toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Céréghino, R.; Corbara, B.; Hénaut, Y.; Bonhomme, C.; Compin, A.; Dejean, A. url  doi
openurl 
  Title (up) Ant and spider species as surrogates for functional community composition of epiphyte-associated invertebrates in a tropical moist forest Type Journal Article
  Year 2019 Publication Ecological Indicators Abbreviated Journal  
  Volume 96 Issue Pages 694-700  
  Keywords Functional traits; Indicator species; Phytotelmata; Rainforests; Surrogacy; Tank bromeliads  
  Abstract Epiphytes represent up to 50% of all plant species in rainforests, where they host a substantial amount of invertebrate biomass. Efficient surrogates for epiphyte invertebrate communities could reduce the cost of biomonitoring surveys while preventing destructive sampling of the plants. Here, we focus on the invertebrate communities associated to tank bromeliads. We ask whether the presence of particular ant and/or spider taxa (easily surveyed taxa) that use these plants as nesting and/or foraging habitats predicts functional trait combinations of aquatic invertebrate communities hosted by the plants. Functional community composition of invertebrates was predicted both by bromeliad habitat features and the presence of certain ant and spider species. The ant Azteca serica preferred wider bromeliad rosettes that trap large amount of detritus, indicating interstitial-like food webs dominated by deposit feeders that burrow in fine particulate organic matter. Leucauge sp. spiders preferred narrower bromeliad rosettes bearing smaller detrital loads, thereby indicating a dominance of pelagic filter-feeding and predatory invertebrates in the water-filled leaf axils. Both Neoponera villosa ants and Eriophora sp. spiders preferred rosettes at intermediate size bearing moderate amounts of detritus, indicating a benthic food web dominated by leaf shredders and gathering collectors. Owing to the animal diversity and biomass supported by rainforest epiphytes, our approach would deserve to be further tested on a range of epiphytes involved in tight interactions with invertebrates. In this context, surrogate species could serve both as indicators of functional diversity, and as early-warning indicators of network disassembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470-160x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 841  
Permanent link to this record
 

 
Author Courtois, E. A.; Stahl, C.; Burban, B.; Van Den Berge, J.; Berveiller, D.; Bréchet, L.; Larned Soong, J.; Arriga, N.; Peñuelas, J.; August Janssens, I. pdf  url
doi  openurl
  Title (up) Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest Type Journal Article
  Year 2019 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 16 Issue 3 Pages 785-796  
  Keywords  
  Abstract Measuring in situ soil fluxes of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) continuously at high frequency requires appropriate technology. We tested the combination of a commercial automated soil CO 2 flux chamber system (LI-8100A) with a CH 4 and N 2 O analyzer (Picarro G2308) in a tropical rainforest for 4 months. A chamber closure time of 2 min was sufficient for a reliable estimation of CO 2 and CH 4 fluxes (100% and 98.5% of fluxes were above minimum detectable flux – MDF, respectively). This closure time was generally not suitable for a reliable estimation of the low N 2 O fluxes in this ecosystem but was sufficient for detecting rare major peak events. A closure time of 25 min was more appropriate for reliable estimation of most N 2 O fluxes (85.6% of measured fluxes are above MDF±0.002 nmolm -2 s -1 ). Our study highlights the importance of adjusted closure time for each gas. © Author(s) 2019.  
  Address CREAF, Cerdanyola Del Vallès, Catalonia, 08193, Spain  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17264170 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 February 2019; Correspondence Address: Alice Courtois, E.; Department of Biology University of Antwerp, Centers of Excellence Global Change Ecology and PLECO (Plants and Ecosystems), Universiteitsplein 1, Belgium; email: courtoiselodie@gmail.com; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD; Funding details: European Research Council, ERC, ERC-2013-SyG 610028-IMBALANCE-P; Funding details: ANR-10-LABX-25-01, ANR-11-INBS-0001; Funding details: U.S. Department of Energy, DOE, DE-AC02-05CH11231; Funding details: Agence Nationale de la Recherche, ANR; Funding details: Institut National de la Recherche Agronomique, INRA; Funding details: Fonds Wetenschappelijk Onderzoek, FWO; Funding text 1: Acknowledgements. This research was supported by the European Research Council Synergy grant ERC-2013-SyG 610028-IMBALANCE-P. We thank Jan Segers for help in the initial setting of the system and Renato Winkler from Picarro and Rod Madsen and Jason Hupp from LI-COR for their help in combining the systems. We thank the staff of Paracou station, managed by UMR Ecofog (CIRAD, INRA; Kourou), which received support from “Investissement d’Avenir” grants managed by Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25-01, ANAEE-France: ANR-11-INBS-0001). This study was conducted in collaboration with the Guyaflux program belonging to SOERE F-ORE-T, which is supported annually by Ecofor, Allenvi, and the French national research infrastructure, ANAEE-F. This program also received support from an “investissement d’avenir” grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). Ivan August Janssens acknowledges support from Antwerp University (Methusalem funding), Nicola Arriga from ICOS-Belgium and Fonds Wetenschappelijk Onderzoek (FWO), and Jennifer Larned Soong from the U.S. Department of Energy under contract DE-AC02-05CH11231.; References: Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-Term variations in carbon flux and balance in a tropical rainforest in French Guiana? (2018) Agr. Forest Meteorol, 253, pp. 114-123; Ambus, P., Skiba, U., Drewer, J., Jones, S., Carter, M.S., Albert, K.R., Sutton, M., Development of an accumulation-based system for cost-effective chamber measurements of inert trace gas fluxes (2010) Eur. J. Soil Sci, 61, pp. 785-792; Arias-Navarro, C., Díaz-Pinés, E., Klatt, S., Brandt, P., Rufino, M.C., Butterbach-Bahl, K., Verchot, L., Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya (2017) J. Geophys. Res.-Biogeo, 122, pp. 514-527; Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B., Gross, P., Bonnefond, J., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Change Biol, 14, pp. 1917-1933; Bréchet, L., Ponton, S., Roy, J., Freycon, V., Coteaux, M.-M., Bonal, D., Epron, D., Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots (2009) Plant Soil, 319, pp. 235-246; Breuer, L., Papen, H., Butterbach-Bahl, K., N2O emission from tropical forest soils of Australia (2000) J. Geophys. Res.-Atmos, 105, pp. 26353-26367; Christiansen, J.R., Outhwaite, J., Smukler, S.M., Comparison of CO2, CH4 and N2O soil-Atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography (2015) Agr. Forest Meteorol, 211, pp. 48-57; Courtois, E.A., Stahl, C., Dataset from Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest (2019) Biogeosciences, 2019. , https://doi.org/10.5281/zenodo.2555299; Courtois, E.A., Stahl, C., Van Den Berge, J., Bréchet, L., Van Langenhove, L., Richter, A., Urbina, I., Janssens, I.A., Spatial variation of soil CO2, CH4 and N2O fluxes across topographical positions in tropical forests of the Guiana Shield (2018) Ecosystems, 21, pp. 1445-1458; Davidson, E., Savage, K., Verchot, L., Navarro, R., Minimizing artifacts and biases in chamber-based measurements of soil respiration (2002) Agr. Forest Meteorol, 113, pp. 21-37; Davidson, E.A., Nepstad, D.C., Ishida, F.Y., Brando, P.M., Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest (2008) Glob. Change Biol, 14, pp. 2582-2590; De Klein, C., Harvey, M., (2012) Nitrous Oxide Chamber Methodology Guidelines, , Ministry for Primary Industries, Wellington, New Zealand; Denmead, O., Chamber systems for measuring nitrous oxide emission from soils in the field (1979) Soil Sci. Soc. Am. J, 43, pp. 89-95; Dutaur, L., Verchot, L.V., A global inventory of the soil CH4 sink (2007) Glob. Biogeochem. Cy, p. 21. , https://doi.org/10.1029/2006GB002734; Epron, D., Bosc, A., Bonal, D., Freycon, V., Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana (2006) J. Trop. Ecol, 22, pp. 565-574; (1998) World Reference Base for Soil Resources, , FAO/ ISRIC/ISSS.FAO, ISRIC, ISSS, World Soil Resources Reports 84, Rome; Görres, C.-M., Kammann, C., Ceulemans, R., Automation of soil flux chamber measurements, potentials and pitfalls (2016) Biogeosciences, 13, pp. 1949-1966. , https://doi.org/10.5194/bg-13-1949-2016; Hupp, J.R., Garcia, R.L., Madsen, R., McDermitt, D.K., Measurement of CO2 evolution in a multiplexed flask system (2009) Amer. Soc. Horticultural Science, Alexandria USA, 44, pp. 1143-1143; Janssens, I.A., Kowalski, A.S., Longdoz, B., Ceulemans, R., Assessing forest soil CO2 efflux, an in-situ comparison of four techniques (2000) Tree Physiol, 20, pp. 23-32; Koskinen, M., Minkkinen, K., Ojanen, P., Kämäräinen, M., Laurila, T., Lohila, A., Measurements of CO2 exchange with an automated chamber system throughout the year, challenges in measuring night-Time respiration on porous peat soil (2014) Biogeosciences, 11, pp. 347-363. , https://doi.org/10.5194/bg-11-347-2014; Kostyanovsky, K., Huggins, D., Stockle, C., Waldo, S., Lamb, B., Developing a flow through chamber system for automated measurements of soil N2O and CO2 emissions (2018) Measurement, 113, pp. 172-180; Merbold, L., Wohlfahrt, G., Butterbach-Bahl, K., Pilegaard, K., DelSontro, T., Stoy, P., Zona, D., Preface, Towards a full greenhouse gas balance of the biosphere (2015) Biogeosciences, 12, pp. 453-456. , https://doi.org/10.5194/bg-12-453-2015; Nickerson, N., (2016) Evaluating Gas Emission Measurements Using Minimum Detectable Flux (MDF), , Eosense Inc., Dartmouth, Nova Scotia, Canada; Nicolini, G., Castaldi, S., Fratini, G., Valentini, R., A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems (2013) Atmos. Environ, 81, pp. 311-319; O'Connell, C.S., Ruan, L., Silver, W.L., Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions (2018) Nat. Commun, 9, p. 1348. , https://doi.org/10.1038/s41467-018-03352; Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., Greenhouse gas emissions from soils-A review (2016) Chem. Erde-Geochem, 76, pp. 327-352; Petitjean, C., Hénault, C., Perrin, A.-S., Pontet, C., Metay, A., Bernoux, M., Jehanno, T., Roggy, J.-C., Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-And-mulch method (2015) Agr. Ecosyst. Environ, 208, pp. 64-74; Petrakis, S., Seyfferth, A., Kan, J., Inamdar, S., Vargas, R., Influence of experimental extreme water pulses on greenhouse gas emissions from soils (2017) Biogeochemistry, 133, pp. 147-164; Petrakis, S., Barba, J., Bond-Lamberty, B., Vargas, R., Using greenhouse gas fluxes to define soil functional types (2017) Plant Soil, pp. 1-10; Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Pihlatie, M., Comparison of different chamber techniques for measuring soil CO2 efflux (2004) Agr. Forest Meteorol, 123, pp. 159-176; Rowland, L., Hill, T.C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Williams, M., Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest (2014) Glob. Change Biol, 20, pp. 979-991; Rubio, V.E., Detto, M., Spatiotemporal variability of soil respiration in a seasonal tropical forest (2017) Ecol. Evol, 7, pp. 7104-7116; Savage, K., Phillips, R., Davidson, E., High temporal frequency measurements of greenhouse gas emissions from soils (2014) Biogeosciences, 11, pp. 2709-2720. , https://doi.org/10.5194/bg-11-2709-2014; Silver, W.L., Lugo, A., Keller, M., Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils (1999) Biogeochemistry, 44, pp. 301-328; Teh, Y.A., Diem, T., Jones, S., Huaraca Quispe, L.P., Baggs, E., Morley, N., Richards, M., Meir, P., Methane and nitrous oxide fluxes across an elevation gradient in the tropical Peruvian Andes (2014) Biogeosciences, 11, pp. 2325-2339. , https://doi.org/10.5194/bg-11-2325-2014; Verchot, L.V., Davidson, E.A., Cattânio, H., Ackerman, I.L., Erickson, H.E., Keller, M., Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia (1999) Global Biogeochem. Cy, 13, pp. 31-46; Verchot, L.V., Davidson, E.A., Cattânio, J.H., Ackerman, I.L., Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia (2000) Ecosystems, 3, pp. 41-56; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agr. Forest Meteorol, 151, pp. 1202-1213 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 860  
Permanent link to this record
 

 
Author Yguel, B.; Piponiot, C.; Mirabel, A.; Dourdain, A.; Hérault, B.; Gourlet-Fleury, S.; Forget, P.-M.; Fontaine, C. doi  openurl
  Title (up) Beyond species richness and biomass: Impact of selective logging and silvicultural treatments on the functional composition of a neotropical forest Type Journal Article
  Year 2019 Publication Forest Ecology and Management Abbreviated Journal  
  Volume 433 Issue Pages 528-534  
  Keywords Selective logging; Humid tropical forest; Functional composition; Seed dispersal; Carbon storage; Commercial stock; Anthropogenic pressure; Sustainability  
  Abstract Tropical forests harbor the greatest terrestrial biodiversity and provide various ecosystem services. The increase of human activities on these forests, among which logging, makes the conservation of biodiversity and associated services strongly dependent on the sustainability of these activities. However the indicators commonly used to assess the impact of forest exploitation, namely species richness and biomass, provide a limited understanding of their sustainability. Here, we assessed the sustainability of common forest exploitation in the Guiana Shield studying the recovery of two ecosystem services i.e. carbon storage and wood stock, and an ecosystem function i.e. seed dispersal by animals. Specifically, we compared total and commercial biomass, as well as functional composition in seed size of animal-dispersed species in replicated forest plots before and 27 years after exploitation. Species richness is also studied to allow comparison. While species richness was not affected by forest exploitation, total and commercial biomass as well as seed size of animal-dispersed species decreased 27 years after exploitation, similarly to forests affected by hunting. These results show that ecosystem services and function likely did not recover even at the lowest intensity of forest exploitation studied, questioning the sustainability of the most common rotation-cycle duration applied in the tropics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-1127 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 839  
Permanent link to this record
 

 
Author Fu, T.; Houel, E.; Amusant, N.; Touboul, D.; Genta-Jouve, G.; Della-Negra, S.; Fisher, G.L.; Brunelle, A.; Duplais, C. pdf  url
doi  openurl
  Title (up) Biosynthetic investigation of γ-lactones in Sextonia rubra wood using in situ TOF-SIMS MS/MS imaging to localize and characterize biosynthetic intermediates Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 1928  
  Keywords  
  Abstract Molecular analysis by parallel tandem mass spectrometry (MS/MS) imaging contributes to the in situ characterization of biosynthetic intermediates which is crucial for deciphering the metabolic pathways in living organisms. We report the first use of TOF-SIMS MS/MS imaging for the cellular localization and characterization of biosynthetic intermediates of bioactive γ-lactones rubrynolide and rubrenolide in the Amazonian tree Sextonia rubra (Lauraceae). Five γ-lactones, including previously reported rubrynolide and rubrenolide, were isolated using a conventional approach and their structural characterization and localization at a lateral resolution of ~400 nm was later achieved using TOF-SIMS MS/MS imaging analysis. 2D/3D MS imaging at subcellular level reveals that putative biosynthetic γ-lactones intermediates are localized in the same cell types (ray parenchyma cells and oil cells) as rubrynolide and rubrenolide. Consequently, a revised metabolic pathway of rubrynolide was proposed, which involves the reaction between 2-hydroxysuccinic acid and 3-oxotetradecanoic acid, contrary to previous studies suggesting a single polyketide precursor. Our results provide insights into plant metabolite production in wood tissues and, overall, demonstrate that combining high spatial resolution TOF-SIMS imaging and MS/MS structural characterization offers new opportunities for studying molecular and cellular biochemistry in plants. © 2019, The Author(s).  
  Address Physical Electronics, Chanhassen, MN 55317, United States  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 866  
Permanent link to this record
 

 
Author Dejean, A.; Compin, A.; Delabie, J.H.C.; Azémar, F.; Corbara, B.; Leponce, M. url  doi
openurl 
  Title (up) Biotic and abiotic determinants of the formation of ant mosaics in primary Neotropical rainforests Type Journal Article
  Year 2019 Publication Ecological Entomology Abbreviated Journal Ecol Entomol  
  Volume 44 Issue 4 Pages 560-570  
  Keywords Ant mosaics; connections on the ground; host tree attractiveness; indicators of disturbance; primary Neotropical rainforest; territoriality  
  Abstract 1. Ants are widespread in tropical rainforests, including in the canopy where territorially dominant arboreal species represent the main part of the arthropod biomass.
2. By mapping the territories of dominant arboreal ant species and using a null model analysis and a pairwise approach this study was able to show the presence of an ant mosaic on the upper canopy of a primary Neotropical rainforest (c. 1ha sampled; 157 tall trees from 28 families). Although Neotropical rainforest canopies are frequently irregular, with tree crowns at different heights breaking the continuity of the territories of dominant ants, the latter are preserved via underground galleries or trails laid on the ground.
3. The distribution of the trees influences the structure of the ant mosaic, something related to the attractiveness of tree taxa for certain arboreal ant species rather than others.
4. Small-scale natural disturbances, most likely strong winds in the area studied (presence of canopy gaps), play a role by favouring the presence of two ant species typical of secondary formations: Camponotus femoratus and Crematogaster levior, which live in parabiosis (i.e. share territories and nests but lodge in different cavities) and build conspicuous ant gardens. In addition, pioneer Cecropia myrmecophytic trees were recorded.
 
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0307-6946 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/een.12735 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 882  
Permanent link to this record
 

 
Author Denis, T.; Richard-Hansen, C.; Brunaux, O.; Guitet, S.; Hérault, B. pdf  url
doi  openurl
  Title (up) Birds of a feather flock together: Functionally similar vertebrates positively co-occur in Guianan forests Type Journal Article
  Year 2019 Publication Ecosphere Abbreviated Journal Ecosphere  
  Volume 10 Issue 3 Pages e02566  
  Keywords activity matching; birds; Guiana Shield; information exchange; mammals; mixed-species associations; mutualism; terra firme rainforests  
  Abstract Medium- and large-sized vertebrates play a key role in shaping overall forest functioning. Despite this, vertebrate interactions, from competition to mutualism, remain poorly studied, even though these interactions should be taken into account in our conservation and management strategies. Thus, we tackled the question of vertebrate co-occurrence in tropical rainforests: Are (negative or positive) co-occurrences dependent on forest structure and composition? and Are these co-occurrences linked to functional species similarity? We recorded the occurrence of 21 medium- and large-sized vertebrates in 19 French Guianan locations in which a large set of forest structure and composition descriptors were collected. We used a probabilistic model to look for co-occurrences at different spatial scales, and species pairwise co-occurrences were then compared to those generated solely on the basis of forest structure and composition. We then quantified the co-occurrence strength between pairwise species dyads and determined whether they relied on species functional similarity, controlling for the environmental effects. We found that positive co-occurrences vastly outnumbered negative co-occurrences, were only partly shaped by the local environment, and were closely linked to species functional similarity. Thus, groups of species sharing similar functional traits are more prone to co-occur, highlighting the key role of functional redundancy in structuring species assemblages. We discuss how positive interactions could generate the predominance of positive co-occurrences in oligotrophic terra firme (unflooded) forests when resources are scarce and dispersed in dry season. Finally, we identified functional groups based on co-occurrence strength and suggested that frugivory/granivory and body size are of primary importance in species interactions in Neotropical vertebrate communities. © 2019 The Authors.  
  Address INPHB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher Wiley-Blackwell Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 21508925 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 March 2020; Correspondence Address: Denis, T.; Office National de la Chasse et de la Faune Sauvage, UMR EcoFoG (AgroParisTech, Cirad, CNRS, INRA, Université des Antilles, Université de Guyane)France; email: thomas.denis@ecofog.gf Approved no  
  Call Number EcoFoG @ webmaster @ Serial 924  
Permanent link to this record
 

 
Author Zinger, L.; Taberlet, P.; Schimann, H.; Bonin, A.; Boyer, F.; De Barba, M.; Gaucher, P.; Gielly, L.; Giguet-Covex, C.; Iribar, A.; Réjou-Méchain, M.; Rayé, G.; Rioux, D.; Schilling, V.; Tymen, B.; Viers, J.; Zouiten, C.; Thuiller, W.; Coissac, E.; Chave, J. url  doi
openurl 
  Title (up) Body size determines soil community assembly in a tropical forest Type Journal Article
  Year 2019 Publication Molecular Ecology Abbreviated Journal Mol Ecol  
  Volume 28 Issue 3 Pages 528-543  
  Keywords DNA metabarcoding; eDNA; French Guiana; multitaxa; neutral assembly; niche determinism; propagule size; soil diversity  
  Abstract Tropical forests shelter an unparalleled biological diversity. The relative influence of environmental selection (i.e., abiotic conditions, biotic interactions) and stochastic?distance-dependent neutral processes (i.e., demography, dispersal) in shaping communities has been extensively studied for various organisms, but has rarely been explored across a large range of body sizes, in particular in soil environments. We built a detailed census of the whole soil biota in a 12-ha tropical forest plot using soil DNA metabarcoding. We show that the distribution of 19 taxonomic groups (ranging from microbes to mesofauna) is primarily stochastic, suggesting that neutral processes are prominent drivers of the assembly of these communities at this scale. We also identify aluminium, topography and plant species identity as weak, yet significant drivers of soil richness and community composition of bacteria, protists and to a lesser extent fungi. Finally, we show that body size, which determines the scale at which an organism perceives its environment, predicted the community assembly across taxonomic groups, with soil mesofauna assemblages being more stochastic than microbial ones. These results suggest that the relative contribution of neutral processes and environmental selection to community assembly directly depends on body size. Body size is hence an important determinant of community assembly rules at the scale of the ecological community in tropical soils and should be accounted for in spatial models of tropical soil food webs.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 873  
Permanent link to this record
 

 
Author Piponiot, C.; Rödig, E.; Putz, F.E.; Rutishauser, E.; Sist, P.; Ascarrunz, N.; Blanc, L.; Derroire, G.; Descroix, L.; Guedes, M.C.; Coronado, E.H.; Huth, A.; Kanashiro, M.; Licona, J.C.; Mazzei, L.; d’Oliveira, M.V.N.; Peña-Claros, M.; Rodney, K.; Shenkin, A.; de Souza, C.R.; Vidal, E.; West, T.A.P.; Wortel, V.; Herault, B. pdf  doi
openurl 
  Title (up) Can timber provision from Amazonian production forests be sustainable? Type Journal Article
  Year 2019 Publication Environmental Research Letters Abbreviated Journal Environmental Research Letters  
  Volume 14 Issue 6 Pages 064014  
  Keywords  
  Abstract Around 30 Mm3 of sawlogs are extracted annually by selective logging of natural production forests in Amazonia, Earth’s most extensive tropical forest. Decisions concerning the management of these production forests will be of major importance for Amazonian forests’ fate. To date, no regional assessment of selective logging sustainability supports decision-making. Based on data from 3500 ha of forest inventory plots, our modelling results show that the average periodic harvests of 20 m3 ha−1 will not recover by the end of a standard 30 year cutting cycle. Timber recovery within a cutting cycle is enhanced by commercial acceptance of more species and with the adoption of longer cutting cycles and lower logging intensities. Recovery rates are faster in Western Amazonia than on the Guiana Shield. Our simulations suggest that regardless of cutting cycle duration and logging intensities, selectively logged forests are unlikely to meet timber demands over the long term as timber stocks are predicted to steadily decline. There is thus an urgent need to develop an integrated forest resource management policy that combines active management of production forests with the restoration of degraded and secondary forests for timber production. Without better management, reduced timber harvests and continued timber production declines are unavoidable.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 875  
Permanent link to this record
 

 
Author Bodin, S.C.; Scheel-Ybert, R.; Beauchene, J.; Molino, J.-F.; Bremond, L. url  doi
openurl 
  Title (up) CharKey: An electronic identification key for wood charcoals of French Guiana Type Journal Article
  Year 2019 Publication IAWA Journal Abbreviated Journal Iawa J.  
  Volume 40 Issue 1 Pages 75-91  
  Keywords anthracology; Charcoal anatomy; computeraided identification; Note: Supplementary material can be accessed in the online edition of this journal via brill.com/iawa.; tropical flora; Xper 2  
  Abstract Tropical tree floras are highly diverse and many genera and species share similar anatomical patterns, making the identification of tropical wood charcoal very difficult. Appropriate tools to characterize charcoal anatomy are thus needed to facilitate and improve identification in such species-rich areas. This paper presents the first computer-aided identification key designed for charcoals from French Guiana, based on the wood anatomy of 507 species belonging to 274 genera and 71 families, which covers respectively 28%, 67% and 86% of the tree species, genera and families currently listed in this part of Amazonia. Species of the same genus are recorded together except those described under a synonym genus in Détienne et al. (1982) that were kept separately. As a result, the key contains 289 'items' and mostly aims to identify charcoals at the genus level. It records 26 anatomical features leading to 112 feature states, almost all of which are illustrated by SEM photographs of charcoal. The descriptions were mostly taken from Détienne et al.'s guidebook on tropical woods of French Guiana (1982) and follow the IAWA list of microscopic features for hardwood identification (Wheeler et al. 1989). Some adjustments were made to a few features and those that are unrelated to charcoal identification were excluded. The whole tool, named CharKey, contains the key itself and the associated database including photographs. It can be downloaded on Figshare at https://figshare.com/s/d7d40060b53d2ad60389 (doi: 10.6084/m9.figshare.6396005). CharKey is accessible using the free software Xper 2 , specifically conceived for taxonomic description and computer aided-identification.  
  Address Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France  
  Corporate Author Thesis  
  Publisher Brill Academic Publishers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09281541 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 864  
Permanent link to this record
 

 
Author Caron, H.; Molino, J.-F.; Sabatier, D.; Léger, P.; Chaumeil, P.; Scotti-Saintagne, C.; Frigério, J.-M.; Scotti, I.; Franc, A.; Petit, R.J. pdf  url
doi  openurl
  Title (up) Chloroplast DNA variation in a hyperdiverse tropical tree community Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution  
  Volume 9 Issue 8 Pages 4897-4905  
  Keywords chloroplast DNA; DNA barcoding; genetic diversity; hybridization; incomplete lineage sorting; introgression; species diversity; tropical trees  
  Abstract We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression. We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment. Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%). Despite large heterogeneities caused by genus-specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species-rich tropical forests.  
  Address INRA, UR629 Ecologie des Forêts Méditerranéennes, URFM, Avignon, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 870  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: