toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Talaga, S.; Dejean, A.; Azémar, F.; Dumont, Y.; Leroy, C. doi  openurl
  Title (up) Impacts of biotic and abiotic parameters on immature populations of Aedes aegypti Type Journal Article
  Year 2020 Publication Journal of Pest Science Abbreviated Journal J. Pest Sci.  
  Volume 93 Issue 3 Pages 941-952  
  Keywords Biocontrol agents; Competition; Ecosystem services; Mosquito control; Mosquito management; Predation; abiotic factor; biotic factor; competitive displacement; disease vector; maturation; mosquito; pest control; Aedes aegypti; Hexapoda; Zika virus  
  Abstract In recent centuries, the mosquito Aedes aegypti has spread into most urban areas throughout the tropics. This species is considered the main vector of the chikungunya, dengue, yellow fever and Zika viruses and causes major public health issues. The aim of this study is to investigate the relative influence of biotic and abiotic parameters on immature populations of Ae. aegypti. During a one-year-long field experiment, we monitored 108 macroinvertebrate aquatic communities inhabiting four types of water containers across three different urbanized sites in a Neotropical city. A multimodel inference approach revealed that, in addition to abiotic parameters, biotic interactions with aquatic organisms had an important influence on the abundance of Ae. aegypti and that the urbanized site considered influences the outcomes of the interactions. Controphic species other than mosquitoes aided Ae. aegypti development, suggesting a mechanism of facilitation through a chain of processes. However, the abundance of Ae. aegypti was lowered by competition with native mosquito species in the slightly urbanized area and by predation in more urbanized areas. Competitive displacement and reduction, as well as predation by native aquatic organisms, can be considered a form of ecosystem service. The conservation and/or augmentation of natural enemies should improve the short- and long-term success of incompatible and/or sterile insect techniques, thus opening up perspectives for the future of mosquito management. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address University of Pretoria, Department of Mathematics and Applied Mathematics, Pretoria, South Africa  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 16124758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 962  
Permanent link to this record
 

 
Author Longo, M.; Saatchi, S.; Keller, M.; Bowman, K.; Ferraz, A.; Moorcroft, P.R.; Morton, D.C.; Bonal, D.; Brando, P.; Burban, B.; Derroire, G.; dos-Santos, M.N.; Meyer, V.; Saleska, S.; Trumbore, S.; Vincent, G. doi  openurl
  Title (up) Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests Type Journal Article
  Year 2020 Publication Journal of Geophysical Research: Biogeosciences Abbreviated Journal J. Geophys. Res. Biogeosci.  
  Volume 125 Issue 8 Pages e2020JG005677  
  Keywords Amazon; drought; ecosystem modeling; evapotranspiration; forest degradation; remote sensing; carbon cycle; deforestation; dry season; evapotranspiration; hydrological cycle; logging (timber); net primary production; remote sensing; sensible heat flux; tropical forest; understory; water stress; Amazon River  
  Abstract Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems. ©2020. The Authors.  
  Address AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21698953 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 957  
Permanent link to this record
 

 
Author Sommeria-Klein, G.; Zinger, L.; Coissac, E.; Iribar, A.; Schimann, H.; Taberlet, P.; Chave, J. doi  openurl
  Title (up) Latent Dirichlet Allocation reveals spatial and taxonomic structure in a DNA-based census of soil biodiversity from a tropical forest Type Journal Article
  Year 2020 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.  
  Volume 20 Issue 2 Pages 371-386  
  Keywords community ecology; environmental DNA; metabarcoding; OTU presence–absence; soil microbiome; topic modelling; bacterium; biodiversity; biology; classification; eukaryote; fungus; genetics; high throughput sequencing; isolation and purification; microbiology; parasitology; procedures; soil; Bacteria; Biodiversity; Computational Biology; Eukaryota; Fungi; High-Throughput Nucleotide Sequencing; Soil; Soil Microbiology  
  Abstract High-throughput sequencing of amplicons from environmental DNA samples permits rapid, standardized and comprehensive biodiversity assessments. However, retrieving and interpreting the structure of such data sets requires efficient methods for dimensionality reduction. Latent Dirichlet Allocation (LDA) can be used to decompose environmental DNA samples into overlapping assemblages of co-occurring taxa. It is a flexible model-based method adapted to uneven sample sizes and to large and sparse data sets. Here, we compare LDA performance on abundance and occurrence data, and we quantify the robustness of the LDA decomposition by measuring its stability with respect to the algorithm's initialization. We then apply LDA to a survey of 1,131 soil DNA samples that were collected in a 12-ha plot of primary tropical forest and amplified using standard primers for bacteria, protists, fungi and metazoans. The analysis reveals that bacteria, protists and fungi exhibit a strong spatial structure, which matches the topographical features of the plot, while metazoans do not, confirming that microbial diversity is primarily controlled by environmental variation at the studied scale. We conclude that LDA is a sensitive, robust and computationally efficient method to detect and interpret the structure of large DNA-based biodiversity data sets. We finally discuss the possible future applications of this approach for the study of biodiversity. © 2019 John Wiley & Sons Ltd  
  Address Laboratoire d’Ecologie des Forêts de Guyane (EcoFoG, UMR 745), INRA, AgroParisTech, CIRAD, CNRS, University of the French West Indies, University of French Guiana, Kourou, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755098x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 981  
Permanent link to this record
 

 
Author Sardans, J.; Urbina, I.; Grau, O.; Asensio, D.; Ogaya, R.; Peñuelas, J. doi  openurl
  Title (up) Long-term drought decreases ecosystem C and nutrient storage in a Mediterranean holm oak forest Type Journal Article
  Year 2020 Publication Environmental and Experimental Botany Abbreviated Journal Environ. Exp. Bot.  
  Volume 177 Issue 104135 Pages  
  Keywords Aridity; Carbon stocks; Climate change; Nitrogen; Phosphorus; Potassium; Stoichiometry; carbon sequestration; deciduous forest; drought; experimental study; forest soil; long-term change; Mediterranean environment; net ecosystem exchange; nutrient cycling; shrub; stoichiometry; Mediterranean Sea; Phillyrea latifolia  
  Abstract Aridity has increased in recent decades in the Mediterranean Basin and is projected to continue to increase in the coming decades. We studied the consequences of drought on the concentrations, stoichiometries and stocks of carbon (C), nitrogen (N), phosphorus (P) and potassium (K) in leaves, foliar litter of a three dominant woody species and soil of a Mediterranean montane holm oak forest where soil-water content was experimentally reduced (15 % lower than the control plots) for 15 years. Nitrogen stocks were lower in the drought plots than in the control plots (8.81 ± 1.01 kg ha−1 in the forest canopy and 856 ± 120 kg ha−1 in the 0−15 cm soil layer), thus representing 7 and 18 % lower N stocks in the canopy and soil respectively. δ15N was consistently higher under drought conditions in all samples, indicating a general loss of N. Foliar C and K stocks were also lower but to a lesser extent than N. Decreases in biomass and C and N stocks due to drought were smallest for the most dominant tall shrub, Phillyrea latifolia, so our results suggest a lower capacity of this forest to store C and nutrients but also substantial resulting changes in forest structure with increasing drought. © 2020 Elsevier B.V.  
  Address Cirad, UMR EcoFoG (AgroParisTech, CNRS, Inra, Univ Antilles, Univ Guyane), Campus Agronomique, Kourou, 97310, French Guiana  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00988472 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 954  
Permanent link to this record
 

 
Author Sullivan, M.J.P.; Lewis, S.L.; Affum-Baffoe, K.; Castilho, C.; Costa, F.; Sanchez, A.C.; Ewango, C.E.N.; Hubau, W.; Marimon, B.; Monteagudo-Mendoza, A.; Qie, L.; Sonké, B.; Martinez, R.V.; Baker, T.R.; Brienen, R.J.W.; Feldpausch, T.R.; Galbraith, D.; Gloor, M.; Malhi, Y.; Aiba, S.-I.; Alexiades, M.N.; Almeida, E.C.; de Oliveira, E.A.; Dávila, E.Á.; Loayza, P.A.; Andrade, A.; Vieira, S.A.; Aragão, L.E.O.C.; Araujo-Murakami, A.; Arets, E.J.M.M.; Arroyo, L.; Ashton, P.; Aymard C., G.; Baccaro, F.B.; Banin, L.F.; Baraloto, C.; Camargo, P.B.; Barlow, J.; Barroso, J.; Bastin, J.-F.; Batterman, S.A.; Beeckman, H.; Begne, S.K.; Bennett, A.C.; Berenguer, E.; Berry, N.; Blanc, L.; Boeckx, P.; Bogaert, J.; Bonal, D.; Bongers, F.; Bradford, M.; Brearley, F.Q.; Brncic, T.; Brown, F.; Burban, B.; Camargo, J.L.; Castro, W.; Céron, C.; Ribeiro, S.C.; Moscoso, V.C.; Chave, J.; Chezeaux, E.; Clark, C.J.; de Souza, F.C.; Collins, M.; Comiskey, J.A.; Valverde, F.C.; Medina, M.C.; da Costa, L.; Dančák, M.; Dargie, G.C.; Davies, S.; Cardozo, N.D.; de Haulleville, T.; de Medeiros, M.B.; del Aguila Pasquel, J.; Derroire, G.; Di Fiore, A.; Doucet, J.-L.; Dourdain, A.; Droissant, V.; Duque, L.F.; Ekoungoulou, R.; Elias, F.; Erwin, T.; Esquivel-Muelbert, A.; Fauset, S.; Ferreira, J.; Llampazo, G.F.; Foli, E.; Ford, A.; Gilpin, M.; Hall, J.S.; Hamer, K.C.; Hamilton, A.C.; Harris, D.J.; Hart, T.B.; Hédl, R.; Herault, B.; Herrera, R.; Higuchi, N.; Hladik, A.; Coronado, E.H.; Huamantupa-Chuquimaco, I.; Huasco, W.H.; Jeffery, K.J.; Jimenez-Rojas, E.; Kalamandeen, M.; Djuikouo, M.N.K.; Kearsley, E.; Umetsu, R.K.; Kho, L.K.; Killeen, T.; Kitayama, K.; Klitgaard, B.; Koch, A.; Labrière, N.; Laurance, W.; Laurance, S.; Leal, M.E.; Levesley, A.; Lima, A.J.N.; Lisingo, J.; Lopes, A.P.; Lopez-Gonzalez, G.; Lovejoy, T.; Lovett, J.C.; Lowe, R.; Magnusson, W.E.; Malumbres-Olarte, J.; Manzatto, Â.G.; Marimon, B.H.; Marshall, A.R.; Marthews, T.; de Almeida Reis, S.M.; Maycock, C.; Melgaço, K.; Mendoza, C.; Metali, F.; Mihindou, V.; Milliken, W.; Mitchard, E.T.A.; Morandi, P.S.; Mossman, H.L.; Nagy, L.; Nascimento, H.; Neill, D.; Nilus, R.; Vargas, P.N.; Palacios, W.; Camacho, N.P.; Peacock, J.; Pendry, C.; Peñuela Mora, M.C.; Pickavance, G.C.; Pipoly, J.; Pitman, N.; Playfair, M.; Poorter, L.; Poulsen, J.R.; Poulsen, A.D.; Preziosi, R.; Prieto, A.; Primack, R.B.; Ramírez-Angulo, H.; Reitsma, J.; Réjou-Méchain, M.; Correa, Z.R.; de Sousa, T.R.; Bayona, L.R.; Roopsind, A.; Rudas, A.; Rutishauser, E.; Abu Salim, K.; Salomão, R.P.; Schietti, J.; Sheil, D.; Silva, R.C.; Espejo, J.S.; Valeria, C.S.; Silveira, M.; Simo-Droissart, M.; Simon, M.F.; Singh, J.; Soto Shareva, Y.C.; Stahl, C.; Stropp, J.; Sukri, R.; Sunderland, T.; Svátek, M.; Swaine, M.D.; Swamy, V.; Taedoumg, H.; Talbot, J.; Taplin, J.; Taylor, D.; ter Steege, H.; Terborgh, J.; Thomas, R.; Thomas, S.C.; Torres-Lezama, A.; Umunay, P.; Gamarra, L.V.; van der Heijden, G.; van der Hout, P.; van der Meer, P.; van Nieuwstadt, M.; Verbeeck, H.; Vernimmen, R.; Vicentini, A.; Vieira, I.C.G.; Torre, E.V.; Vleminckx, J.; Vos, V.; Wang, O.; White, L.J.T.; Willcock, S.; Woods, J.T.; Wortel, V.; Young, K.; Zagt, R.; Zemagho, L.; Zuidema, P.A.; Zwerts, J.A.; Phillips, O.L. url  doi
openurl 
  Title (up) Long-term thermal sensitivity of Earth’s tropical forests Type Journal Article
  Year 2020 Publication Science Abbreviated Journal  
  Volume 368 Issue 6493 Pages 869-874  
  Keywords  
  Abstract A key uncertainty in climate change models is the thermal sensitivity of tropical forests and how this value might influence carbon fluxes. Sullivan et al. measured carbon stocks and fluxes in permanent forest plots distributed globally. This synthesis of plot networks across climatic and biogeographic gradients shows that forest thermal sensitivity is dominated by high daytime temperatures. This extreme condition depresses growth rates and shortens the time that carbon resides in the ecosystem by killing trees under hot, dry conditions. The effect of temperature is worse above 32°C, and a greater magnitude of climate change thus risks greater loss of tropical forest carbon stocks. Nevertheless, forest carbon stocks are likely to remain higher under moderate climate change if they are protected from direct impacts such as clearance, logging, or fires.Science, this issue p. 869The sensitivity of tropical forest carbon to climate is a key uncertainty in predicting global climate change. Although short-term drying and warming are known to affect forests, it is unknown if such effects translate into long-term responses. Here, we analyze 590 permanent plots measured across the tropics to derive the equilibrium climate controls on forest carbon. Maximum temperature is the most important predictor of aboveground biomass (−9.1 megagrams of carbon per hectare per degree Celsius), primarily by reducing woody productivity, and has a greater impact per °C in the hottest forests (>32.2°C). Our results nevertheless reveal greater thermal resilience than observations of short-term variation imply. To realize the long-term climate adaptation potential of tropical forests requires both protecting them and stabilizing Earth’s climate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 932  
Permanent link to this record
 

 
Author Lehnebach, R.; Doumerc, L.; Clair, B.; Alméras, T. url  doi
openurl 
  Title (up) Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Type Journal Article
  Year 2020 Publication Botany Abbreviated Journal Bot.  
  Volume 98 Issue 1 Pages 1-8  
  Keywords Bark anatomical structure; Mechanical stress; Sclereids; Secondary phloem; Tree biomechanics; Tropical species  
  Abstract Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark. Significant tensile or compressive longitudinal stresses were observed in the stems of most species. Tensile longitudinal stress was observed in various botanical families and was always associated with fibers arranged in a trellis-like structure and strong dilatation of rays. The highest tensile stress was recorded in species with gelatinous fibers forming a treillis. Compressive stress was typically associated with a large amount of sclereids in the bark, supporting the differentiation of sclereids as a potential origin of the generation of longitudinal compressive stresses in bark. In species exhibiting both a fibrous trellis structure and a significant amount of sclereids, the sign of longitudinal stress may depend on the balance between these two mechanisms.  
  Address Faculty of Bioscience Engineering, Laboratory of Wood Technology, Woodlab, Coupure Links 653, Gent, B-9000, Belgium  
  Corporate Author Thesis  
  Publisher Canadian Science Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19162804 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 20 January 2020; Correspondence Address: Lehnebach, R.; Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, 860 rue de St. Priest, France; email: lehnebach.romain@hotmail.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 913  
Permanent link to this record
 

 
Author Tysklind, N.; Etienne, M.-P.; Scotti-Saintagne, C.; Tinaut, A.; Casalis, M.; Troispoux, V.; Cazal, S.-O.; Brousseau, L.; Ferry, B.; Scotti, I. doi  openurl
  Title (up) Microgeographic local adaptation and ecotype distributions: The role of selective processes on early life-history traits in sympatric, ecologically divergent Symphonia populations Type Journal Article
  Year 2020 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution  
  Volume 10 Issue 19 Pages 10735-10753  
  Keywords determinants of plant community diversity and structure; evolutionary ecology; landscape ecology; local adaptation; Neotropical forest; plant development and life-history traits; reciprocal transplantation experiments; Symphonia  
  Abstract Trees are characterized by the large number of seeds they produce. Although most of those seeds will never germinate, plenty will. Of those which germinate, many die young, and eventually, only a minute fraction will grow to adult stage and reproduce. Is this just a random process? Do variations in germination and survival at very young stages rely on variations in adaptations to microgeographic heterogeneity? and do these processes matter at all in determining tree species distribution and abundance?. We have studied these questions with the Neotropical Symphonia tree species. In the Guiana shield, Symphonia are represented by at least two sympatric taxa or ecotypes, Symphonia globulifera found almost exclusively in bottomlands, and a yet undescribed more generalist taxon/ecotype, Symphonia sp1. A reciprocal transplantation experiment (510 seeds, 16 conditions) was set up and followed over the course of 6 years to evaluate the survival and performance of individuals from different ecotypes and provenances. Germination, survival, growth, and herbivory showed signs of local adaptation, with some combinations of ecotypes and provenances growing faster and surviving better in their own habitat or provenance region. S. globulifera was strongly penalized when planted outside its home habitat but showed the fastest growth rates when planted in its home habitat, suggesting it is a specialist of a high-risk high-gain strategy. Conversely, S. sp1 behaved as a generalist, performing well in a variety of environments. The differential performance of seeds and seedlings in the different habitats matches the known distribution of both ecotypes, indicating that environmental filtering at the very early stages can be a key determinant of tree species distributions, even at the microgeographic level and among very closely related taxa. Furthermore, such differential performance also contributes to explain, in part, the maintenance of the different Symphonia ecotypes living in intimate sympatry despite occasional gene flow. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd  
  Address UMR AMAP, IRD, Cirad, CNRS, INRAE, Université Montpellier, Montpellier, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 951  
Permanent link to this record
 

 
Author Garcia-Davila, C.; Aldana Gomero, D.; Renno, J.-F.; Diaz Soria, R.; Hidalgo Pizango, G.; Flores Llampazo, G.; Castro-Ruiz, D.; Mejia de Loayza, E.; Angulo Chavez, C.; Mader, M.; Tysklind, N.; Paredes-Villanueva, K.; del Castillo Torres, D.; Degen, B.; Honorio Coronado, E.N. doi  openurl
  Title (up) Molecular evidence for three genetic species of Dipteryx in the Peruvian Amazon Type Journal Article
  Year 2020 Publication Genetica Abbreviated Journal Genetica  
  Volume 148 Issue 1 Pages 1-11  
  Keywords D. micrantha; Dipteryx charapilla; Genetic diversity; Microsatellites; Sequencing; Shihuahuaco; microsatellite DNA; plant DNA; allele; Dipteryx; DNA sequence; genetic variation; genetics; genotype; haplotype; Peru; phylogeny; plastid; river; species difference; Alleles; Dipteryx; DNA, Plant; Genetic Variation; Genotype; Haplotypes; Microsatellite Repeats; Peru; Phylogeny; Plastids; Rivers; Sequence Analysis, DNA; Species Specificity  
  Abstract There is a high international demand for timber from the genus Dipteryx, or “shihuahuaco” as it is known in Peru. Developing tools that allow the identification and discrimination of Dipteryx species is therefore important for supporting management of natural populations and to underpin legal trade of its timber. The objective of this study was the molecular characterization of Dipteryx species in the Peruvian Amazonia. Two plastid regions (cpDNA: trnH–psbA and matK) were sequenced and 11 microsatellite markers (nDNA) were genotyped for 32 individuals identified as Dipteryx charapilla, D. micrantha morphotype 1 and D. micrantha morphotype 2. Using the concatenated sequences of the plastid genes, we identified ten haplotypes that were not shared between the species or between the D. micrantha morphotypes. Haplotypic diversity was greater in D. micrantha morphotype 2 and D. charapilla than in D. micrantha morphotype 1, which presented only one haplotype with a wide distribution in Peru. The microsatellites allowed the discrimination of the same three clades and identified diagnostic alleles for each clade. These results allowed us to demonstrate that the two morphotypes of D. micrantha are different at both the plastid and nuclear markers, which supports the existence of three genetically distinct species in Peru. This study provides information for the genetic discrimination of Dipteryx species and emphasises the importance of conserving the genetic variability of this genus in the Peruvian Amazonia. © 2019, Springer Nature Switzerland AG.  
  Address Carrera de Ingeniería Foresta, Laboratorio de Dendrocronología, Facultad de Ciencias Agrícolas, Universidad Autónoma Gabriel René Moreno, Km 9 carretera al Norte, El Vallecito, Santa Cruz, Bolivia  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00166707 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 990  
Permanent link to this record
 

 
Author Vleminckx, J.; Bauman, D.; Demanet, M.; Hardy, O.J.; Doucet, J.-L.; Drouet, T. doi  openurl
  Title (up) Past human disturbances and soil fertility both influence the distribution of light-demanding tree species in a Central African tropical forest Type Journal Article
  Year 2020 Publication Journal of Vegetation Science Abbreviated Journal J. Veg. Sci.  
  Volume 31 Issue 3 Pages 440-453  
  Keywords light-demanding species; moist tropical forests; past human disturbances; shade-bearer species; soil charcoal abundance; soil properties; tree community assemblages; wood-specific gravity; anthropogenic effect; forest canopy; forest ecosystem; shifting cultivation; soil fertility; soil property; tree; tropical forest; Cameroon  
  Abstract Questions: In vast areas of Central African forests, the upper canopy is presently dominated by light-demanding tree species. Here, we confront three hypotheses to explain this dominance: (a) these species have expanded their distribution because of widespread past slash-and-burn activities, as suggested by important charcoal amounts recorded in the soils of the region; (b) their abundance is rather explained by soil properties, as this guild establishes preferentially on favourable physico-chemical conditions for rapid growth; (c) soil properties have been substantially influenced by past human disturbances and those two effects cannot be disentangled. Location: Pallisco-CIFM logging concession, southeastern Cameroon (300,000 ha). Methods: We quantified soil charcoal abundance and measured ten soil variables at the basis of 60 target trees that belonged to a list of three long-living pioneer light-demanding (LLP) and four shade-bearer (SB) species. We identified all stems with a diameter at breast height (DBH) ≥ 20 cm within a distance of 15 m around each target tree. Species were characterised by their wood-specific gravity (WSG), which reflected their light requirement. Multiple regression models were used to quantify and test the relative effects of charcoal abundance and soil variables on the mean WSG of the 60 tree communities, as well as the abundance of three guilds: LLP, SB, and non-pioneer light demanders (NPLD). Results: The mean WSG was the only response variable significantly explained by soil variables and charcoal abundance combined. It was significantly negatively associated with soil calcium and Mg content and with charcoal abundance, with soil and charcoal influencing the mean WSG independently. Conclusion: Our study provides evidence that past human disturbances and soil fertility have independently promoted the establishment of light-demanding species in western Central African forests, thereby shedding light on tree community assembly rules in these ecosystems which remain considerably understudied compared to the tropical forests of other continents. © 2020 International Association for Vegetation Science  
  Address Forest is life, TERRA Teaching and Research Centre, Université de Liège – Gembloux Agro-Bio Tech, Gembloux, Belgium  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 11009233 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 970  
Permanent link to this record
 

 
Author Laybros, A.; Aubry-Kientz, M.; Féret, J.-B.; Bedeau, C.; Brunaux, O.; Derroire, G.; Vincent, G. doi  openurl
  Title (up) Quantitative airborne inventories in dense tropical forest using imaging spectroscopy Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sens.  
  Volume 12 Issue 10 Pages 1577  
  Keywords Hyperspectral; LiDAR; Species diversity; Tropical forest; Cost effectiveness; Discriminant analysis; Infrared devices; Infrared radiation; Logistic regression; Remote sensing; Tropics; Classification accuracy; Classification performance; Linear discriminant analysis; Operational applications; Regularized discriminant analysis; Remote sensing technology; Short wave infrared bands; Visible and near infrared; Forestry  
  Abstract Tropical forests have exceptional floristic diversity, but their characterization remains incomplete, in part due to the resource intensity of in-situ assessments. Remote sensing technologies can provide valuable, cost-effective, large-scale insights. This study investigates the combined use of airborne LiDAR and imaging spectroscopy to map tree species at landscape scale in French Guiana. Binary classifiers were developed for each of 20 species using linear discriminant analysis (LDA), regularized discriminant analysis (RDA) and logistic regression (LR). Complementing visible and near infrared (VNIR) spectral bands with short wave infrared (SWIR) bands improved the mean average classification accuracy of the target species from 56.1% to 79.6%. Increasing the number of non-focal species decreased the success rate of target species identification. Classification performance was not significantly affected by impurity rates (confusion between assigned classes) in the non-focal class (up to 5% of bias), provided that an adequate criterion was used for adjusting threshold probability assignment. A limited number of crowns (30 crowns) in each species class was sufficient to retrieve correct labels effectively. Overall canopy area of target species was strongly correlated to their basal area over 118 ha at 1.5 ha resolution, indicating that operational application of the method is a realistic prospect (R2 = 0.75 for six major commercial tree species). © 2020 by the authors.  
  Address Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana, 97379, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20724292 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 969  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: