21 species belonging to 18 families from French Guyana. Wood specimens were taken from the upper and lower sides of naturally tilted trees. Measurement of the growth stress level ensured that the two samples were taken from wood tissues in a different mechanical state: highly tensile-stressed wood on the upper side, called tension wood and normally tensile-stressed wood on the lower side, called opposite wood. Quantitative parameters relating to fibres and vessels were measured on transverse sections of both tension and opposite wood to check if certain criteria can easily discriminate the two kinds of wood. We observed a decrease in the frequency of vessels in the tension wood in all the trees studied. Other criteria concerning shape and surface area of the vessels, fibre diameter or cell wall thickness did not reveal any general trend. At the ultrastructural level, we observed that the microfibril angle in the tension wood sample was lower than in opposite wood in all the trees except one (Licania membranacea).  
  Address UAG, ENGREF,UMR Ecol Forets Guyane, INRA,ECOFOG, CIRAD,CNRS, F-97379 Kourou, Guyana, Email: ruelle_j@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher INT ASSOC WOOD ANATOMISTS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-1541 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000242437400001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 171  
Permanent link to this record
 

 
Author Torroba-Balmori, P.; Budde, K.B.; Heer, K.; González-Martínez, S.C.; Olsson, S.; Scotti-Saintagne, C.; Casalis, M.; Sonké, B.; Dick, C.W.; Heuertz, M. url  doi
openurl 
  Title Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species Type Journal Article
  Year 2017 Publication PLoS ONE Abbreviated Journal PLoS ONE  
  Volume 12 Issue 8 Pages e0182515  
  Keywords  
  Abstract (down) The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations. © 2017 Torroba-Balmori et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.  
  Address Smithsonian Tropical Research Institute, Panama  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 September 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 762  
Permanent link to this record
 

 
Author Jona Lasinio, G.; Pollice, A.; Marcon, E.; Fano, E.A. doi  openurl
  Title Assessing the role of the spatial scale in the analysis of lagoon biodiversity. A case-study on the macrobenthic fauna of the Po River Delta Type Journal Article
  Year 2017 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 80 Issue Pages 303-315  
  Keywords Biodiversity partitioning; Lagoon biodiversity; Macrobenthic fauna; Mixed effects models; Tsallis entropy  
  Abstract (down) The analysis of benthic assemblages is a valuable tool to describe the ecological status of transitional water ecosystems, but species are extremely sensitive and respond to both microhabitat and seasonal differences. The identification of changes in the composition of the macrobenthic community in specific microhabitats can then be used as an “early warning” for environmental changes which may affect the economic and ecological importance of lagoons, through their provision of Ecosystem Services. From a conservational point of view, the appropriate definition of the spatial aggregation level of microhabitats or local communities is of crucial importance. The main objective of this work is to assess the role of the spatial scale in the analysis of lagoon biodiversity. First, we analyze the variation in the sample coverage for alternative aggregations of the monitoring stations in three lagoons of the Po River Delta. Then, we analyze the variation of a class of entropy indices by mixed effects models, properly accounting for the fixed effects of biotic and abiotic factors and random effects ruled by nested sources of variability corresponding to alternative definitions of local communities. Finally, we address biodiversity partitioning by a generalized diversity measure, namely the Tsallis entropy, and for alternative definitions of the local communities. The main results obtained by the proposed statistical protocol are presented, discussed and framed in the ecological context. © 2017 Elsevier Ltd  
  Address Dipartimento di Scienze della Vita e Biotecnologie, Università degli Studi di Ferrara, Ferrara, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 June 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 755  
Permanent link to this record
 

 
Author Seibold, Sebastien ; Rammer, Werner ; Hothorn, Torsten ; Seidl, Rupert ; Ulyshen, Michael ; Lorz, Janina ; Cadotte, Marc ; Lindenmayer, David ; Adhikari, Yagya ; Aragón, Roxana ; Bae, Soyeon ; Baldrian, Petr ; Barimani Varandi, Hassan ; Barlow, Jos ; Bässler, Clauss ; Beauchêne, Jacques ; and all ................... doi  openurl
  Title The contribution of insects to global forest deadwood decomposition Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal  
  Volume 597 Issue 7874 Pages 77-81  
  Keywords  
  Abstract (down) The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.  
  Address  
  Corporate Author Thesis  
  Publisher NATURE PUBLISHING GROUP Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1046  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: