toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Céréghino, R.; Françoise, L.; Bonhomme, C.; Carrias, J.-F.; Compin, A.; Corbara, B.; Jassey, V.; Leflaive, J.; Rota, T.; Farjalla, V.; Leroy, C. doi  openurl
  Title Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a Neotropical ecosystem Type Journal Article
  Year 2020 Publication Ecological Indicators Abbreviated Journal Ecol. Indic.  
  Volume (down) 119 Issue 106839 Pages  
  Keywords Climate change; Functional traits; Lt50; Macroinvertebrates; Rainforests; Biodiversity; Climate change; Driers (materials); Drought; Environmental management; Population statistics; Tanks (containers); Water; Aquatic invertebrates; Climate change adaptation; Controlled conditions; Environmental managers; Freshwater biodiversity; Freshwater invertebrates; Future climate scenarios; Laboratory conditions; Aquatic organisms; aquatic community; biodiversity; climate change; cuticle; desiccation; drought stress; invertebrate; Neotropical Region; population size; survival; French Guiana; Invertebrata  
  Abstract The intensification of dry seasons is a major threat to freshwater biodiversity in Neotropical regions. Little is known about resistance to drying stress and the underpinning traits in Neotropical freshwater species, so we don't know whether desiccation resistance allows to anticipate shifts in biological diversity under future climate scenarios. Here, we used the aquatic invertebrates that live in the rainwater-filled leaves of tank bromeliads, to examine the extent to which desiccation resistance of species measured in the laboratory predicts community response to drought intensification in nature. We measured desiccation resistance in 17 invertebrate species (>90% of the biomass usually found in bromeliads of French Guiana) by recording the median lethal time (LT50) of experimental populations exposed to controlled conditions of residual moisture. In the field, we placed rainshelters above tank bromeliads to emulate drought scenarios ranging from the ambient norm to IPCC scenarios and extreme events, and we recorded the response of functional community structure. LT50 ranged from 4.18 to 19.06 days, and was related to cuticle content and dry body mass. Among other functional indicators that represent strategies to optimize resource use under stressful conditions (e.g., habitat use, trophic specialization), LT50 was the best predictor of community structure responses along a gradient of emulated drought intensities. Therefore, species’ LT50s measured under laboratory conditions can be used to forecast aquatic community response to drying stress in nature. Anticipating how species will cope with drought has never been more important for environmental managers to support climate change adaptation. We show that desiccation resistance in freshwater invertebrates is a key indicator of potential population size and local–global range shifts, and this could be especially true in the Neotropics where species have narrow physiological tolerances for climatic variation. © 2020 Elsevier Ltd  
  Address ECOFOG, AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, Kourou, 97379, France  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470160x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 941  
Permanent link to this record
 

 
Author Honorio Coronado, E.N.; Blanc-Jolivet, C.; Mader, M.; García-Dávila, C.R.; Gomero, D.A.; del Castillo Torres, D.; Llampazo, G.F.; Pizango, G.H.; Sebbenn, A.M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Tysklind, N.; Troispoux, V.; Massot, M.; Carvalho, C.; de Lima, H.C.; Cardoso, D.; Degen, B. doi  openurl
  Title SNP markers as a successful molecular tool for assessing species identity and geographic origin of trees in the economically important South American legume genus Dipteryx Type Journal Article
  Year 2020 Publication Journal of Heredity Abbreviated Journal J. Hered.  
  Volume (down) 111 Issue 4 Pages 346-356  
  Keywords Cumaru; Genetic assignment; Leguminosae; Timber verification; article; chloroplast; genetic association; genetic marker; geographic origin; indel mutation; nonhuman; single nucleotide polymorphism; species identification; structure analysis; tonka bean; Dipteryx; Fabaceae  
  Abstract Dipteryx timber has been heavily exploited in South America since 2000s due to the increasing international demand for hardwood. Developing tools for the genetic identification of Dipteryx species and their geographical origin can help to promote legal trading of timber. A collection of 800 individual trees, belonging to 6 different Dipteryx species, was genotyped based on 171 molecular markers. After the exclusion of markers out of Hardy-Weinberg equilibrium or with no polymorphism or low amplification, 83 nuclear, 29 chloroplast, 13 mitochondrial single nucleotide polymorphisms (SNPs), and 2 chloroplast and 5 mitochondrial INDELS remained. Six genetic groups were identified using Bayesian Structure analyses of the nuclear SNPs, which corresponded to the different Dipteryx species collected in the field. Seventeen highly informative markers were identified as suitable for species identification and obtained self-assignment success rates to species level of 78-96%. An additional set of 15 molecular markers was selected to determine the different genetic clusters found in Dipteryx odorata and Dipteryx ferrea, obtaining self-assignment success rates of 91-100%. The success to assign samples to the correct country of origin using all or only the informative markers improved when using the nearest neighbor approach (69-92%) compared to the Bayesian approach (33-80%). While nuclear and chloroplast SNPs were more suitable for differentiating the different Dipteryx species, mitochondrial SNPs were ideal for determining the genetic clusters of D. odorata and D. ferrea. These 32 selected SNPs will be invaluable genetic tools for the accurate identification of species and country of origin of Dipteryx timber. © The American Genetic Association 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com  
  Address Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s.n., Ondina, Salvador, BA, 40170-115, Brazil  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00221503 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 965  
Permanent link to this record
 

 
Author Donald, J.; Maxfield, P.; Leroy, C.; Ellwood, M.D.F. doi  openurl
  Title Epiphytic suspended soils from Borneo and Amazonia differ in their microbial community composition Type Journal Article
  Year 2020 Publication Acta Oecologica Abbreviated Journal Acta Oecol.  
  Volume (down) 106 Issue Pages  
  Keywords Asplenium; Bacteria; Borneo; Bromeliaceae; Canopy; French Guiana; Fungi; Plfa; Rainforest; bacterium; community composition; epiphyte; fungus; microbial community; niche; relative abundance; soil microorganism; species diversity; tropical forest; Amazonia; Borneo; Danum Valley; East Malaysia; French Guiana; Malaysia; Nouragues; Sabah; Asplenium; Asplenium nidus; Aves; Bacteria (microorganisms); Bromeliaceae; Fungi  
  Abstract Microbial organisms support the high species diversity associated with tropical forests, and likely drive functional processes, but microorganisms found in rainforest canopies are not well understood. We quantified the microbial diversity of suspended soils from two classical epiphytic model systems (bromeliads & bird's nest ferns) across two localities: the Nouragues Reserve in French Guiana and Danum Valley in Malaysian Borneo. Non-epiphytic suspended soils were also collected as controls at the Nouragues Reserve. Effects of epiphyte type and sample location on microbial community composition were determined using Phospholipid Fatty Acid (PLFA) analysis. Total microbial biomass remained constant across the suspended soil types, but PLFA peaks denoting the relative abundance of different microbes varied between bromeliads, bird's nest ferns and non-epiphytic control soils. Suspended soils associated with bird's nest ferns from Borneo contained a microbial community significantly different in composition from those of congeneric bird's nest ferns from Amazonia, due to shifts in the relative abundance of fungi and bacteria. Our findings reveal that epiphytes create convergent niches for microorganisms in tropical canopies, while highlighting the sensitive nature of suspended soil microbial communities. © 2020 Elsevier Masson SAS  
  Address 20 Baily Place, Cheswick, Bristol, BS16 1BG, United Kingdom  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1146609x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 959  
Permanent link to this record
 

 
Author Srivastava, D.S.; Céréghino, R.; Trzcinski, M.K.; MacDonald, A.A.M.; Marino, N.A.C.; Mercado, D.A.; Leroy, C.; Corbara, B.; Romero, G.Q.; Farjalla, V.F.; Barberis, I.M.; Dézerald, O.; Hammill, E.; Atwood, T.B.; Piccoli, G.C.O.; Ospina-Bautista, F.; Carrias, J.-F.; Leal, J.S.; Montero, G.; Antiqueira, P.A.P.; Freire, R.; Realpe, E.; Amundrud, S.L.; de Omena, P.M.; Campos, A.B.A. doi  openurl
  Title Ecological response to altered rainfall differs across the Neotropics Type Journal Article
  Year 2020 Publication Ecology Abbreviated Journal Ecology  
  Volume (down) 101 Issue 4 Pages e02984  
  Keywords contingency; distributed experiment; freshwater; global change biology; macroinvertebrates; phytotelmata; precipitation; aquatic ecosystem; climate change; climate conditions; ecosystem response; extreme event; functional group; invertebrate; Neotropical Region; rainfall; species pool; Bacteria (microorganisms); Invertebrata; rain; animal; climate change; drought; ecosystem; invertebrate; Animals; Climate Change; Droughts; Ecosystem; Invertebrates; Rain  
  Abstract There is growing recognition that ecosystems may be more impacted by infrequent extreme climatic events than by changes in mean climatic conditions. This has led to calls for experiments that explore the sensitivity of ecosystems over broad ranges of climatic parameter space. However, because such response surface experiments have so far been limited in geographic and biological scope, it is not clear if differences between studies reflect geographic location or the ecosystem component considered. In this study, we manipulated rainfall entering tank bromeliads in seven sites across the Neotropics, and characterized the response of the aquatic ecosystem in terms of invertebrate functional composition, biological stocks (total invertebrate biomass, bacterial density) and ecosystem fluxes (decomposition, carbon, nitrogen). Of these response types, invertebrate functional composition was the most sensitive, even though, in some sites, the species pool had a high proportion of drought-tolerant families. Total invertebrate biomass was universally insensitive to rainfall change because of statistical averaging of divergent responses between functional groups. The response of invertebrate functional composition to rain differed between geographical locations because (1) the effect of rainfall on bromeliad hydrology differed between sites, and invertebrates directly experience hydrology not rainfall and (2) the taxonomic composition of some functional groups differed between sites, and families differed in their response to bromeliad hydrology. These findings suggest that it will be difficult to establish thresholds of “safe ecosystem functioning” when ecosystem components differ in their sensitivity to climatic variables, and such thresholds may not be broadly applicable over geographic space. In particular, ecological forecast horizons for climate change may be spatially restricted in systems where habitat properties mediate climatic impacts, and those, like the tropics, with high spatial turnover in species composition. © 2020 by the Ecological Society of America  
  Address Departamento de Ciencias Biológicas, Universidad de Caldas, Caldas, 170001, Colombia  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00129658 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 979  
Permanent link to this record
 

 
Author Lehnebach, R.; Doumerc, L.; Clair, B.; Alméras, T. url  doi
openurl 
  Title Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Type Journal Article
  Year 2020 Publication Botany Abbreviated Journal Bot.  
  Volume (down) 98 Issue 1 Pages 1-8  
  Keywords Bark anatomical structure; Mechanical stress; Sclereids; Secondary phloem; Tree biomechanics; Tropical species  
  Abstract Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark. Significant tensile or compressive longitudinal stresses were observed in the stems of most species. Tensile longitudinal stress was observed in various botanical families and was always associated with fibers arranged in a trellis-like structure and strong dilatation of rays. The highest tensile stress was recorded in species with gelatinous fibers forming a treillis. Compressive stress was typically associated with a large amount of sclereids in the bark, supporting the differentiation of sclereids as a potential origin of the generation of longitudinal compressive stresses in bark. In species exhibiting both a fibrous trellis structure and a significant amount of sclereids, the sign of longitudinal stress may depend on the balance between these two mechanisms.  
  Address Faculty of Bioscience Engineering, Laboratory of Wood Technology, Woodlab, Coupure Links 653, Gent, B-9000, Belgium  
  Corporate Author Thesis  
  Publisher Canadian Science Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19162804 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 20 January 2020; Correspondence Address: Lehnebach, R.; Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, 860 rue de St. Priest, France; email: lehnebach.romain@hotmail.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 913  
Permanent link to this record
 

 
Author Carrias, J.-F.; Gerphagnon, M.; Rodríguez-Pérez, H.; Borrel, G.; Loiseau, C.; Corbara, B.; Céréghino, R.; Mary, I.; Leroy, C. url  doi
openurl 
  Title Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem Type Journal Article
  Year 2020 Publication FEMS microbiology ecology Abbreviated Journal FEMS Microbiol. Ecol.  
  Volume (down) 96 Issue 4 Pages fiaa045  
  Keywords 16S rRNA gene; amplicon sequencing; bacterial diversity; community ecology; decomposition; ecological succession  
  Abstract Despite the growing number of investigations on microbial succession during the last decade, most of our knowledge on primary succession of bacteria in natural environments comes from conceptual models and/or studies of chronosequences. Successional patterns of litter-degrading bacteria remain poorly documented, especially in undisturbed environments. Here we conducted an experiment with tank bromeliads as natural freshwater microcosms to assess major trends in bacterial succession on two leaf-litter species incubated with or without animal exclusion. We used amplicon sequencing and a co-occurrence network to assess changes in bacterial community structure according to treatments. Alpha-diversity and community complexity displayed the same trends regardless of the treatments, highlighting that primary succession of detrital-bacteria is subject to resource limitation and biological interactions, much like macro-organisms. Shifts in bacterial assemblages along the succession were characterized by an increase in uncharacterized taxa and potential N-fixing bacteria, the latter being involved in positive co-occurrence between taxa. These findings support the hypothesis of interdependence between taxa as a significant niche-based process shaping bacterial communities during the advanced stage of succession. © FEMS 2020.  
  Address AMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, Montpellier, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 15746941 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 14 April 2020 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 926  
Permanent link to this record
 

 
Author Talaga, S.; Dejean, A.; Azémar, F.; Dumont, Y.; Leroy, C. doi  openurl
  Title Impacts of biotic and abiotic parameters on immature populations of Aedes aegypti Type Journal Article
  Year 2020 Publication Journal of Pest Science Abbreviated Journal J. Pest Sci.  
  Volume (down) 93 Issue 3 Pages 941-952  
  Keywords Biocontrol agents; Competition; Ecosystem services; Mosquito control; Mosquito management; Predation; abiotic factor; biotic factor; competitive displacement; disease vector; maturation; mosquito; pest control; Aedes aegypti; Hexapoda; Zika virus  
  Abstract In recent centuries, the mosquito Aedes aegypti has spread into most urban areas throughout the tropics. This species is considered the main vector of the chikungunya, dengue, yellow fever and Zika viruses and causes major public health issues. The aim of this study is to investigate the relative influence of biotic and abiotic parameters on immature populations of Ae. aegypti. During a one-year-long field experiment, we monitored 108 macroinvertebrate aquatic communities inhabiting four types of water containers across three different urbanized sites in a Neotropical city. A multimodel inference approach revealed that, in addition to abiotic parameters, biotic interactions with aquatic organisms had an important influence on the abundance of Ae. aegypti and that the urbanized site considered influences the outcomes of the interactions. Controphic species other than mosquitoes aided Ae. aegypti development, suggesting a mechanism of facilitation through a chain of processes. However, the abundance of Ae. aegypti was lowered by competition with native mosquito species in the slightly urbanized area and by predation in more urbanized areas. Competitive displacement and reduction, as well as predation by native aquatic organisms, can be considered a form of ecosystem service. The conservation and/or augmentation of natural enemies should improve the short- and long-term success of incompatible and/or sterile insect techniques, thus opening up perspectives for the future of mosquito management. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address University of Pretoria, Department of Mathematics and Applied Mathematics, Pretoria, South Africa  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 16124758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 962  
Permanent link to this record
 

 
Author Lang, G.; Marcon, E.; Puech, F. doi  openurl
  Title Distance-based measures of spatial concentration: introducing a relative density function Type Journal Article
  Year 2020 Publication Annals of Regional Science Abbreviated Journal Ann. Reg. Sci.  
  Volume (down) 64 Issue 2 Pages 243-265  
  Keywords Agglomeration; Aggregation; Economic geography; Point patterns; Spatial concentration; accuracy assessment; econometrics; economic activity; economic geography; industrial agglomeration; industrial location; location decision; spatial analysis; spatial distribution  
  Abstract For more than a decade, distance-based methods have been widely employed and constantly improved in spatial economics. These methods are a very useful tool for accurately evaluating the spatial distribution of economic activity. We introduce a new distance-based statistical measure for evaluating the spatial concentration of industries. The m function is the first relative density function to be proposed in economics. This tool supplements the typology of distance-based methods recently drawn up by Marcon and Puech (J Econ Geogr 3(4):409–428, 2003). By considering several simulated and real examples, we show the advantages and the limits of the m function for detecting spatial structures in economics. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address RITM, Univ. Paris-Sud, Université Paris-Saclay and CREST, Sceaux, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 05701864 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 976  
Permanent link to this record
 

 
Author Zinger, L.; Donald, J.; Brosse, S.; Gonzalez, M.A.; Iribar, A.; Leroy, C.; Murienne, J.; Orivel, J.; Schimann, H.; Taberlet, P.; Lopes, C.M. doi  openurl
  Title Advances and prospects of environmental DNA in neotropical rainforests Type Journal Article
  Year 2020 Publication Advances in Ecological Research Abbreviated Journal Adv. Ecol. Res.  
  Volume (down) 62 Issue Pages 331-373  
  Keywords Biomonitoring; Conservation biology; DNA metabarcoding; eDNA; Environmental genomics; Neotropics; Rainforests  
  Abstract The rainforests of the Neotropics shelter a vast diversity of plant, animal and microscopic species that provide critical ecosystem goods and services for both local and worldwide populations. These environments face a major crisis due to increased deforestation, pollution, and climate change, emphasizing the need for more effective conservation efforts. The adequate monitoring of these ecosystems has proven a complex and time consuming endeavour, which depends on ever dwindling taxonomic expertise. To date, many species remain undiscovered, let alone described, with otherwise limited information regarding known species population distributions and densities. Overcoming these knowledge shortfalls and practical limitations is becoming increasingly possible through techniques based on environmental DNA (eDNA), i.e., DNA that can be obtained from environmental samples (e.g. tissues, soil, sediment, water, etc.). When coupled with high-throughput sequencing, these techniques now enable realistic, cost-effective, and standardisable biodiversity assessments. This opens up enormous opportunities for advancing our understanding of complex and species-rich tropical communities, but also in facilitating large-scale biomonitoring programs in the neotropics. In this review, we provide a brief introduction to eDNA methods, and an overview of their current and potential uses in both terrestrial and aquatic ecosystems of neotropical rainforests. We also discuss the limits and challenges of these methods for our understanding and monitoring of biodiversity, as well as future research and applied perspectives of these techniques in neotropical rainforests, and beyond. © 2020 Elsevier Ltd  
  Address Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil  
  Corporate Author Thesis  
  Publisher Academic Press Inc. Place of Publication Editor Dumbrell A.J.; Turner E.C.; Fayle T.M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title Advances in Ecological Research  
  Series Volume 62 Series Issue Edition  
  ISSN 00652504 (Issn); 9780128211342 (Isbn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 995  
Permanent link to this record
 

 
Author Sayer, E.J.; Rodtassana, C.; Sheldrake, M.; Bréchet, L.M.; Ashford, O.S.; Lopez-Sangil, L.; Kerdraon-Byrne, D.; Castro, B.; Turner, B.L.; Wright, S.J.; Tanner, E.V.J. doi  openurl
  Title Revisiting nutrient cycling by litterfall—Insights from 15 years of litter manipulation in old-growth lowland tropical forest Type Journal Article
  Year 2020 Publication Advances in Ecological Researc Abbreviated Journal Adv. Ecol. Res.  
  Volume (down) 62 Issue Pages 173-223  
  Keywords Forest floor; Litter addition; Litter removal; Litterfall; Nutrient cycling; Nutrient use efficiency; Soil fertility; Trace elements; Tropical lowland forest  
  Abstract The crucial role of tropical forests in the global carbon balance is underpinned by their extraordinarily high biomass and productivity, even though the majority of tropical forests grow on nutrient-poor soils. Nutrient cycling by litterfall has long been considered essential for maintaining high primary productivity in lowland tropical forests but few studies have tested this assumption experimentally. We review and synthesise findings from the Gigante Litter Manipulation Project (GLiMP), a long-term experiment in lowland tropical forest in Panama, Central America, in which litter has been removed from or added to large-scale plots for 15 years. We assessed changes in soil and litter nutrient concentrations in response to the experimental treatments and estimated nutrient return and nutrient use efficiency to indicate changes in nutrient cycling. The soil concentrations of most nutrients increased with litter addition and declined with litter removal. Litter removal altered nitrogen, potassium, manganese and zinc cycling, demonstrating the importance of litter inputs for maintaining the availability of these elements to plants. By contrast, litter addition only altered nitrogen cycling and, despite low concentrations of available soil phosphorus, the effects of litter manipulation on phosphorus cycling were inconsistent. We discuss potential mechanisms underlying the observed changes, and we emphasise the importance of decomposition processes in the forest floor for retaining nutrient elements, which partially decouples nutrient cycling from the mineral soil. Finally, by synthesising GLiMP studies conducted during 15 years of litter manipulation, we highlight key knowledge gaps and avenues for future research into tropical forest nutrient cycling. © 2020 Elsevier Ltd  
  Address Teagasc, Johnstown Castle, Wexford, Ireland  
  Corporate Author Thesis  
  Publisher Academic Press Inc. Place of Publication Editor Dumbrell A.J.; Turner E.C.; Fayle T.M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title Advances in Ecological Research  
  Series Volume 62 Series Issue Edition  
  ISSN 00652504 (Issn); 9780128211342 (Isbn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1001  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: