toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Taureau, F.; Robin, M.; Proisy, C.; Fromard, F.; Imbert, D.; Debaine, F. pdf  url
doi  openurl
  Title Mapping the mangrove forest canopy using spectral unmixing of very high spatial resolution satellite images Type Journal Article
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sens.  
  Volume 11 Issue 3 Pages 367  
  Keywords Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Remote sensing; Image resolution; Photography; Photomapping; Pixels; Remote sensing; Satellites; Vegetation; Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Forestry  
  Abstract Despite the lowtree diversity and scarcity of the understory vegetation, the high morphological plasticity of mangrove trees induces, at the stand level, a very large variability of forest structures that need to be mapped for assessing the functioning of such complex ecosystems. Fully constrained linear spectral unmixing (FCLSU) of very high spatial resolution (VHSR) multispectral images was tested to fine-scale map mangrove zonations in terms of horizontal variation of forest structure. The study was carried out on three Pleiades-1A satellite images covering French island territories located in the Atlantic, Indian, and Pacific Oceans, namely Guadeloupe, Mayotte, and New Caledonia archipelagos. In each image, FCLSU was trained from the delineation of areas exclusively related to four components including either pure vegetation, soil (ferns included), water, or shadows. It was then applied to the whole mangrove cover imaged for each island and yielded the respective contributions of those four components for each image pixel. On the forest stand scale, the results interestingly indicated a close correlation between FCLSU-derived vegetation fractions and canopy closure estimated from hemispherical photographs R 2 = 0.95) and a weak relation with the Normalized Difference Vegetation Index (R 2 = 0.29). Classification of these fractions also offered the opportunity to detect and map horizontal patterns of mangrove structure in a given site. K-means classifications of fraction indeed showed a global view of mangrove structure organization in the three sites, complementary to the outputs obtained from spectral data analysis. Our findings suggest that the pixel intensity decomposition applied to VHSR multispectral satellite images can be a simple but valuable approach for (i) mangrove canopy monitoring and (ii) mangrove forest structure analysis in the perspective of assessing mangrove dynamics and productivity. As with Lidar-based surveys, these potential new mapping capabilities deserve further physically based interpretation of sunlight scattering mechanisms within forest canopy. © 2019 by the authors.  
  Address UMR Ecologie des Forêts de Guyane (EcoFoG), INRA, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20724292 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 February 2019; Correspondence Address: Taureau, F.; Université de Nantes, UMR CNRS 6554 Littoral Environnement Télédétection Géomatique, Campus TertreFrance; email: florent.taureau@univ-nantes.fr; Funding details: Université de Nantes; Funding text 1: Funding: A part of this study was funded by the French Coastal Conservancy Institute. It was conducted as part of the PhD work of Florent Taureau supported by the University of Nantes.; References: Duke, N.C., Mangrove Coast (2014) Encyclopedia of Marine Geosciences, pp. 1-17. , Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Berlin, Germany; Feller, I.C., Lovelock, C.E., Berger, U., McKee, K.L., Joye, S.B., Ball, M.C., Biocomplexity in Mangrove Ecosystems (2010) Annu. Rev. Mar. Sci, 2, pp. 395-417; Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M., Sousa, W.P., Environmental drivers in mangrove establishment and early development: A review (2008) Aquat. Bot, 89, pp. 105-127; Chapman, V.J., (1976) Mangrove Vegetation, , Cramer: Vaduz, Liechtenstein; Friess, D.A., Lee, S.Y., Primavera, J.H., Turning the tide on mangrove loss (2016) Mar. Pollut. Bull, 109, pp. 673-675; Alongi, D.M., Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change (2008) Estuar. Coast. Shelf Sci, 76, pp. 1-13; Bouillon, S., Borges, A.V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Rivera-Monroy, V.H., Mangrove production and carbon sinks: A revision of global budget estimates: Global mangrove carbon budgets (2008) Glob. Biogeochem. Cycles, p. 22; Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., Mangroves among the most carbon-rich forests in the tropics (2011) Nat. Geosci, 4, pp. 293-297; Duke, N.C., Nagelkerken, I., Agardy, T., Wells, S., van Bochove, J.-W., (2014) The Importance of Mangroves to People: A Call to Action, , United Nations Environment ProgrammeWorld Conservation Monitoring Centre: Cambridge, UK; De Lacerda, L.D., (2010) Mangrove Ecosystems: Function and Management, , Springer: Berlin, Germany; Lee, S.Y., Primavera, J.H., Dahdouh-Guebas, F., McKee, K., Bosire, J.O., Cannicci, S., Diele, K., Koedam, N., Cyril Marchand Ecological role and services of tropical mangrove ecosystems: a reassessment: Reassessment of mangrove ecosystem services (2014) Glob. Ecol. Biogeogr, 23, pp. 726-743; Spalding, M., Kainuma, M., Collins, L., (2010) World Atlas of Mangroves, , Routledge: Abingdon, UK; (2007) The World's Mangroves 1980-2005: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005, , Food and Agriculture Organization of the United Nations: Rome, Italy; Ellison, J.C., Vulnerability assessment of mangroves to climate change and sea-level rise impacts (2015) Wetl. Ecol. Manag, 23, pp. 115-137; Ellison, J., Zouh, I., Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa (2012) Biology, 1, pp. 617-638; Gilman, E.L., Ellison, J., Duke, N.C., Field, C., Threats to mangroves from climate change and adaptation options: A review (2008) Aquat. Bot, 89, pp. 237-250; Li, S., Meng, X., Ge, Z., Zhang, L., Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, Southern China (2015) Ocean Coast. Manag, 109, pp. 1-8; Alongi, D.M., Present state and future of the world's mangrove forests (2002) Environ. Conserv, 29, pp. 331-349; Panta, M., (2003) Analisys of Forest Canopy Density and Factors Affecting It Using RS and GIS Techniques-A Case Study from Chitwan District of Nepal, , International Institue for Geo-Information Science and Earth Observation: Hengelosestraat, The Netherlands; Birnbaum, P., Canopy surface topography in a French Guiana forest and the folded forest theory (2001) Plant Ecol, 153, pp. 293-300; Lowman, M.D., Schowalter, T., Franklin, J., (2012) Methods in Forest Canopy Research, , University of California Press: Berkeley, CA, USA; Parker, G.G., Structure and microclimate of forest canopies (1995) Forest Canopies: A Review of Research on a Biological Frontier, pp. 73-106. , Lowman, M., Nadkarni, N., Eds.; Academic Press: San Diego, CA, USA; Frazer, G.W., Trofymow, J.A., Lertzman, K.P., (1997) A Method for Estimating Canopy Openness, Effective Leaf Area Index, and Photosynthetically Active Photon Flux Density Using Hemispherical Photography and Computerized Image Analysis Techniques, , Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada; Smith, M.-L., Anderson, J., Fladeland, M., Forest canopy structural properties (2008) Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach, pp. 179-196. , Springer: Berlin, Germany; Green, E.P., Clark, C.D., Mumby, P.J., Edwards, A.J., Ellis, A.C., Remote sensing techniques for mangrove mapping (1998) Int. J. Remote Sens, 19, pp. 935-956; Sari, S.P., Rosalina, D., Mapping and Monitoring of Mangrove Density Changes on tin Mining Area (2016) Procedia Environ. Sci, 33, pp. 436-442; Yuvaraj, E., Dharanirajan, K., Saravanan, N., Karpoorasundarapandian, N., (2014) Evaluation of Vegetation Density of the Mangrove Forest in South Andaman Island Using Remote Sensing and GIS Techniques, pp. 19-25. , International Science Congress Association: India; Garcia-Haro, F.J., Gilabert, M.A., Melia, J., Linear spectral mixture modelling to estimate vegetation amount from optical spectral data (1996) Int. J. Remote Sens, 17, pp. 3373-3400; Braun, M., Martin, H., Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany) (2003) Proceedings of the SPIE 10th International Symposium on Remote Sensing, , Barcelona, Spain, 8-12 September; Drake, N.A., Mackin, S., Settle, J.J., Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery (1999) Remote Sens. Environ, 68, pp. 12-25; Guerschman, J.P., Scarth, P.F., McVicar, T.R., Renzullo, L.J., Malthus, T.J., Stewart, J.B., Rickards, J.E., Trevithick, R., Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data (2015) Remote Sens. Environ, 161, pp. 12-26; Stagakis, S., Vanikiotis, T., Sykioti, O., Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery (2016) ISPRS J. Photogramm. Remote Sens, 119, pp. 79-89; Liu, T., Yang, X., Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis (2013) Remote Sens. Environ, 133, pp. 251-264; Silvan-Cardenas, J.L., Wang, L., Fully Constrained Linear Spectral Unmixing: Analytic Solution Using Fuzzy Sets (2010) IEEE Trans. Geosci. Remote Sens, 48, pp. 3992-4002; Souza, C., Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models (2003) Remote Sens. Environ, 87, pp. 494-506; Ji, M., Feng, J., Subpixel measurement of mangrove canopy closure via spectral mixture analysis (2011) Front. Earth Sci, 5, pp. 130-137; Tiner, R.W., Lang, M.W., Klemas, V.V., (2015) Remote Sensing of Wetlands: Applications and Advances, , CRC Press: Boca Raton, FL, USA; Haase, D., Jänicke, C., Wellmann, T., Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city (2019) Landsc. Urban Plan, 182, pp. 44-54; Dronova, I., Object-Based Image Analysis inWetland Research: A Review (2015) Remote Sens, 7, pp. 6380-6413; Fei, S.X., Shan, C.H., Hua, G.Z., Remote Sensing of Mangrove Wetlands Identification (2011) Procedia Environ. Sci, 10, pp. 2287-2293; Heumann, B.W., Satellite remote sensing of mangrove forests: Recent advances and future opportunities (2011) Prog. Phys. Geogr, 35, pp. 87-108; Proisy, C., Couteron, P., Fromard, F., Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images (2007) Remote Sens. Environ, 109, pp. 379-392; Imbert, D., Labbé, P., Rousteau, A., Hurricane damage and forest structure in Guadeloupe, French West Indies (1996) J. Trop. Ecol, 12, pp. 663-680; Herteman, M., Fromard, F., Lambs, L., Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean (2011) Ecol. Eng, 37, pp. 1283-1291; Cremades, C., (2010) Cartographie des Habitats Naturels des Mangroves de Mayotte, , Direction de l'Agriculture et de la Forêt Service Environnement et Forêt: Mamoudzou, Mayotte; Jeanson, M., (2009) Morphodynamique du Littoral de Mayotte: des Processus au Réseau de Surveillance, , Université du Littoral Côte d'Opale: Dunkerque, France; Marchand, C., Dumas, P., (2007) Typologies et Biodiversité des Mangroves de Nouvelle-Calédonie, , IRD: Nouméa, Nouvelle-Calédonie; Glatthorn, J., Beckschäfer, P., Standardizing the Protocol for Hemispherical Photographs: Accuracy Assessment of Binarization Algorithms (2014) PLoS ONE, 9; Betbeder, J., Nabucet, J., Pottier, E., Baudry, J., Corgne, S., Hubert-Moy, L., Detection and Characterization of Hedgerows Using TerraSAR-X Imagery (2014) Remote Sens, 6, pp. 3752-3769; Betbeder, J., Hubert-Moy, L., Burel, F., Corgne, S., Baudry, J., Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar (2015) Ecol. Indic, 52, pp. 545-557; Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., TerraSAR-X dual-pol time-series for mapping of wetland vegetation (2015) ISPRS J. Photogramm. Remote Sens, 107, pp. 90-98; (2013), Reference Book, eCognition Developer 8.9'; Trimble: Sunnyvale, CA, USA; Lobell, D.B., Asner, G.P., Law, B.E., Treuhaft, R.N., View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS (2002) Int. J. Remote Sens, 23, pp. 2247-2262; Viennois, G., Proisy, C., Feret, J.B., Prosperi, J., Sidik, F., Suhardjono; Rahmania, R., Longépé, N., Gaspar, P., Multitemporal Analysis of High-Spatial-Resolution Optical Satellite Imagery for Mangrove Species Mapping in Bali, Indonesia (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 9, pp. 3680-3686; Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Hoke, M.L., Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4 (1999) Soc. Photo-Opt. Instrum. Eng, 3753, pp. 61-70; Adeline, K.R.M., Chen, M., Briottet, X., Pang, S.K., Paparoditis, N., Shadow detection in very high spatial resolution aerial images: A comparative study (2013) ISPRS J. Photogramm. Remote Sens, 80, pp. 21-38; Heinz, D.C., Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery (2001) IEEE Trans. Geosci. Remote Sens, 39, pp. 529-545; Caliński, T., Harabasz, J., A dendrite method for cluster analysis (1974) Commun. Stat, 3, pp. 1-27; Asner, G.P., Warner, A.S., Canopy shadow in IKONOS satellite observations of tropical forests and savannas (2003) Remote Sens. Environ, 87, pp. 521-533; Dennison, P.E., Halligan, K.Q., Roberts, D.A., A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper (2004) Remote Sens. Environ, 93, pp. 359-367; Kuusk, A., The Hot Spot Effect in Plant Canopy Reflectance (1991) Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology, pp. 139-159. , Myneni, R.B., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany; Barbier, N., Proisy, C., Véga, C., Sabatier, D., Couteron, P., Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations (2011) Remote Sens. Environ, 115, pp. 167-179; Fromard, F., Vega, C., Proisy, C., Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana (2004) A case study based on remote sensing data analyses and field surveys. Mar. Geol, 208, pp. 265-280; Ozdemir, I., Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using RapidEye data (2014) GIS Remote Sens, 51, pp. 288-300; Proisy, C., Féret, J.B., Lauret, N., Gastellu-Etchegorry, J.P., Mangrove Forest Dynamics Using Very High Spatial Resolution Optical Remote Sensing A2-Baghdadi, Nicolas (2016) Land Surface Remote Sensing in Urban and Coastal Areas, pp. 269-295. , Zribi, M., Ed.; Elsevier: Amsterdam, The Netherlands Approved no  
  Call Number EcoFoG @ webmaster @ Serial 861  
Permanent link to this record
 

 
Author Lehnebach, R.; Bossu, J.; Va, S.; Morel, H.; Amusant, N.; Nicolini, E.; Beauchene, J. pdf  url
doi  openurl
  Title Wood density variations of legume trees in French Guiana along the shade tolerance continuum: Heartwood effects on radial patterns and gradients Type Journal Article
  Year 2019 Publication Forests Abbreviated Journal Forests  
  Volume 10 Issue 2 Pages  
  Keywords French Guiana; Growth-mortality rate; Heartwood; Heartwood extractives; Legumes; Sapwood; Shade tolerance; Tropical tree species; Wood density variations  
  Abstract Increasing or decreasing wood density (WD) from pith to bark is commonly observed in tropical tree species. The different types of WD radial variations, long been considered to depict the diversity of growth and mechanical strategies among forest guilds (heliophilic vs. shade-tolerant), were never analyzed in the light of heartwood (HW) formation. Yet, the additional mass of chemical extractives associated to HW formation increases WD and might affect both WD radial gradient (i.e., the slope of the relation between WD and radial distance) and pattern (i.e., linear or nonlinear variation). We studied 16 legumes species from French Guiana representing a wide diversity of growth strategies and positions on the shade-tolerance continuum. Using WD measurements and available HW extractives content values, we computed WD corrected by the extractive content and analyzed the effect of HW on WD radial gradients and patterns. We also related WD variations to demographic variables, such as sapling growth and mortality rates. Regardless of the position along the shade-tolerance continuum, correcting WD gradients reveals only increasing gradients. We determined three types of corrected WD patterns: (1) the upward curvilinear pattern is a specific feature of heliophilic species, whereas (2) the linear and (3) the downward curvilinear patterns are observed in both mid- and late-successional species. In addition, we found that saplings growth and mortality rates are better correlated with the corrected WD at stem center than with the uncorrected value: taking into account the effect of HW extractives on WD radial variations provides unbiased interpretation of biomass accumulation and tree mechanical strategies. Rather than a specific feature of heliophilic species, the increasing WD gradient is a shared strategy regardless of the shade tolerance habit. Finally, our study stresses to consider the occurrence of HW when using WD.  
  Address Ecology of Guianan Forests (EcoFoG), AgroParisTech, French Agricultural Research and International Cooperation Organization (CIRAD), French National Centre for Scientific Research (CNRS), French National Institute for Agricultural Research (INRA), Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19994907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019; Correspondence Address: Lehnebach, R.; Laboratory of Botany and Modeling of Plant Architecture and Vegetation (AMAP), French Agricultural Research and International Cooperation Organization (CIRAD)France; email: romain.lehnebach@cirad.fr; Funding details: Agence Nationale de la Recherche, ANR; Funding details: Federación Española de Enfermedades Raras, FEDER; Funding text 1: The authors thank Grégoire Vincent, Jean-François Molino, and Daniel Sabatier for providing demographical data.). The French Agricultural Research Centre for International Development (CIRAD) funded Romain Lehnebach PhD scholarship. This research project was also funded by the European Regional Development Fund (FEDER, no 31703) and benefits from an 'Investissements d'Avenir' grant managed by the French National Research Agency (CEBA, ref. ANR-10-LABX-25-01).; References: Kollmann, F.F.P., Côté, W.A., (1984) Principles of Wood Science and Technology: I Solid Wood, , Springer: Berlin, Germany; Muller-Landau, H.C., Interspecific and inter-site variation in wood specific gravity of tropical trees (2004) Biotropica, 36, pp. 20-32; Van Gelder, H.A., Poorter, L., Sterck, F.J., Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community (2006) New Phyt, 171, pp. 367-378; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecol. Lett, 12, pp. 351-366; Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Condit, R., Díaz, S., Functional traits and the growth-mortality trade-off in tropical trees (2010) Ecology, 91, pp. 3664-3674; Niklas, K.J., Influence of tissue density-specific mechanical properties on the scaling of plant height (1993) Ann. Bot, 72, pp. 173-179; Niklas, K.J., Spatz, H.-C., Worldwide correlations of mechanical properties and green wood density (2010) Am. J. Bot, 97, pp. 1587-1594; Pratt, R.B., Jacobsen, A.L., Ewers, F.W., Davis, S.D., Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral (2007) New Phyt, 174, pp. 787-798; Lachenbruch, B., Moore, J., Evans, R., Radial Variation in Wood Structure and Function in Woody Plants, and Hypotheses for Its Occurrence (2011) In Size-and Age-Related Changes in Tree Structure and Function, 4, pp. 121-164. , Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Springer: Berlin, Germany; Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure (2001) Oecologia, 126, pp. 457-461; Markesteijn, L., Poorter, L., Paz, H., Sack, L., Bongers, F., Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits (2011) Plant Cell Environ, 34, pp. 137-148; Rosner, S., Wood density as a proxy for vulnerability to cavitation: Size matters (2017) J. Plant Hydraul, 4, pp. 1-10; Zanne, A.E., Westoby, M., Falster, D.S., Ackerly, D.D., Loarie, S.R., Arnold, S.E.J., Coomes, D.A., Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity (2010) Am. J. Bot, 97, pp. 207-215; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., The role of wood density and stem support costs in the growth and mortality of tropical trees (2006) J. Ecol, 94, pp. 670-680; Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Mazer, S.J., Are functional traits good predictors of demographic rates? Evidence from five neotropical forests (2008) Ecology, 89, pp. 1908-1920; Nascimento, H.E.M., Laurance, W.F., Condit, R., Laurance, S.G., D'Angelo, S., Andrade, A.C., Demographic and life-history correlates for Amazonian trees (2005) J. Veg. Sci, 16, pp. 625-634; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., (2011) Size-and Age-Related Changes in Tree Structure and Function, , Springer: Dordrecht, The Netherlands; Wiemann, M., Williamson, G., Extreme radial changes in wood specific gravity in some tropical pioneers (1988) Wood Fiber Sci, 20, pp. 344-349; Rueda, R., Williamson, G.B., Radial and vertical wood specific gravity in Ochroma pyramidale (Cav. ex Lam.) Urb (Bombacaceae) (1992) Biotropica, 24, pp. 512-518; Williamson, G.B., Wiemann, M.C., Geaghan, J.P., Radial wood allocation in Schizolobium parahyba (2012) Am. J. Bot, 99, pp. 1010-1019; Bastin, J.-F., Fayolle, A., Tarelkin, Y., Van den Bulcke, J., de Haulleville, T., Mortier, F., Beeckman, H., Bogaert, J., Wood specific gravity variations and biomass of central African tree species: The simple choice of the outer wood (2015) PLoS ONE, 10; Longuetaud, F., Mothe, F., Santenoise, P., Diop, N., Dlouha, J., Fournier, M., Deleuze, C., Patterns of withinstem variations in wood specific gravity and water content for five temperate tree species (2017) Ann. For. Sci, 74, p. 64; Wiemann, M.C., Williamson, B., Testing a novel method to approximate wood specific gravity of trees (2012) For. Sci, 58, pp. 577-591; Wiemann, M.C., Williamson, G.B., Wood specific gravity gradients in tropical dry and montane rain forest trees (1989) Am. J. Bot, 76, pp. 924-928; Wiemann, M.C., Williamson, G.B., Radial gradients in the specific gravity of wood in some tropical and temperate trees (1989) For. Sci, 35, pp. 197-210; Parolin, P., Radial gradients in wood specific gravity in trees of central amazonian floodplains (2002) IAWA J, 23, pp. 449-457; Abe, H., Kuroda, K., Yamashita, K., Yazaki, K., Noshiro, S., Fujiwara, T., Radial variation of wood density of Quercus spp (Fagaceae) in Japan (2012) Mokuzai Gakkaishi, 58, pp. 329-338; Lei, H., Milota, M.R., Gartner, B.L., Between-and within-tree variation in the anatomy and specific gravity of wood in oregon White Oak (Quercus garryana Dougl.) (1996) IAWA J, 17, pp. 445-461; Woodcock, D., Shier, A., Wood specific gravity and its radial variations: The many ways to make a tree (2002) Trees, 16, pp. 437-443; Hérault, B., Beauchêne, J., Muller, F., Wagner, F., Baraloto, C., Blanc, L., Martin, J.-M., Modeling decay rates of dead wood in a neotropical forest (2010) Oecologia, 164, pp. 243-251; Thibaut, B., Baillères, H., Chanson, B., Fournier-Djimbi, M., Plantations d'arbres à croissance rapide et qualité des produits forestiers sous les tropiques (1997) Bois For. Trop, 252, pp. 49-54; Nock, C.A., Geihofer, D., Grabner, M., Baker, P.J., Bunyavejchewin, S., Hietz, P., Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand (2009) Ann. Bot, 104, pp. 297-306; Hietz, P., Valencia, R., Joseph Wright, S., Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests (2013) Funct. Ecol, 27, pp. 684-692; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Radial variation in wood specific gravity of tropical tree species differing in growth-mortality strategies (2014) Am. J. Bot, 101, pp. 803-811; Plourde, B.T., Boukili, V.K., Chazdon, R.L., Radial changes in wood specific gravity of tropical trees: Interand intraspecific variation during secondary succession (2015) Funct. Ecol, 29, pp. 111-120; Hillis, W.E., Secondary Changes in Wood (1977) In The Structure, Biosynthesis, and Degradation of Wood, 11, pp. 247-309. , Loewus, F., Runeckles, V.C., Eds.; Plenum Press: New York, NY, USA; Hillis, W.E., (1987) Heartwood and Tree Exudates, , Springer-Verlag: Berlin, Germany; Yang, K.C., (1990) The Ageing Process of Sapwood Ray Parenchyma Cells in Four Woody Species, , Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada; Royer, M., Stien, D., Beauchêne, J., Herbette, G., McLean, J.P., Thibaut, A., Thibaut, B., Extractives of the tropical wood wallaba (Eperua falcata Aubl.) as natural anti-swelling agents (2010) Holzforschung, 64, pp. 211-215; Amusant, N., Moretti, C., Richard, B., Prost, E., Nuzillard, J.M., Thévenon, M.F., Chemical compounds from Eperua falcata and Eperua grandiflora heartwood and their biological activities against wood destroying fungus (Coriolus versicolor) (2006) Holz Roh Werkst, 65, pp. 23-28; Lehnebach, R., (2015) Variabilité Ontogénique du Profil Ligneux chez les Légumineuses de Guyane Française, , Ph.D. Thesis, Université de Montpellier, Montpellier, France; Sabatier, D., Prévost, M.F., Quelques données sur la composition floristique, et la diversite des peuplements forestiers de guyane francaise (1990) Bois For. Trop, 219, pp. 31-55; Ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F., Castellanos, H., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Ter Steege, H., Vaessen, R.W., Cárdenas-López, D., Sabatier, D., Antonelli, A., de Oliveira, S.M., Pitman, N.C.A., Salomão, R.P., The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa (2016) Sci. Rep, 6, p. 29549; Woodcock, D.W., Shier, A.D., Does canopy position affect wood specific gravity in temperate forest trees? (2003) Ann. Bot, 91, pp. 529-537; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Linking wood traits to vital rates in tropical rainforest trees: Insights from comparing sapling and adult wood (2017) Am. J. Bot, 104, pp. 1464-1473; Favrichon, V., Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d'un modèle de dynamique de peuplement en forêt guyanaise (1994) Rev. Ecol. Terre Vie, 49, pp. 379-403; (2016) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing: Vienna, Austria; Taylor, A.M., Gartner, B.L., Morrell, J.J., Heartwood formation and natural durability-A review (2002) Wood Fiber Sci, 34, pp. 587-611; Molino, J.F., Sabatier, D., Tree diversity in tropical rain forests: A validation of the intermediate disturbance hypothesis (2001) Science, 294, pp. 1702-1704; Vincent, G., Molino, J.-F., Marescot, L., Barkaoui, K., Sabatier, D., Freycon, V., Roelens, J.B., The relative importance of dispersal limitation and habitat preference in shaping spatial distribution of saplings in a tropical moist forest: A case study along a combination of hydromorphic and canopy disturbance gradients (2011) Ann. For. Sci, 68, pp. 357-370; Pinheiro, J., Bates, D., (2000) Mixed-Effects Models in S and S-PLUS, , Springer-Verlag: New York, NY, USA; Hurvich, C.M., Tsai, C.-L., Bias of the corrected AIC criterion for underfitted regression and time series models (1991) Biometrika, 78, pp. 499-509; Mazerolle, M.J., AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c), , https://cran.r-project.org/package=AICcmodavg, R Package Version 2.1-0. 2016 (accessed on 1 December 2018); Harrel, F.E.J., Hmisc: Harrell Miscellaneous, , https://CRAN.R-project.org/package=Hmisc, R Package Version 3.14-3. 2016 (accessed on 1 December 2018); De Mendiburu, F., (2016) Agricolae: Statistical Procedures for Agricultural Research, , https://CRAN.R-project.org/package=agricolae, (accessed on 1 December 2018). R Package Version 1.2-4; Morel, H., Lehnebach, R., Cigna, J., Ruelle, J., Nicolini, E., Beauchêne, J., Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic Neotropical rainforest tree (2018) Bois For. Trop, 335, pp. 59-69; Bossu, J., (2015) Potentiel de Bagassa guianensis et Cordia alliodora pour la Plantation en Zone Tropicale: Description d'une Stratégie de Croissance Optimale Alliant Vitesse de Croissance et Qualité du Bois, , Ph.D. Thesis, Université de Guyane, Kourou, French Guiana; Oldeman, R.A.A., (1974) L'Architecture de la Forêt Guyanaise, , Office de la Recherche Scientifique et Technique Outre-Mer: Paris, France; Anten, N.P.R., Schieving, F., The role of wood mass density and mechanical constraints in the economy of tree architecture (2010) Am. Nat, 175, p. 11; Larjavaara, M., Muller-Landau, H.C., Rethinking the value of high wood density (2010) Funct. Ecol, 24, pp. 701-705; Lachenbruch, B., McCulloh, K.A., Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant (2014) New Phyt, 204, pp. 747-764; Chapotin, S.M., Razanameharizaka, J.H., Holbrook, N.M., A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae) (2006) Am. J. Bot, 93, pp. 1251-1264; Kuo, M.-L., Arganbright, D.G., Cellular distribution of extractives in redwood and incense cedar-Part II Microscopic observation of the location of cell wall and cell cavity extractives (1980) Holzforschung, 34, pp. 41-47; Olson, J.R., Carpenter, S.B., Specific gravity, fibre length, and extractive content of young Paulownia (1985) Wood Fiber Sci, 17, pp. 428-438; Stringer, J.W., Olson, J.R., Radial and vertical variations in stem properties of juvenile black locust (Robinia pseudoacacia) (1987) Wood Fiber Sci, 19, pp. 59-67; Gierlinger, N., Wimmer, R., Radial distribution of heartwood extractives and lignin in mature European larch (2004) Wood Fiber Sci, 36, pp. 387-394; Bossu, J., Beauchêne, J., Estevez, Y., Duplais, C., Clair, B., New insights on wood dimensional stability influenced by secondary metabolites: The case of a fast-growing tropical species Bagassa guianensis Aubl (2016) PLoS ONE, 11; Amusant, N., Beauchene, J., Fournier, M., Janin, G., Thevenon, M.-F., Decay resistance in Dicorynia guianensis Amsh.: Analysis of inter-tree and intra-tree variability and relations with wood colour (2004) Ann. For. Sci, 61, pp. 373-380; Hillis, W.E., Distribution, properties and formation of some wood extractives (1971) Wood Sci. Tech, 5, pp. 272-289; Taylor, A., Freitag, C., Cadot, E., Morrell, J., Potential of near infrared spectroscopy to assess hot-watersoluble extractive content and decay resistance of a tropical hardwood (2008) Holz Roh Werkst, 66, pp. 107-111; Amusant, N., Nigg, M., Thibaut, B., Beauchene, J., Diversity of decay resistance strategies of durable tropical woods species: Bocoa prouacensis Aublet, Vouacapoua americana Aublet, Inga alba (Sw.) Wild (2014) Int. Biodeterior. Biodegrad, 94, pp. 103-108; Falster, D.S., Westoby, M., Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession (2005) Oikos, 111, pp. 57-66; Panshin, A.J., de Zeeuw, C., (1980) Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada, , McGraw-Hill: New York, NY, USA; Hernández, R.E., Influence of accessory substances, wood density and interlocked grain on the compressive properties of hardwoods (2007) Wood Sci. Tech, 41, pp. 249-265; Gherardi Hein, P.R., Tarcísio Lima, J., Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood (2012) Maderas. Cienc. Tecnol, 14, pp. 267-274; Cave, I.D., Walker, J.C.F., Stiffness of wood in fast-grown plantation softwoods: Theinfluence of microfibril angle (1994) For. Prod. J, 44, pp. 43-48; Bossu, J., Lehnebach, R., Corn, S., Regazzi, A., Beauchêne, J., Clair, B., Interlocked grain and density patterns in Bagassa guianensis: Changes with ontogeny and mechanical consequences for trees (2018) Trees, 32, pp. 1643-1655; Hart, J., Johnson, K., Production of decay-resistant sapwood in response to injury (1970) Wood Sci. Tech, 4, pp. 267-272; Boddy, L., Microenvironmental Aspects of Xylem Defenses to Wood Decay Fungi (1992) Defense Mechanisms of Woody Plants Against Fungi, pp. 96-132. , Blanchette, R.A., Biggs, A.R., Eds.; Springer: Berlin, Germany; Roszaini, K., Hale, M.D., Salmiah, U., In-vitro decay resistance of 12 malaysian broadleaf hardwood trees as a function of wood density and extractives compounds (2016) J. Trop. For. Sci, 28, pp. 533-540; Stamm, A.J., Density of wood substance, adsorption by wood, and permeability of wood (1929) J. Phys. Chem, 33, pp. 398-414 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 858  
Permanent link to this record
 

 
Author Ciminera, M.; Auger-Rozenberg, M.-A.; Caron, H.; Herrera, M.; Scotti-Saintagne, C.; Scotti, I.; Tysklind, N.; Roques, A. url  doi
openurl 
  Title Genetic Variation and Differentiation of Hylesia metabus (Lepidoptera: Saturniidae): Moths of Public Health Importance in French Guiana and in Venezuela Type Journal Article
  Year 2019 Publication Journal of medical entomology Abbreviated Journal J. Med. Entomol.  
  Volume 56 Issue 1 Pages 137-148  
  Keywords  
  Abstract Hylesia moths impact human health in South America, inducing epidemic outbreaks of lepidopterism, a puriginous dermatitis caused by the urticating properties of females' abdominal setae. The classification of the Hylesia genus is complex, owing to its high diversity in Amazonia, high intraspecific morphological variance, and lack of interspecific diagnostic traits which may hide cryptic species. Outbreaks of Hylesia metabus have been considered responsible for the intense outbreaks of lepidopterism in Venezuela and French Guiana since the C20, however, little is known about genetic variability throughout the species range, which is instrumental for establishing control strategies on H. metabus. Seven microsatellites and mitochondrial gene markers were analyzed from Hylesia moths collected from two major lepidopterism outbreak South American regions. The mitochondrial gene sequences contained significant genetic variation, revealing a single, widespread, polymorphic species with distinct clusters, possibly corresponding to populations evolving in isolation. The microsatellite markers validated the mitochondrial results, and suggest the presence of three populations: one in Venezuela, and two in French Guiana. All moths sampled during outbreak events in French Guiana were assigned to a single coastal population. The causes and implications of this finding require further research.  
  Address INRA, Unité de Recherche Ecologie des forêts méditerranéennes, Avignon, UR629, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19382928 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 857  
Permanent link to this record
 

 
Author Prunier, J.; Maurice, L.; Perez, E.; Gigault, J.; Pierson Wickmann, A.-C.; Davranche, M.; Halle, A.T. url  doi
openurl 
  Title Trace metals in polyethylene debris from the North Atlantic subtropical gyre Type Journal Article
  Year 2019 Publication Environmental Pollution Abbreviated Journal Environ. Pollut.  
  Volume 245 Issue Pages 371-379  
  Keywords metals'accumulation; Microplastic; Plastic debris; Polyethylene; Polymer  
  Abstract Plastic pollution in the marine environment poses threats to wildlife and habitats through varied mechanisms, among which are the transport and transfer to the food web of hazardous substances. Still, very little is known about the metal content of plastic debris and about sorption/desorption processes, especially with respect to weathering. In this study, plastic debris collected from the North Atlantic subtropical gyre was analyzed for trace metals; as a comparison, new packaging materials were also analyzed. Both the new items and plastic debris showed very scattered concentrations. The new items contained significant amounts of trace metals introduced as additives, but globally, metal concentrations were higher in the plastic debris. The results provide evidence that enhanced metal concentrations increase with the plastic state of oxidation for some elements, such as As, Ti, Ni, and Cd. Transmission electron microscopy showed the presence of mineral particles on the surface of the plastic debris. This work demonstrates that marine plastic debris carries complex mixtures of heavy metals. Such materials not only behave as a source of metals resulting from intrinsic plastic additives but also are able to concentrate metals from ocean water as mineral nanoparticles or adsorbed species. Plastic debris collected from the North Atlantic subtropical gyre was analyzed for trace metals. Marine plastic debris carry complex mixtures of heavy metals but it is evidence that plastic oxidation favors their adsorption.  
  Address Univ Rennes, Geosciences, UMR CNRS 6118, bat 15, Campus de Beaulieu, Rennes Cedex, 35042, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 02697491 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 3 December 2018; Coden: Enpoe; Correspondence Address: Halle, A.T.; Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III – Paul Sabatier, 118 route de Narbonne, Cedex 09, France; email: ter-halle@chimie.ups-tlse.fr; References: Al-Sid-Cheikh, M., Pedrot, M., Dia, A., Guenet, H., Vantelon, D., Davranche, M., Gruau, G., Delhaye, T., Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences (2015) Sci. Total Environ., 515, pp. 118-128; Anderson, A., Andrady, A., Hidalgo-Ruz, V., Kershaw, P.J., Sources, Fate and Effects of Microplastics in the Marine Environment: a Global Assessment; GESAMP Joint Group of Expertts on the Scientific Aspects of Marine Environmental Protection (2015); Ashton, K., Holmes, L., Turner, A., Association of metals with plastic production pellets in the marine environment (2010) Mar. Pollut. Bull., 60, pp. 2050-2055; Bakir, A., Rowland, S.J., Thompson, R.C., Transport of persistent organic pollutants by microplastics in estuarine conditions (2014) Estuar. Coast Shelf Sci., 140, pp. 14-21; Belzile, N., Devitre, R.R., Tessier, A., Insitu collection of diagenetic iron and manganese oxyhydroxides from natural sediments (1989) Nature, 340, pp. 376-377; Brennecke, D., Duarte, B., Paiva, F., Cacador, I., Canning-Clode, J., Microplastics as vector for heavy metal contamination from the marine environment (2016) Estuar. Coast Shelf Sci., 178, pp. 189-195; Bylan, C., (2003) Developments in Colorants for Plastics, 14, p. 85; Carlton, J.T., Chapman, J.W., Geller, J.B., Miller, J.A., Carlton, D.A., McCuller, M.I., Treneman, N.C., Ruiz, G.M., Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography (2017) Science, 357, pp. 1402-1405; Cordeiro, F., Baer, I., Robouch, P., Emteborg, H., C.-G, J., Korsten, B., d. l. C, B., IMEP-34: Heavy Metals in Toys According to EN 71-3:1994 (2012), JCR Luxembourg p 58pp; Eerkes-Medrano, D., Thompson, R.C., Aldridge, D.C., Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs (2015) Water Res., 75, pp. 63-82; (2004) Emission Scenario Document on Plastic Additives, , OECD Environmental Health and Safety Publications Paris; Engler, R.E., The complex interaction between marine debris and toxic chemicals in the ocean (2012) Environ. Sci. Technol., 46, pp. 12302-12315; Eriksen, M., Mason, S., Wilson, S., Box, C., Zellers, A., Edwards, W., Farley, H., Amato, S., Microplastic pollution in the surface waters of the laurentian great lakes (2013) Mar. Pollut. Bull., 77, pp. 177-182; Fakih, M., Davranche, M., Dia, A., Nowack, B., Petitjean, P., Chatellier, X., Gruau, G., A new tool for in situ monitoring of Fe-mobilization in soils (2008) Appl. Geochem., 23, pp. 3372-3383; Gall, S.C., Thompson, R.C., The impact of debris on marine life (2015) Mar. Pollut. Bull., 92, pp. 170-179; Goldstein, M.C., Carson, H.S., Eriksen, M., Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities (2014) Mar. Biol., 161, pp. 1441-1453; Hansen, E., Nilsson, N.H., Lithner, D., Lassen, C., Hazardous Substances in Plastic Materials, COWI and the Danish Technological Institute on Behalf of Thr Norwegian Climate and Pollution Agency. In Oslo (2010), p 150 pp; (2013) Hazardous Substances in Plastic Materials, , COWI Danish Technological Institute; Hirai, H., Takada, H., Ogata, Y., Yamashita, R., Mizukawa, K., Saha, M., Kwan, C., Ward, M.W., Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches (2011) Mar. Pollut. Bull., 62, pp. 1683-1692; Holmes, L.A., Turner, A., Thompson, R.C., Adsorption of trace metals to plastic resin pellets in the marine environment (2012) Environ. Pollut., 160, pp. 42-48; Holmes, L.A., Turner, A., Thompson, R.C., Interactions between trace metals and plastic production pellets under estuarine conditions (2014) Mar. Chem., 167, pp. 25-32; Imhof, H.K., Laforsch, C., Wiesheu, A.C., Schmid, J., Anger, P.M., Niessner, R., Ivleva, N.P., Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes (2016) Water Res., 98, pp. 64-74; Jiao, W.T., Chen, W.P., Chang, A.C., Page, A.L., Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review (2012) Environ. Pollut., 168, pp. 44-53; Lavers, J.L., Bond, A.L., Ingested plastic as a route for trace metals in laysan albatross (phoebastria immutabilis) and bonin petrel (pterodroma hypoleuca) from midway atoll (2016) Mar. Pollut. Bull., 110, pp. 493-500; Law, K.L., Moret-Ferguson, S.E., Goodwin, D.S., Zettler, E.R., De Force, E., Kukulka, T., Proskurowski, G., Distribution of surface plastic debris in the eastern pacific ocean from an 11-year data set (2014) Environ. Sci. Technol., 48, pp. 4732-4738; Lazzeria, A., Zebarjadb, S.M., Parcellac, M., Cavalierd, K., Rosam, R., Filler toughening of plastics. Part 1-The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites (2005) Polymer, 46, pp. 827-844; Lithner, D., Larsson, A., Dave, G., Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition (2011) Sci. Total Environ., 409, pp. 3309-3324; Marier, C., Calafut, C., Polypropylene: the Definitive User's Guide and Databook. Norwich NY (1998); Massos, A., Turner, A., Cadmium, lead and bromine in beached microplastics (2017) Environ. Pollut., 227, pp. 139-145; Moret-Ferguson, S., Law, K.L., Proskurowski, G., Murphy, E.K., Peacock, E.E., Reddy, C.M., The size, mass, and composition of plastic debris in the western North Atlantic Ocean (2010) Mar. Pollut. Bull., 60, pp. 1873-1878; Murphy, J., Additives for Plastic Handbook (2003), Elsevier Advanced Technology Oxford, UK; Nziguheba, G., Smolders, E., Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries (2008) Sci. Total Environ., 390, pp. 53-57; Rizzotto, M., Chapter 5 Metal complexes as antimicrobial agents (2012) A Search for Antibacterial Agents, p. 73. , V. Bobbarala; Rochman, C.M., Browne, M.A., Halpern, B.S., Hentschel, B.T., Hoh, E., Karapanagioti, H.K., Rios-Mendoza, L.M., Thompson, R.C., Classify plastic waste as hazardous (2013) Nature, 494, pp. 169-171; Rochman, C.M., Hoh, E., Hentschel, B.T., Kaye, S., Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris (2013) Environ. Sci. Technol., 47, pp. 1646-1654; Rochman, C.M., Kurobe, T., Flores, I., Teh, S.J., Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment (2014) Sci. Total Environ., 493, pp. 656-661; Rochman, C.M., Hentschel, B.T., Teh, S.J., Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments (2014) PLoS One, 9; RoHS, Restriction of Hazardous Substances, Eu Directive 2002/95/EC (2006), http://www.rohsguide.com/rohs-substances.htm; Schlining, K., von Thun, S., Kuhnz, L., Schlining, B., Lundsten, L., Stout, N.J., Chaney, L., Connor, J., Debris in the deep: using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA (2013) Deep Sea Res. Part 1 Oceanogr. Res. Pap., 79, pp. 96-105; Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukuwaka, M., Watanuki, Y., Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics (2013) Mar. Pollut. Bull., 69, pp. 219-222; ter Halle, A., Ladirat, L., Gendre, X., Goudouneche, D., Pusineri, C., Routaboul, C., Tenailleau, C., Perez, E., Understanding the fragmentation pattern of marine plastic debris (2016) Environ. Sci. Technol., 50, pp. 5668-5675; Ter Halle, A., Ladirat, L., Martignac, M., Mingotaud, A.F., Boyron, O., Perez, E., To what extent are microplastics from the open ocean weathered? (2017) Environ. Pollut., 227, pp. 167-174; Turner, A., Heavy metals, metalloids and other hazardous elements in marine plastic litter (2016) Mar. Pollut. Bull., 111, pp. 136-142; Turner, A., Trace elements in fragments of fishing net and other filamentous plastic litter from two beaches in SW England (2017) Environ. Pollut., 224, pp. 722-728; Turner, A., Concentrations and migratabilities of hazardous elements in second-hand children's plastic toys (2018) Environ. Sci. Technol., 52, pp. 3110-3116; Turner, A., Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test (2018) Environ. Pollut., 236, pp. 1020-1026; Turner, A., Solman, K.R., Analysis of the elemental composition of marine litter by field-portable-XRF (2016) Talanta, 159, pp. 262-271; Wang, J.D., Peng, J.P., Tan, Z., Gao, Y.F., Zhan, Z.W., Chen, Q.Q., Cai, L.Q., Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals (2017) Chemosphere, 171, pp. 248-258; Wardrop, P., Shimeta, J., Nugegoda, D., Morrison, P.D., Miranda, A., Tang, M., Clarke, B.O., Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish (2016) Environ. Sci. Technol., 50, pp. 4037-4044; Wright, S.L., Thompson, R.C., Galloway, T.S., The physical impacts of microplastics on marine organisms: a review (2013) Environ. Pollut., 178, pp. 483-492; Zettler, E.R., Mincer, T.J., Amaral-Zettler, L.A., Life in the “plastisphere”: microbial communities on plastic marine debris (2013) Environ. Sci. Technol., 47, pp. 7137-7146 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 840  
Permanent link to this record
 

 
Author Esquivel-Muelbert, A.; Baker, T.R.; Dexter, K.G.; Lewis, S.L.; Brienen, R.J.W.; Feldpausch, T.R.; Lloyd, J.; Monteagudo-Mendoza, A.; Arroyo, L.; Álvarez-Dávila, E.; Higuchi, N.; Marimon, B.S.; Marimon-Junior, B.H.; Silveira, M.; Vilanova, E.; Gloor, E.; Malhi, Y.; Chave, J.; Barlow, J.; Bonal, D.; Davila Cardozo, N.; Erwin, T.; Fauset, S.; Hérault, B.; Laurance, S.; Poorter, L.; Qie, L.; Stahl, C.; Sullivan, M.J.P.; ter Steege, H.; Vos, V.A.; Zuidema, P.A.; Almeida, E.; Almeida de Oliveira, E.; Andrade, A.; Vieira, S.A.; Aragão, L.; Araujo-Murakami, A.; Arets, E.; Aymard C, G.A.; Baraloto, C.; Camargo, P.B.; Barroso, J.G.; Bongers, F.; Boot, R.; Camargo, J.L.; Castro, W.; Chama Moscoso, V.; Comiskey, J.; Cornejo Valverde, F.; Lola da Costa, A.C.; del Aguila Pasquel, J.; Di Fiore, A.; Fernanda Duque, L.; Elias, F.; Engel, J.; Flores Llampazo, G.; Galbraith, D.; Herrera Fernández, R.; Honorio Coronado, E.; Hubau, W.; Jimenez-Rojas, E.; Lima, A.J.N.; Umetsu, R.K.; Laurance, W.; Lopez-Gonzalez, G.; Lovejoy, T.; Aurelio Melo Cruz, O.; Morandi, P.S.; Neill, D.; Núñez Vargas, P.; Pallqui Camacho, N.C.; Parada Gutierrez, A.; Pardo, G.; Peacock, J.; Peña-Claros, M.; Peñuela-Mora, M.C.; Petronelli, P.; Pickavance, G.C.; Pitman, N.; Prieto, A.; Quesada, C.; Ramírez-Angulo, H.; Réjou-Méchain, M.; Restrepo Correa, Z.; Roopsind, A.; Rudas, A.; Salomão, R.; Silva, N.; Silva Espejo, J.; Singh, J.; Stropp, J.; Terborgh, J.; Thomas, R.; Toledo, M.; Torres-Lezama, A.; Valenzuela Gamarra, L.; van de Meer, P.J.; van der Heijden, G.; van der Hout, P.; Vasquez Martinez, R.; Vela, C.; Vieira, I.C.G.; Phillips, O.L. pdf  url
doi  openurl
  Title Compositional response of Amazon forests to climate change Type Journal Article
  Year 2019 Publication Global Change Biology Abbreviated Journal Global Change Biol.  
  Volume 25 Issue 1 Pages 39-56  
  Keywords bioclimatic niches; climate change; compositional shifts; functional traits; temporal trends; tropical forests; bioclimatology; climate change; floristics; lowland environment; niche; temporal variation; tropical forest; Amazonia; carbon dioxide; water; biodiversity; Brazil; classification; climate change; ecosystem; forest; physiology; season; tree; tropic climate; Biodiversity; Brazil; Carbon Dioxide; Climate Change; Ecosystem; Forests; Seasons; Trees; Tropical Climate; Water  
  Abstract Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO 2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO 2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.  
  Address Museu Paraense Emílio Goeldi, Pará, Brazil  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13541013 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :21; Export Date: 6 January 2020; Correspondence Address: Esquivel-Muelbert, A.; School of Geography, University of LeedsUnited Kingdom; email: adriane.esquivel@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 905  
Permanent link to this record
 

 
Author Richard-Hansen, C.; Davy, D.; Longin, G.; Gaillard, L.; Renoux, F.; Grenand, P.; Rinaldo, R. pdf  url
doi  openurl
  Title Hunting in French Guiana Across Time, Space and Livelihoods Type Journal Article
  Year 2019 Publication Frontiers in Ecology and Evolution Abbreviated Journal  
  Volume 7 Issue Pages 289  
  Keywords  
  Abstract Hunting sustainability in Amazonian ecosystems is a key challenge for modern stakeholders. Predictive models have evolved from first mostly biological data-based to more recent modelling including human behavior. We analyze here the hunting data collected in French Guiana through a panel of indices aiming at drawing the puzzle of parameters influencing hunting activity and impact in various socio ecological conditions across the country. Data were collected from five different study sites differing in cultural origins and remoteness from market economy, and over a ten years period. Most indices show an impact on wildlife populations, and using a full set of indicators allowed us to better understand some underlying mechanisms that lead to a community’s hunting profile. The results showed that there are noticeable differences between the study sites in the practices and the ways hunters face the changes in environment and resources availability  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-701x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 880  
Permanent link to this record
 

 
Author Clair, B.; Ghislain, B.; Prunier, J.; Lehnebach, R.; Beauchene, J.; Alméras, T. pdf  url
doi  openurl
  Title Mechanical contribution of secondary phloem to postural control in trees: the bark side of the force Type Journal Article
  Year 2019 Publication New Phytologist Abbreviated Journal New Phytol  
  Volume 221 Issue 1 Pages 209-217  
  Keywords bark; Malvaceae; maturation stress; secondary phloem; tree biomechanics  
  Abstract Summary To grow straight, plants need a motor system that controls posture by generating forces to offset gravity. This motor function in trees was long thought to be only controlled by internal forces induced in wood. Here we provide evidence that bark is involved in the generation of mechanical stresses in several tree species. Saplings of nine tropical species were grown tilted and staked in a shadehouse and the change in curvature of the stem was measured after releasing from the pole and after removing the bark. This first experiment evidenced the contribution of bark in the up-righting movement of tree stems. Combined mechanical measurements of released strains on adult trees and microstructural observations in both transverse and longitudinal/tangential plane enabled us to identify the mechanism responsible for the development of asymmetric mechanical stress in the bark of stems of these species. This mechanism does not result from cell wall maturation like in wood, or from the direct action of turgor pressure like in unlignified organs, but is the consequence of the interaction between wood radial pressure and a smartly organized trellis structure in the inner bark.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-646x ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/nph.15375 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 853  
Permanent link to this record
 

 
Author Zinger, L.; Taberlet, P.; Schimann, H.; Bonin, A.; Boyer, F.; De Barba, M.; Gaucher, P.; Gielly, L.; Giguet-Covex, C.; Iribar, A.; Réjou-Méchain, M.; Rayé, G.; Rioux, D.; Schilling, V.; Tymen, B.; Viers, J.; Zouiten, C.; Thuiller, W.; Coissac, E.; Chave, J. url  doi
openurl 
  Title Body size determines soil community assembly in a tropical forest Type Journal Article
  Year 2019 Publication Molecular Ecology Abbreviated Journal Mol Ecol  
  Volume 28 Issue 3 Pages 528-543  
  Keywords DNA metabarcoding; eDNA; French Guiana; multitaxa; neutral assembly; niche determinism; propagule size; soil diversity  
  Abstract Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic?distance-dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12-ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 873  
Permanent link to this record
 

 
Author Dejean, A.; Compin, A.; Delabie, J.H.C.; Azémar, F.; Corbara, B.; Leponce, M. url  doi
openurl 
  Title Biotic and abiotic determinants of the formation of ant mosaics in primary Neotropical rainforests Type Journal Article
  Year 2019 Publication Ecological Entomology Abbreviated Journal Ecol Entomol  
  Volume 44 Issue 4 Pages 560-570  
  Keywords Ant mosaics; connections on the ground; host tree attractiveness; indicators of disturbance; primary Neotropical rainforest; territoriality  
  Abstract 1. Ants are widespread in tropical rainforests, including in the canopy where territorially dominant arboreal species represent the main part of the arthropod biomass.
2. By mapping the territories of dominant arboreal ant species and using a null model analysis and a pairwise approach this study was able to show the presence of an ant mosaic on the upper canopy of a primary Neotropical rainforest (c. 1ha sampled; 157 tall trees from 28 families). Although Neotropical rainforest canopies are frequently irregular, with tree crowns at different heights breaking the continuity of the territories of dominant ants, the latter are preserved via underground galleries or trails laid on the ground.
3. The distribution of the trees influences the structure of the ant mosaic, something related to the attractiveness of tree taxa for certain arboreal ant species rather than others.
4. Small-scale natural disturbances, most likely strong winds in the area studied (presence of canopy gaps), play a role by favouring the presence of two ant species typical of secondary formations: Camponotus femoratus and Crematogaster levior, which live in parabiosis (i.e. share territories and nests but lodge in different cavities) and build conspicuous ant gardens. In addition, pioneer Cecropia myrmecophytic trees were recorded.
 
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0307-6946 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/een.12735 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 882  
Permanent link to this record
 

 
Author Honorio Coronado, E.N.; Blanc-Jolivet, C.; Mader, M.; García-Dávila, C.R.; Sebbenn, A.M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Tysklind, N.; Troispoux, V.; Massot, M.; Degen, B. url  doi
openurl 
  Title Development of nuclear and plastid SNP markers for genetic studies of Dipteryx tree species in Amazonia Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Genet. Res.  
  Volume 11 Issue 3 Pages 333-336  
  Keywords  
  Abstract We developed nuclear and plastid single nucleotide polymorphism (SNP) and insertion/deletion (INDEL) markers for Dipteryx species using a combination of restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing. Of the total 315 loci genotyped using a MassARRAY platform, 292 loci were variable and polymorphic among the 73 sampled individuals from French Guiana, Brasil, Peru, and Bolivia. A final set of 56 nuclear SNPs, 26 chloroplast SNPs, 2 chloroplast INDELs, and 32 mitochondrial SNPs identifying significant population structure was developed. This set of loci will be useful for studies on population genetics of Dipteryx species in Amazonia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1877-7260 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Honorio Coronado2019 Serial 906  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: