toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Odonne, G.; van den Bel, M.; Burst, M.; Brunaux, O.; Bruno, M.; Dambrine, E.; Davy, D.; Desprez, M.; Engel, J.; Ferry, B.; Freycon, V.; Grenand, P.; Jérémie, S.; Mestre, M.; Molino, J.-F.; Petronelli, P.; Sabatier, D.; Hérault, B. url  doi
openurl 
  Title Long-term influence of early human occupations on current forests of the Guiana Shield Type Journal Article
  Year 2019 Publication Ecology Abbreviated Journal Ecology  
  Volume 100 Issue (up) 10 Pages e02806  
  Keywords Amazonian forest; archaeology; ethnobotany; Guiana Shield; historical ecology; pre-Columbian settlements; ring-ditched hills; alluvial plain; anthropogenic effect; archaeology; basal area; database; ethnobotany; forest ecosystem; historical ecology; occupation; paleoecology; species diversity; Amazonia; French Guiana; Guyana Shield; Annonaceae; Arecaceae; Burseraceae; Lauraceae; Lecythidaceae; Brazil; forest; French Guiana; human; occupation; tree; Brazil; Forests; French Guiana; Humans; Occupations; Trees  
  Abstract To decipher the long-term influences of pre-Columbian land occupations on contemporary forest structure, diversity, and functioning in Amazonia, most of the previous research focused on the alluvial plains of the major rivers of the Amazon basin. Terra firme, that is, nonflooded forests, particularly from the Guiana Shield, are yet to be explored. In this study, we aim to give new insights into the subtle traces of pre-Columbian influences on present-day forests given the archaeological context of terra firme forests of the Guiana Shield. Following archaeological prospects on 13 sites in French Guiana, we carried out forest inventories inside and outside archaeological sites and assessed the potential pre-Columbian use of the sampled tree species using an original ethnobotanical database of the Guiana Shield region. Aboveground biomass (320 and 380 T/ha, respectively), basal area (25–30 and 30–35 m2/ha, respectively), and tree density (550 and 700 stem/ha, respectively) were all significantly lower on anthropized plots (As) than on nonanthropized plots (NAs). Ancient human presence shaped the species composition of the sampled forests with Arecaceae, Burseraceae, and Lauraceae significantly more frequent in As and Annonaceae and Lecythidaceae more frequent in NAs. Although alpha diversity was not different between As and NAs, the presence of pre-Columbian sites enhances significantly the forest beta diversity at the landscape level. Finally, trees with edible fruits are positively associated with pre-Columbian sites, whereas trees used for construction or for their bark are negatively associated with pre-Columbian sites. Half a millennium after their abandonment, former occupied places from the inner Guiana Shield still bear noticeable differences with nonanthropized places. Considering the lack of data concerning archaeology of terra firme Amazonian forests, our results suggest that pre-Columbian influences on the structure (lower current biomass), diversity (higher beta diversity), and composition (linked to the past human tree uses) of current Amazonian forests might be more important than previously thought. © 2019 by the Ecological Society of America  
  Address Institut National Polytechnique Félix Houphouet-Boigny (INP-HB), Yamoussoukro, Ivory Coast, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00129658 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 919  
Permanent link to this record
 

 
Author Ruiz-González, M.X.; Leroy, C.; Dejean, A.; Gryta, H.; Jargeat, P.; Carrión, A.D.A.; Orivel, J. pdf  url
doi  openurl
  Title Do host plant and associated ant species affect microbial communities in myrmecophytes? Type Journal Article
  Year 2019 Publication Insects Abbreviated Journal Insects  
  Volume 10 Issue (up) 11 Pages 391  
  Keywords Allomerus decemarticulatus; Allomerus octoarticulatus; Azteca sp; Cf; Cordia nodosa; Depilis; Domatia; Hirtella physophora; Microbial diversity  
  Abstract Ant-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus spp.  
  Address Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Daxuedonglu 100, Nanning, Guangxi 530005, China  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20754450 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 November 2019; Correspondence Address: Ruiz-González, M.X.; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Ecuador; email: marioxruizgonzalez@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 896  
Permanent link to this record
 

 
Author Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.; Dejean, A.; Bonnafé, E.; Treilhou, M. pdf  url
doi  openurl
  Title The peptide venom composition of the fierce stinging ant tetraponera aethiops (formicidae: Pseudomyrmecinae) Type Journal Article
  Year 2019 Publication Toxins Abbreviated Journal Toxins  
  Volume 11 Issue (up) 12 Pages 732  
  Keywords Defensive venom; Dimeric peptides; Peptidome; Tetraponera aethiops  
  Abstract In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC-MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome.  
  Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20726651 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 902  
Permanent link to this record
 

 
Author Piponiot, C.; Rutishauser, E.; Derroire, G.; Putz, F.E.; Sist, P.; West, T.A.P.; Descroix, L.; Guedes, M.C.; Coronado, E.N.H.; Kanashiro, M.; Mazzei, L.; d’Oliveira, M.V.N.; Peña-Claros, M.; Rodney, K.; Ruschel, A.R.; Souza, C.R. de; Vidal, E.; Wortel, V.; Hérault, B. pdf  doi
openurl 
  Title Optimal strategies for ecosystem services provision in Amazonian production forests Type Journal Article
  Year 2019 Publication Environmental Research Letters Abbreviated Journal  
  Volume 14 Issue (up) 12 Pages 124090  
  Keywords  
  Abstract Although tropical forests harbour most of the terrestrial carbon and biological diversity on Earth they continue to be deforested or degraded at high rates. In Amazonia, the largest tropical forest on Earth, a sixth of the remaining natural forests is formally dedicated to timber extraction through selective logging. Reconciling timber extraction with the provision of other ecosystem services (ES) remains a major challenge for forest managers and policy-makers. This study applies a spatial optimisation of logging in Amazonian production forests to analyse potential trade-offs between timber extraction and recovery, carbon storage, and biodiversity conservation. Current logging regulations with unique cutting cycles result in sub-optimal ES-use efficiency. Long-term timber provision would require the adoption of a land-sharing strategy that involves extensive low-intensity logging, although high transport and road-building costs might make this approach economically unattractive. By contrast, retention of carbon and biodiversity would be enhanced by a land-sparing strategy restricting high-intensive logging to designated areas such as the outer fringes of the region. Depending on management goals and societal demands, either choice will substantially influence the future of Amazonian forests. Overall, our results highlight the need for revaluation of current logging regulations and regional cooperation among Amazonian countries to enhance coherent and trans-boundary forest management.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 910  
Permanent link to this record
 

 
Author Hartke, J.; Sprenger, P.P.; Sahm, J.; Winterberg, H.; Orivel, J.; Baur, H.; Beuerle, T.; Schmitt, T.; Feldmeyer, B.; Menzel, F. pdf  url
doi  openurl
  Title Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal  
  Volume 9 Issue (up) 16 Pages 9160-9176  
  Keywords environmental association; integrative taxonomy; niche differentiation; population structure; sexual selection; speciation  
  Abstract Upon advances in sequencing techniques, more and more morphologically identical organisms are identified as cryptic species. Often, mutualistic interactions are proposed as drivers of diversification. Species of the neotropical parabiotic ant association between Crematogaster levior and Camponotus femoratus are known for highly diverse cuticular hydrocarbon (CHC) profiles, which in insects serve as desiccation barrier but also as communication cues. In the present study, we investigated the association of the ants’ CHC profiles with genotypes and morphological traits, and discovered cryptic species pairs in both genera. To assess putative niche differentiation between the cryptic species, we conducted an environmental association study that included various climate variables, canopy cover, and mutualistic plant species. Although mostly sympatric, the two Camponotus species seem to prefer different climate niches. However in the two Crematogaster species, we could not detect any differences in niche preference. The strong differentiation in the CHC profiles may thus suggest a possible role during speciation itself either by inducing assortative mating or by reinforcing sexual selection after the speciation event. We did not detect any further niche differences in the environmental parameters tested. Thus, it remains open how the cryptic species avoid competitive exclusion, with scope for further investigations. © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.  
  Address Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 September 2019; Correspondence Address: Hartke, J.; Senckenberg Biodiversity and Climate Research CentreGermany; email: Juliane.Hartke@senckenberg.de; Funding details: Leibniz-Gemeinschaft; Funding details: Agence Nationale de la Recherche, Not Available; Funding details: Deutsche Forschungsgemeinschaft, DFG, ME 3842/5‐1; Funding text 1: We thank Philippe Cerdan and Aurelie Dourdain for research permissions in the Hydreco Lab Petit Saut and the Paracou Research Station, respectively. Similarly, we thank Patrick Châtelet, Philippe Gaucher, and Dorothée Deslignes for permission to sample in the Les Nouragues Reserve. Further on, we thank Heike Stypa for supporting us in preparing the chemical samples. We thank Aidin Niamir for his helpful advice regarding climate data analysis. Financial support for this study was provided by the German Science Foundation (DFG) as a grant to Barbara Feldmeyer (FE 1333/7‐1), Thomas Schmitt (SCHM 2645/7‐1), and Florian Menzel (ME 3842/5‐1) and a grant managed by the French Agence Nationale de la Recherche (CEBA, ref. ANR‐10‐LABX‐25‐01) to Jérôme Orivel. The publication of this article was funded by the Open Access Fund of the Leibniz Association. Finally, we thank Markus Pfenninger and two anonymous reviewers for providing helpful comments on an earlier version of this manuscript.; References: Adler, P.B., HilleRisLambers, J., Levine, J.M., A niche for neutrality (2007) Ecology Letters, 10, pp. 95-104. , https://doi.org/10.1111/j.1461-0248.2006.00996.x; Aitchison, J., The statistical analysis of compositional data (1982) Journal of the Royal Statistical Society: Series B (Methodological), 44, pp. 139-177. , https://doi.org/10.1111/j.2517-6161.1982.tb01195.x; Andersson, M., Sexual selection, natural selection and quality advertisement (1982) Biological Journal of the Linnean Society, 17, pp. 375-393. , https://doi.org/10.1111/j.1095-8312.1982.tb02028.x; Bartlett, J.W., Frost, C., Reliability, repeatability and reproducibility: Analysis of measurement errors in continuous variables (2008) Ultrasound in Obstetrics and Gynecology, 31, pp. 466-475. , https://doi.org/10.1002/uog.5256; Baur, H., Kranz-Baltensperger, Y., Cruaud, A., Rasplus, J.Y., Timokhov, A.V., Gokhman, V.E., Morphometric analysis and taxonomic revision of Anisopteromalus Ruschka (Hymenoptera: Chalcidoidea: Pteromalidae) – An integrative approach (2014) Systematic Entomology, 39, pp. 691-709; Baur, H., Leuenberger, C., Analysis of ratios in multivariate morphometry (2011) Systematic Biology, 60, pp. 813-825. , https://doi.org/10.1093/sysbio/syr061; Bell, G., The distribution of abundance in neutral communities (2017) The American Naturalist, 155, p. 606. , https://doi.org/10.2307/3078983; Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Das, I., Cryptic species as a window on diversity and conservation (2007) Trends in Ecology & Evolution, 22, pp. 148-155. , https://doi.org/10.1016/j.tree.2006.11.004; Blomberg, S.P., Garland, T., Ives, A.R., Testing for phylogenetic signal in comparative data: Behavioral traits are more labile (2003) Evolution, 57, pp. 717-745; Blomquist, G.J., Structure and analysis of insect hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 19-34. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Blomquist, G.J., Bagnères, A.-G., Introduction: History and overview of insect hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 3-18. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Bolaños, L.M., Rosenblueth, M., Manrique de Lara, A., Migueles-Lozano, A., Gil-Aguillón, C., Mateo-Estrada, V., Martínez-Romero, E., Cophylogenetic analysis suggests cospeciation between the Scorpion Mycoplasma Clade symbionts and their hosts (2019) PLoS ONE, 14. , https://doi.org/10.1371/journal.pone.0209588; Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Drummond, A.J., BEAST 2: A Software Platform for Bayesian Evolutionary Analysis (2014) PLoS Computational Biology, 10. , https://doi.org/10.1371/journal.pcbi.1003537; Boyle, J.H., Martins, D., Musili, P.M., Pierce, N.E., Population genomics and demographic sampling of the ant-plant Vachellia drepanolobium and its symbiotic ants from sites across its range in East Africa (2018) Frontiers in Ecology and Evolution, 7, p. 206. , https://doi.org/10.3389/fevo.2019.00206; Brückner, A., Heethoff, M., A chemo-ecologists' practical guide to compositional data analysis (2017) Chemoecology, 27, pp. 33-46. , https://doi.org/10.1007/s00049-016-0227-8; Carlson, D.A., Bernier, U.R., Sutton, B.D., Elution patterns from capillary GC for methyl-branched alkanes (1998) Journal of Chemical Ecology, 24, pp. 1845-1865; Chomicki, G., Ward, P.S., Renner, S.S., Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics (2015) Proceedings of the Royal Society B: Biological Sciences, 282, p. 20152200; Chung, H., Carroll, S.B., Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating (2015) BioEssays, 37, pp. 822-830. , https://doi.org/10.1002/bies.201500014; Chung, H., Loehlin, D.W., Dufour, H.D., Vaccaro, K., Millar, J.G., Carroll, S.B., A single gene affects both ecological divergence and mate choice in Drosophila (2014) Science, 343 (6175), pp. 1148-1151; Cruaud, A., Rønsted, N., Chantarasuwan, B., Chou, L.S., Clement, W.L., Couloux, A., Savolainen, V., An extreme case of plant – insect codiversification: Figs and fig-pollinating wasps (2012) Systematic Biology, 61, pp. 1029-1047. , https://doi.org/10.1093/sysbio/sys068; Csösz, S., Wagner, H.C., Bozsó, M., Seifert, B., Arthofer, W., Schlick-Steiner, B.C., Pénzes, Z., Tetramorium indocile Santschi, 1927 stat. rev. is the proposed scientific name for Tetramorium sp. C sensu Schlick-Steiner et al. (2006) based on combined molecular and morphological evidence (Hymenoptera: Formicidae) (2014) Zoologischer Anzeiger, 253, pp. 469-481; Darwell, C.T., Cook, J.M., Cryptic diversity in a fig wasp community — morphologically differentiated species are sympatric but cryptic species are parapatric (2017) Molecular Ecology, 26, pp. 937-950. , https://doi.org/10.1111/mec.13985; Davidson, D.W., Ecological studies of Neotropical ant gardens (1988) Ecology, 69, pp. 1138-1152. , https://doi.org/10.2307/1941268; De Queiroz, K., Species concepts and species delimitation (2007) Systematic Biology, 56, pp. 879-886. , https://doi.org/10.1080/10635150701701083; de Vienne, D.M., Refrégier, G., López-Villavicencio, M., Tellier, A., Hood, M.E., Giraud, T., Cospeciation vs host-shift speciation: Methods for testing, evidence from natural associations and relation to coevolution (2013) New Phytologist, 198, pp. 347-385. , https://doi.org/10.1111/nph.12150; Degnan, P.H., Lazarus, A.B., Brock, C.D., Wernegreen, J.J., Host – symbiont stability and fast evolutionary rates in an ant – Bacterium Association: Cospeciation of Camponotus species and their endosymbionts, Candidatus Blochmannia (2004) Systematic Biology, 53, pp. 95-110. , https://doi.org/10.1080/10635150490264842; Dieckmann, U., Doebeli, M., On the origin of species by sympatric speciation (1999) Nature, 400, pp. 354-357. , https://doi.org/10.1038/22521; Doebeli, M., Dieckmann, U., Evolutionary branching and sympatric speciation caused by different types of ecological interactions (2000) The American Naturalist, 156, pp. S77-S101. , https://doi.org/10.1086/303417; Emery, V.J., Tsutsui, N.D., Recognition in a social symbiosis: Chemical phenotypes and nestmate recognition behaviors of Neotropical parabiotic ants (2013) PLoS ONE, 8. , https://doi.org/10.1371/journal.pone.0056492; Excoffier, L., Lischer, H.E.L., Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows (2010) Molecular Ecology Resources, 10, pp. 564-567; García-Robledo, C., Kuprewicz, E.K., Staines, C.L., Erwin, T.L., Kress, W.J., Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction (2015) Proceedings of the National Academy of Sciences of the United States of America, 113, pp. 680-685. , https://doi.org/10.1073/pnas.1507681113; Gause, G.F., Experimental studies on the struggle for existence I. Mixed population of two species of yeast (1932) Journal of Experimental Biology, 9, pp. 389-402; Gebiola, M., Monti, M.M., Johnson, R.C., Woolley, J.B., Hunter, M.S., Giorgini, M., Pedata, P.A., A revision of the Encarsia pergandiella species complex (Hymenoptera: Aphelinidae) shows cryptic diversity in parasitoids of whitefly pests (2017) Systematic Entomology, 42, pp. 31-59; Grundt, H.H., Kjølner, S., Borgen, L., Rieseberg, L.H., Brochmann, C., High biological species diversity in the arctic flora (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 972-975. , https://doi.org/10.1073/pnas.0510270103; Guimarães, P.R., Jordano, P., Thompson, J.N., Evolution and coevolution in mutualistic networks (2011) Ecology Letters, 14, pp. 877-885. , https://doi.org/10.1111/j.1461-0248.2011.01649.x; Gustafson, K.D., Kensinger, B.J., Bolek, M.G., Luttbeg, B., Distinct snail (Physa) morphotypes from different habitats converge in shell shape and size under common garden conditions (2014) Evolutionary Ecology Research, 16, pp. 77-89; Han, M.V., Zmasek, C.M., PhyloXML: XML for evolutionary biology and comparative genomics (2009) BMC Bioinformatics, 10, p. 356. , https://doi.org/10.1186/1471-2105-10-356; Hardin, G., The competitive exclusion principle (1960) Science, 131, pp. 1292-1297; Heethoff, M., Laumann, M., Weigmann, G., Raspotnig, G., Integrative taxonomy: Combining chemical, morphological and molecular data for delineation of the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae) (2011) Frontiers in Zoology, 8, p. 2; Hoeksema, J.D., Bruna, E.M., Pursuing the big questions about interspecific mutualism: A review of theoretical approaches (2000) Oecologia, 125, pp. 321-330. , https://doi.org/10.1007/s004420000496; Hoffmann, A.A., Turelli, M., Simmons, G.M., Unidirectional incompatibility between populations of Drosophila simulans (1986) Evolution, 40, pp. 692-701; Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M., Fukatsu, T., Strict Host-Symbiont cospeciation and reductive genome evolution in insect gut bacteria (2006) PLoS Biology, 4. , https://doi.org/10.1371/journal.pbio.0040337; Hubbell, S.P., (2001) The unified neutral theory of biodiversity and biogeography, , Princeton, NJ, Princeton University Press; Hubbell, S.P., Neutral theory in community ecology and the hypothesis of functional equivalence (2005) Functional Ecology, 19, pp. 166-172. , https://doi.org/10.1111/j.0269-8463.2005.00965.x; Hudson, E.J., Price, T.D., Pervasive reinforcement and the role of sexual selection in biological speciation (2014) Journal of Heredity, 105, pp. 821-833. , https://doi.org/10.1093/jhered/esu041; Janz, N., Nyblom, K., Nylin, S., Evolutionary dynamics of host-plant specialization: A case study of the Tribe Nymohalini (2001) Evolution, 55, pp. 783-796; Jousselin, E., van Noort, S., Berry, V., Rasplus, J.-Y., Rønsted, N., Erasmus, J.C., Greeff, J.M., One fig to bind them all: Host conservatism in a fig wasp community unraveled by cospeciation analyses among pollinating and nonpollinating fig wasps (2008) Evolution, 62, pp. 1777-1797. , https://doi.org/10.1111/j.1558-5646.2008.00406.x; Kamilar, J.M., Cooper, N., Phylogenetic singal in primate behaviour, ecolog anf life history (2013) Philosophical Transactions of the Royal Society of London. Series B, 368, p. 20120341; Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Kessler, M., Climatologies at high resolution for the earth's land surface areas (2017) Scientific Data, 4, p. 170122. , https://doi.org/10.1038/sdata.2017.122; Kawakita, A., Takimura, A., Terachi, T., Sota, T., Kato, M., Cospeciation analysis of an obligate pollination mutualism: Have Glochidon trees (Euphorbiaceae) and pollinating Epicephala moths (Gracillaridae) diverified in parallel? (2004) Evolution, 58, pp. 2201-2214; Klingenberg, C.P., Size, shape, and form: Concepts of allometry in geometric morphometrics (2016) Development Genes and Evolution, 226, pp. 113-137. , https://doi.org/10.1007/s00427-016-0539-2; Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms (2018) Molecular Biology and Evolution, 35, pp. 1547-1549. , https://doi.org/10.1093/molbev/msy096; Leavitt, D.H., Starrett, J., Westphal, M.F., Hedin, M., Multilocus sequence data reveal dozens of putative cryptic species in a radiation of endemic Californian mygalomorph spiders (Araneae, Mygalomorphae, Nemesiidae) (2015) Molecular Phylogenetics and Evolution, 91, pp. 56-67. , https://doi.org/10.1016/j.ympev.2015.05.016; Leigh, J.W., Bryant, D., POPART: Full-feature software for haplotype network construction (2015) Methods in Ecology and Evolution, 6, pp. 1110-1116; Liaw, A., Wiener, M., Classification and regression by randomForest (2002) R News, 2, pp. 18-22; Martin, S.J., Helanterä, H., Drijfhout, F.P., Evolution of species-specific cuticular hydrocarbon patterns in Formica ants (2008) Biological Journal of the Linnean Society, 95, pp. 131-140. , https://doi.org/10.1111/j.1095-8312.2008.01038.x; Menzel, F., Blaimer, B.B., Schmitt, T., How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait (2017) Proceedings of the Royal Society B-Biological Sciences, 284, p. 20161727. , https://doi.org/10.1098/rspb.2016.1727; Menzel, F., Linsenmair, K.E., Blüthgen, N., Selective interspecific tolerance in tropical Crematogaster-Camponotus associations (2008) Animal Behavior, 75, pp. 837-846. , https://doi.org/10.1016/j.anbehav.2007.07.005; Menzel, F., Orivel, J., Kaltenpoth, M., Schmitt, T., What makes you a potential partner? Insights from convergently evolved ant-ant symbioses (2014) Chemoecology, 24, pp. 105-119. , https://doi.org/10.1007/s00049-014-0149-2; Menzel, F., Schmitt, T., Blaimer, B.B., The evolution of a complex trait: Cuticular hydrocarbons in ants evolve independent from phylogenetic constraints (2017) Journal of Evolutionary Biology, 30, pp. 1372-1385. , https://doi.org/10.1111/jeb.13115; Montero-Pau, J., Gomez, A., Muñoz, J., Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs (2008) Limnology and Oceanography: Methods, 6, pp. 218-222. , https://doi.org/10.4319/lom.2008.6.218; Nosil, P., (2012) Ecological speciation, , Oxford, UK, Oxford University Press; Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Wagner, H., (2016) vegan: Community Ecology Package, , https://cran.r-project.org/web/packages/vegan/; Orivel, J., Errard, C., Dejean, A., Ant gardens: Interspecific recognition in parabiotic ant species (1997) Behavioral Ecology and Sociobiology, 40, pp. 87-93. , https://doi.org/10.1007/s002650050319; Paradis, E., Pegas: An R package for population genetics with an integrated-modular approach (2010) Bioinformatics, 26, pp. 419-420. , https://doi.org/10.1093/bioinformatics/btp696; Quek, S.-P., Davies, S.J., Itino, T., Pierce, N.E., Codiversification in an ant-plant mutualism: Stem texture and the evolution of host use in Crematogaster (Formicidae: Myrmicinae) Inhabitants of Macaranga (Euphorbiaceae) (2004) Evolution, 58, pp. 554-570; (2018) R: A language and environment for statistical computing, , Vienna, Austria, R Foundation for Statistical Computing; Rambaut, A., Drummond, A.J., Xie, D., Baele, G., Suchard, M.A., Posterior summarization in Bayesian Phylogenetics using Tracer 1.7 (2018) Systematic Biology, 67, pp. 901-904. , https://doi.org/10.1093/sysbio/syy032; Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Huelsenbeck, J.P., MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space (2012) Systematic Biology, 61, pp. 539-542; Schlenke, T.A., Begun, D.J., Strong selective sweep associated with a transposon insertion in Drosophila simulans (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 1626-1631. , https://doi.org/10.1073/pnas.0303793101; Schuler, H., Köppler, K., Daxböck-Horvath, S., Rasool, B., Krumböck, S., Schwarz, D., Riegler, M., The hitchhiker's guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi (2016) Molecular Ecology, 25, pp. 1595-1609; Schultz, T.R., Solomon, S.A., Mueller, U.G., Villesen, P., Boomsma, J.J., Adams, R.M.M., Norden, B., Cryptic speciation in the fungus-growing ants Cyphomyrmex longiscapus Weber and Cyphomyrmex muelleri Schultz and Solomon, new species (Formicidae, Attini) (2002) Insectes Sociaux, 49, pp. 331-343. , https://doi.org/10.1007/PL00012657; Schwander, T., Arbuthnott, D., Gries, R., Gries, G., Nosil, P., Crespi, B.J., Hydrocarbon divergence and reproductive isolation in Timema stick insects (2013) BMC Evolutionary Biology, 13, p. 151. , https://doi.org/10.1186/1471-2148-13-151; Scriven, J.J., Whitehorn, P.R., Goulson, D., Tinsley, M.C., Niche partitioning in a sympatric cryptic species complex (2016) Ecology and Evolution, 6, pp. 1328-1339. , https://doi.org/10.1002/ece3.1965; Seifert, B., Removal of allometric variance improves species separation in multi-character discriminant functions when species are strongly allometric and exposes diagnostic characters (2008) Myrmecological News, 11, pp. 91-105; Servedio, M.R., Van Doorn, G.S., Kopp, M., Frame, A.M., Nosil, P., Magic traits in speciation: “magic” but not rare? (2011) Trends in Ecology & Evolution, 26, pp. 389-397; Smadja, C., Butlin, R.K., On the scent of speciation: The chemosensory system and its role in premating isolation (2009) Heredity, 102, pp. 77-97. , https://doi.org/10.1038/hdy.2008.55; Steiner, F.M., Csöcs, S., Markó, B., Gamisch, A., Rinnhofer, L., Folterbauer, C., Schlick-Steiner, B.C., Molecular phylogenetics and evolution turning one into five: Integrative taxonomy uncovers complex evolution of cryptic species in the harvester ant Messor “structor” (2018) Molecular Phylogenetics and Evolution, 127, pp. 387-404. , https://doi.org/10.1016/j.ympev.2018.04.005; Stork, N.E., How many species of insects and other terrestrial arthropods are there on earth? (2018) Annual Review of Ecology Evolution and Systematics, 63, pp. 31-45; Ströher, P.R., Li, C., Pie, M.R., Exon-primed intron-crossing (EPIC) markers as a tool for ant phylogeography (2013) Revista Brasileira de Entomologia, 57, pp. 427-430. , https://doi.org/10.1590/S0085-56262013005000039; Struck, T.H., Feder, J.L., Bendiksby, M., Birkeland, S., Cerca, J., Gusarov, V.I., Dimitrov, D., Finding evolutionary processes hidden in cryptic species (2018) Trends in Ecology & Evolution, 33, pp. 153-163. , https://doi.org/10.1016/j.tree.2017.11.007; Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism (1989) Genetics, 123, pp. 585-595; Tamura, K., Nei, M., Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees (1993) Molecular Biology and Evolution, 10, pp. 512-526; Thibert-Plante, X., Gavrilets, S., Evolution of mate choice and the so-called magic traits in ecological speciation (2013) Ecology Letters, 16, pp. 1004-1013. , https://doi.org/10.1111/ele.12131; Thomas, M.L., Simmons, L.W., Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae) (2008) Journal of Insect Physiology, 54, pp. 1081-1089. , https://doi.org/10.1016/j.jinsphys.2008.04.012; Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Research, 22, pp. 4673-4680. , https://doi.org/10.1093/nar/22.22.4673; Thompson, J.N., Schwind, C., Guimarães, P.R., Friberg, M., Diversification through multitrait evolution in a coevolving interaction (2013) Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 11487-11492. , https://doi.org/10.1073/pnas.1307451110; Türke, M., Fiala, B., Linsenmair, K.E., Feldhaar, H., Estimation of dispersal distances of the obligately plant-associated ant Crematogaster decamera (2010) Ecological Entomology, 35, pp. 662-671. , https://doi.org/10.1111/j.1365-2311.2010.01222.x; van Wilgenburg, E., Symonds, M.R.E., Elgar, M.A., Evolution of cuticular hydrocarbon diversity in ants (2011) Journal of Evolutionary Biology, 24, pp. 1188-1198. , https://doi.org/10.1111/j.1420-9101.2011.02248.x; van Zweden, J.S., d'Ettorre, P., Nestmate recognition in social insects and the role of hydrocarbons (2010) Insect hydrocarbons: Biology, biochemistry, and chemical ecology, pp. 222-243. , G. J. Blomquist, A.-G. Bagnères, (Eds.),, New York, NY, Cambridge University Press; Vantaux, A., Dejean, A., Dor, A., Orivel, J., Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior (2007) Insectes Sociaux, 54, pp. 95-99. , https://doi.org/10.1007/s00040-007-0914-0; Violle, C., Nemergut, D.R., Pu, Z., Jiang, L., Phylogenetic limiting similarity and competitive exclusion (2011) Ecology Letters, 14, pp. 782-787. , https://doi.org/10.1111/j.1461-0248.2011.01644.x; Vodă, R., Dapporto, L., Dincă, V., Vila, R., Why do cryptic species tend not to co-occur? A case study on two cryptic pairs of butterflies (2015) PLoS ONE, 10. , https://doi.org/10.1371/journal.pone.0117802; Wickham, H., (2016) ggplot2: Elegant graphics for data analysis, , 2nd ed., New York, NY, Springer-Verlag; Wolak, M.E., Fairbairn, D.J., Paulsen, Y.R., Guidelines for estimating repeatability (2012) Methods in Ecology and Evolution, 3, pp. 129-137. , https://doi.org/10.1111/j.2041-210X.2011.00125.x Approved no  
  Call Number EcoFoG @ webmaster @ Serial 881  
Permanent link to this record
 

 
Author Bréchet, L.; Courtois, E.A.; Saint-Germain, T.; Janssens, I.A.; Asensio, D.; Ramirez-Rojas, I.; Soong, J.L.; Van Langenhove, L.; Verbruggen, E.; Stahl, C. pdf  url
doi  openurl
  Title Disentangling Drought and Nutrient Effects on Soil Carbon Dioxide and Methane Fluxes in a Tropical Forest Type Journal Article
  Year 2019 Publication Frontiers in Environmental Science Abbreviated Journal Front. Environ. Sci.  
  Volume 7 Issue (up) 180 Pages  
  Keywords carbon dioxide; drought; fertilization; methane; nitrogen; phosphorus; soil GHG fluxes; tropical forest  
  Abstract Tropical soils are a major contributor to the balance of greenhouse gas (GHG) fluxes in the atmosphere. Models of tropical GHG fluxes predict that both the frequency of drought events and changes in atmospheric deposition of nitrogen (N) will significantly affect dynamics of soil carbon dioxide (CO2) and methane (CH4) production and consumption. In this study, we examined the combined effect of a reduction in precipitation and an increase in nutrient availability on soil CO2 and CH4 fluxes in a primary French Guiana tropical forest. Drought conditions were simulated by intercepting precipitation falling through the forest canopy with tarpaulin roofs. Nutrient availability was manipulated through application of granular N and/or phosphorus (P) fertilizer to the soil. Soil water content (SWC) below the roofs decreased rapidly and stayed at continuously low values until roof removal, which as a consequence roughly doubled the duration of the dry season. After roof removal, SWC slowly increased but remained lower than in the control soils even after 2.5 months of wet-season precipitation. We showed that drought-imposed reduction in SWC decreased the CO2 emissions (i.e., CO2 efflux), but strongly increased the CH4 emissions. N, P, and N × P (i.e., NP) additions all significantly increased CO2 emission but had no effect on CH4 fluxes. In treatments where both fertilization and drought were applied, the positive effect of N, P, and NP fertilization on CO2 efflux was reduced. After roof removal, soil CO2 efflux was more resilient in the control plots than in the fertilized plots while there was only a modest effect of roof removal on soil CH4 fluxes. Our results suggest that a combined increase in drought and nutrient availability in soil can locally increase the emissions of both CO2 and CH4 from tropical soils, for a long term.  
  Address Lawrence Berkeley National Laboratory, Climate and Ecosystem Science Division, Berkeley, CA, United States  
  Corporate Author Thesis  
  Publisher Frontiers Media S.A. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296665x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 December 2019; Correspondence Address: Bréchet, L.; Centre of Excellence PLECO (Plant and Ecosystems), Department of Biology, University of AntwerpBelgium; email: laeti.brechet@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 899  
Permanent link to this record
 

 
Author Peguero, G.; Sardans, J.; Asensio, D.; Fernández-Martínez, M.; Gargallo-Garriga, A.; Grau, O.; Llusià, J.; Margalef, O.; Márquez, L.; Ogaya, R.; Urbina, I.; Courtois, E.A.; Stahl, C.; Van Langenhove, L.; Verryckt, L.T.; Richter, A.; Janssens, I.A.; Peñuelas, J. url  doi
openurl 
  Title Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests Type Journal Article
  Year 2019 Publication Proceedings. Biological sciences Abbreviated Journal Proc. Biol. Sci.  
  Volume 286 Issue (up) 1910 Pages 20191300  
  Keywords biogeochemistry; extracellular enzyme activity; litter decomposition; nutrients; soil fauna  
  Abstract Soil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.1 and 17.9% lower, respectively, in the nutrient-poorest site, but this among-site difference was equalized when meso- and macrofauna had access to the litterbags. Further, on average, soil fauna enhanced the rate of litter decomposition by 22.6%, and this contribution consistently increased as nutrient availability in the microenvironment declined. Our results indicate that nutrient scarcity increases the importance of soil fauna on C and N cycling in tropical rainforests. Further, soil fauna is able to equalize differences in microbial decomposition potential, thus buffering to a remarkable extent nutrient shortages at an ecosystem level.  
  Address Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, 1090, Austria  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14712954 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 884  
Permanent link to this record
 

 
Author Schepaschenko, D.; Chave, J.; Phillips, O.L.; Lewis, S.L.; Davies, S.J.; Réjou-Méchain, M.; Sist, P.; Scipal, K.; Perger, C.; Herault, B.; Labrière, N.; Hofhansl, F.; Affum-Baffoe, K.; Aleinikov, A.; Alonso, A.; Amani, C.; Araujo-Murakami, A.; Armston, J.; Arroyo, L.; Ascarrunz, N.; Azevedo, C.; Baker, T.; Bałazy, R.; Bedeau, C.; Berry, N.; Bilous, A.M.; Bilous, S.Y.; Bissiengou, P.; Blanc, L.; Bobkova, K.S.; Braslavskaya, T.; Brienen, R.; Burslem, D.F.R.P.; Condit, R.; Cuni-Sanchez, A.; Danilina, D.; Del Castillo Torres, D.; Derroire, G.; Descroix, L.; Sotta, E.D.; d'Oliveira, M.V.N.; Dresel, C.; Erwin, T.; Evdokimenko, M.D.; Falck, J.; Feldpausch, T.R.; Foli, E.G.; Foster, R.; Fritz, S.; Garcia-Abril, A.D.; Gornov, A.; Gornova, M.; Gothard-Bassébé, E.; Gourlet-Fleury, S.; Guedes, M.; Hamer, K.C.; Susanty, F.H.; Higuchi, N.; Coronado, E.N.H.; Hubau, W.; Hubbell, S.; Ilstedt, U.; Ivanov, V.V.; Kanashiro, M.; Karlsson, A.; Karminov, V.N.; Killeen, T.; Koffi, J.-C.K.; Konovalova, M.; Kraxner, F.; Krejza, J.; Krisnawati, H.; Krivobokov, L.V.; Kuznetsov, M.A.; Lakyda, I.; Lakyda, P.I.; Licona, J.C.; Lucas, R.M.; Lukina, N.; Lussetti, D.; Malhi, Y.; Manzanera, J.A.; Marimon, B.; Junior, B.H.M.; Martinez, R.V.; Martynenko, O.V.; Matsala, M.; Matyashuk, R.K.; Mazzei, L.; Memiaghe, H.; Mendoza, C.; Mendoza, A.M.; Moroziuk, O.V.; Mukhortova, L.; Musa, S.; Nazimova, D.I.; Okuda, T.; Oliveira, L.C.; Ontikov, P.V.; Osipov, A.F.; Pietsch, S.; Playfair, M.; Poulsen, J.; Radchenko, V.G.; Rodney, K.; Rozak, A.H.; Ruschel, A.; Rutishauser, E.; See, L.; Shchepashchenko, M.; Shevchenko, N.; Shvidenko, A.; Silveira, M.; Singh, J.; Sonké, B.; Souza, C.; Stereńczak, K.; Stonozhenko, L.; Sullivan, M.J.P.; Szatniewska, J.; Taedoumg, H.; Ter Steege, H.; Tikhonova, E.; Toledo, M.; Trefilova, O.V.; Valbuena, R.; Gamarra, L.V.; Vasiliev, S.; Vedrova, E.F.; Verhovets, S.V.; Vidal, E.; Vladimirova, N.A.; Vleminckx, J.; Vos, V.A.; Vozmitel, F.K.; Wanek, W.; West, T.A.P.; Woell, H.; Woods, J.T.; Wortel, V.; Yamada, T.; Nur Hajar, Z.S.; Zo-Bi, I.C. pdf  url
doi  openurl
  Title The Forest Observation System, building a global reference dataset for remote sensing of forest biomass Type Journal Article
  Year 2019 Publication Scientific data Abbreviated Journal  
  Volume 6 Issue (up) 198 Pages  
  Keywords  
  Abstract Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.  
  Address FRIM Forest Research Institute of Malaysia, 52109 Kepong, Selangor, Kuala Lumpur, Malaysia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 October 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 889  
Permanent link to this record
 

 
Author Lehnebach, R.; Bossu, J.; Va, S.; Morel, H.; Amusant, N.; Nicolini, E.; Beauchene, J. pdf  url
doi  openurl
  Title Wood density variations of legume trees in French Guiana along the shade tolerance continuum: Heartwood effects on radial patterns and gradients Type Journal Article
  Year 2019 Publication Forests Abbreviated Journal Forests  
  Volume 10 Issue (up) 2 Pages  
  Keywords French Guiana; Growth-mortality rate; Heartwood; Heartwood extractives; Legumes; Sapwood; Shade tolerance; Tropical tree species; Wood density variations  
  Abstract Increasing or decreasing wood density (WD) from pith to bark is commonly observed in tropical tree species. The different types of WD radial variations, long been considered to depict the diversity of growth and mechanical strategies among forest guilds (heliophilic vs. shade-tolerant), were never analyzed in the light of heartwood (HW) formation. Yet, the additional mass of chemical extractives associated to HW formation increases WD and might affect both WD radial gradient (i.e., the slope of the relation between WD and radial distance) and pattern (i.e., linear or nonlinear variation). We studied 16 legumes species from French Guiana representing a wide diversity of growth strategies and positions on the shade-tolerance continuum. Using WD measurements and available HW extractives content values, we computed WD corrected by the extractive content and analyzed the effect of HW on WD radial gradients and patterns. We also related WD variations to demographic variables, such as sapling growth and mortality rates. Regardless of the position along the shade-tolerance continuum, correcting WD gradients reveals only increasing gradients. We determined three types of corrected WD patterns: (1) the upward curvilinear pattern is a specific feature of heliophilic species, whereas (2) the linear and (3) the downward curvilinear patterns are observed in both mid- and late-successional species. In addition, we found that saplings growth and mortality rates are better correlated with the corrected WD at stem center than with the uncorrected value: taking into account the effect of HW extractives on WD radial variations provides unbiased interpretation of biomass accumulation and tree mechanical strategies. Rather than a specific feature of heliophilic species, the increasing WD gradient is a shared strategy regardless of the shade tolerance habit. Finally, our study stresses to consider the occurrence of HW when using WD.  
  Address Ecology of Guianan Forests (EcoFoG), AgroParisTech, French Agricultural Research and International Cooperation Organization (CIRAD), French National Centre for Scientific Research (CNRS), French National Institute for Agricultural Research (INRA), Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19994907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019; Correspondence Address: Lehnebach, R.; Laboratory of Botany and Modeling of Plant Architecture and Vegetation (AMAP), French Agricultural Research and International Cooperation Organization (CIRAD)France; email: romain.lehnebach@cirad.fr; Funding details: Agence Nationale de la Recherche, ANR; Funding details: Federación Española de Enfermedades Raras, FEDER; Funding text 1: The authors thank Grégoire Vincent, Jean-François Molino, and Daniel Sabatier for providing demographical data.). The French Agricultural Research Centre for International Development (CIRAD) funded Romain Lehnebach PhD scholarship. This research project was also funded by the European Regional Development Fund (FEDER, no 31703) and benefits from an 'Investissements d'Avenir' grant managed by the French National Research Agency (CEBA, ref. ANR-10-LABX-25-01).; References: Kollmann, F.F.P., Côté, W.A., (1984) Principles of Wood Science and Technology: I Solid Wood, , Springer: Berlin, Germany; Muller-Landau, H.C., Interspecific and inter-site variation in wood specific gravity of tropical trees (2004) Biotropica, 36, pp. 20-32; Van Gelder, H.A., Poorter, L., Sterck, F.J., Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community (2006) New Phyt, 171, pp. 367-378; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecol. Lett, 12, pp. 351-366; Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Condit, R., Díaz, S., Functional traits and the growth-mortality trade-off in tropical trees (2010) Ecology, 91, pp. 3664-3674; Niklas, K.J., Influence of tissue density-specific mechanical properties on the scaling of plant height (1993) Ann. Bot, 72, pp. 173-179; Niklas, K.J., Spatz, H.-C., Worldwide correlations of mechanical properties and green wood density (2010) Am. J. Bot, 97, pp. 1587-1594; Pratt, R.B., Jacobsen, A.L., Ewers, F.W., Davis, S.D., Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral (2007) New Phyt, 174, pp. 787-798; Lachenbruch, B., Moore, J., Evans, R., Radial Variation in Wood Structure and Function in Woody Plants, and Hypotheses for Its Occurrence (2011) In Size-and Age-Related Changes in Tree Structure and Function, 4, pp. 121-164. , Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Springer: Berlin, Germany; Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure (2001) Oecologia, 126, pp. 457-461; Markesteijn, L., Poorter, L., Paz, H., Sack, L., Bongers, F., Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits (2011) Plant Cell Environ, 34, pp. 137-148; Rosner, S., Wood density as a proxy for vulnerability to cavitation: Size matters (2017) J. Plant Hydraul, 4, pp. 1-10; Zanne, A.E., Westoby, M., Falster, D.S., Ackerly, D.D., Loarie, S.R., Arnold, S.E.J., Coomes, D.A., Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity (2010) Am. J. Bot, 97, pp. 207-215; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., The role of wood density and stem support costs in the growth and mortality of tropical trees (2006) J. Ecol, 94, pp. 670-680; Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Mazer, S.J., Are functional traits good predictors of demographic rates? Evidence from five neotropical forests (2008) Ecology, 89, pp. 1908-1920; Nascimento, H.E.M., Laurance, W.F., Condit, R., Laurance, S.G., D'Angelo, S., Andrade, A.C., Demographic and life-history correlates for Amazonian trees (2005) J. Veg. Sci, 16, pp. 625-634; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., (2011) Size-and Age-Related Changes in Tree Structure and Function, , Springer: Dordrecht, The Netherlands; Wiemann, M., Williamson, G., Extreme radial changes in wood specific gravity in some tropical pioneers (1988) Wood Fiber Sci, 20, pp. 344-349; Rueda, R., Williamson, G.B., Radial and vertical wood specific gravity in Ochroma pyramidale (Cav. ex Lam.) Urb (Bombacaceae) (1992) Biotropica, 24, pp. 512-518; Williamson, G.B., Wiemann, M.C., Geaghan, J.P., Radial wood allocation in Schizolobium parahyba (2012) Am. J. Bot, 99, pp. 1010-1019; Bastin, J.-F., Fayolle, A., Tarelkin, Y., Van den Bulcke, J., de Haulleville, T., Mortier, F., Beeckman, H., Bogaert, J., Wood specific gravity variations and biomass of central African tree species: The simple choice of the outer wood (2015) PLoS ONE, 10; Longuetaud, F., Mothe, F., Santenoise, P., Diop, N., Dlouha, J., Fournier, M., Deleuze, C., Patterns of withinstem variations in wood specific gravity and water content for five temperate tree species (2017) Ann. For. Sci, 74, p. 64; Wiemann, M.C., Williamson, B., Testing a novel method to approximate wood specific gravity of trees (2012) For. Sci, 58, pp. 577-591; Wiemann, M.C., Williamson, G.B., Wood specific gravity gradients in tropical dry and montane rain forest trees (1989) Am. J. Bot, 76, pp. 924-928; Wiemann, M.C., Williamson, G.B., Radial gradients in the specific gravity of wood in some tropical and temperate trees (1989) For. Sci, 35, pp. 197-210; Parolin, P., Radial gradients in wood specific gravity in trees of central amazonian floodplains (2002) IAWA J, 23, pp. 449-457; Abe, H., Kuroda, K., Yamashita, K., Yazaki, K., Noshiro, S., Fujiwara, T., Radial variation of wood density of Quercus spp (Fagaceae) in Japan (2012) Mokuzai Gakkaishi, 58, pp. 329-338; Lei, H., Milota, M.R., Gartner, B.L., Between-and within-tree variation in the anatomy and specific gravity of wood in oregon White Oak (Quercus garryana Dougl.) (1996) IAWA J, 17, pp. 445-461; Woodcock, D., Shier, A., Wood specific gravity and its radial variations: The many ways to make a tree (2002) Trees, 16, pp. 437-443; Hérault, B., Beauchêne, J., Muller, F., Wagner, F., Baraloto, C., Blanc, L., Martin, J.-M., Modeling decay rates of dead wood in a neotropical forest (2010) Oecologia, 164, pp. 243-251; Thibaut, B., Baillères, H., Chanson, B., Fournier-Djimbi, M., Plantations d'arbres à croissance rapide et qualité des produits forestiers sous les tropiques (1997) Bois For. Trop, 252, pp. 49-54; Nock, C.A., Geihofer, D., Grabner, M., Baker, P.J., Bunyavejchewin, S., Hietz, P., Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand (2009) Ann. Bot, 104, pp. 297-306; Hietz, P., Valencia, R., Joseph Wright, S., Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests (2013) Funct. Ecol, 27, pp. 684-692; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Radial variation in wood specific gravity of tropical tree species differing in growth-mortality strategies (2014) Am. J. Bot, 101, pp. 803-811; Plourde, B.T., Boukili, V.K., Chazdon, R.L., Radial changes in wood specific gravity of tropical trees: Interand intraspecific variation during secondary succession (2015) Funct. Ecol, 29, pp. 111-120; Hillis, W.E., Secondary Changes in Wood (1977) In The Structure, Biosynthesis, and Degradation of Wood, 11, pp. 247-309. , Loewus, F., Runeckles, V.C., Eds.; Plenum Press: New York, NY, USA; Hillis, W.E., (1987) Heartwood and Tree Exudates, , Springer-Verlag: Berlin, Germany; Yang, K.C., (1990) The Ageing Process of Sapwood Ray Parenchyma Cells in Four Woody Species, , Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada; Royer, M., Stien, D., Beauchêne, J., Herbette, G., McLean, J.P., Thibaut, A., Thibaut, B., Extractives of the tropical wood wallaba (Eperua falcata Aubl.) as natural anti-swelling agents (2010) Holzforschung, 64, pp. 211-215; Amusant, N., Moretti, C., Richard, B., Prost, E., Nuzillard, J.M., Thévenon, M.F., Chemical compounds from Eperua falcata and Eperua grandiflora heartwood and their biological activities against wood destroying fungus (Coriolus versicolor) (2006) Holz Roh Werkst, 65, pp. 23-28; Lehnebach, R., (2015) Variabilité Ontogénique du Profil Ligneux chez les Légumineuses de Guyane Française, , Ph.D. Thesis, Université de Montpellier, Montpellier, France; Sabatier, D., Prévost, M.F., Quelques données sur la composition floristique, et la diversite des peuplements forestiers de guyane francaise (1990) Bois For. Trop, 219, pp. 31-55; Ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F., Castellanos, H., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Ter Steege, H., Vaessen, R.W., Cárdenas-López, D., Sabatier, D., Antonelli, A., de Oliveira, S.M., Pitman, N.C.A., Salomão, R.P., The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa (2016) Sci. Rep, 6, p. 29549; Woodcock, D.W., Shier, A.D., Does canopy position affect wood specific gravity in temperate forest trees? (2003) Ann. Bot, 91, pp. 529-537; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Linking wood traits to vital rates in tropical rainforest trees: Insights from comparing sapling and adult wood (2017) Am. J. Bot, 104, pp. 1464-1473; Favrichon, V., Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d'un modèle de dynamique de peuplement en forêt guyanaise (1994) Rev. Ecol. Terre Vie, 49, pp. 379-403; (2016) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing: Vienna, Austria; Taylor, A.M., Gartner, B.L., Morrell, J.J., Heartwood formation and natural durability-A review (2002) Wood Fiber Sci, 34, pp. 587-611; Molino, J.F., Sabatier, D., Tree diversity in tropical rain forests: A validation of the intermediate disturbance hypothesis (2001) Science, 294, pp. 1702-1704; Vincent, G., Molino, J.-F., Marescot, L., Barkaoui, K., Sabatier, D., Freycon, V., Roelens, J.B., The relative importance of dispersal limitation and habitat preference in shaping spatial distribution of saplings in a tropical moist forest: A case study along a combination of hydromorphic and canopy disturbance gradients (2011) Ann. For. Sci, 68, pp. 357-370; Pinheiro, J., Bates, D., (2000) Mixed-Effects Models in S and S-PLUS, , Springer-Verlag: New York, NY, USA; Hurvich, C.M., Tsai, C.-L., Bias of the corrected AIC criterion for underfitted regression and time series models (1991) Biometrika, 78, pp. 499-509; Mazerolle, M.J., AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c), , https://cran.r-project.org/package=AICcmodavg, R Package Version 2.1-0. 2016 (accessed on 1 December 2018); Harrel, F.E.J., Hmisc: Harrell Miscellaneous, , https://CRAN.R-project.org/package=Hmisc, R Package Version 3.14-3. 2016 (accessed on 1 December 2018); De Mendiburu, F., (2016) Agricolae: Statistical Procedures for Agricultural Research, , https://CRAN.R-project.org/package=agricolae, (accessed on 1 December 2018). R Package Version 1.2-4; Morel, H., Lehnebach, R., Cigna, J., Ruelle, J., Nicolini, E., Beauchêne, J., Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic Neotropical rainforest tree (2018) Bois For. Trop, 335, pp. 59-69; Bossu, J., (2015) Potentiel de Bagassa guianensis et Cordia alliodora pour la Plantation en Zone Tropicale: Description d'une Stratégie de Croissance Optimale Alliant Vitesse de Croissance et Qualité du Bois, , Ph.D. Thesis, Université de Guyane, Kourou, French Guiana; Oldeman, R.A.A., (1974) L'Architecture de la Forêt Guyanaise, , Office de la Recherche Scientifique et Technique Outre-Mer: Paris, France; Anten, N.P.R., Schieving, F., The role of wood mass density and mechanical constraints in the economy of tree architecture (2010) Am. Nat, 175, p. 11; Larjavaara, M., Muller-Landau, H.C., Rethinking the value of high wood density (2010) Funct. Ecol, 24, pp. 701-705; Lachenbruch, B., McCulloh, K.A., Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant (2014) New Phyt, 204, pp. 747-764; Chapotin, S.M., Razanameharizaka, J.H., Holbrook, N.M., A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae) (2006) Am. J. Bot, 93, pp. 1251-1264; Kuo, M.-L., Arganbright, D.G., Cellular distribution of extractives in redwood and incense cedar-Part II Microscopic observation of the location of cell wall and cell cavity extractives (1980) Holzforschung, 34, pp. 41-47; Olson, J.R., Carpenter, S.B., Specific gravity, fibre length, and extractive content of young Paulownia (1985) Wood Fiber Sci, 17, pp. 428-438; Stringer, J.W., Olson, J.R., Radial and vertical variations in stem properties of juvenile black locust (Robinia pseudoacacia) (1987) Wood Fiber Sci, 19, pp. 59-67; Gierlinger, N., Wimmer, R., Radial distribution of heartwood extractives and lignin in mature European larch (2004) Wood Fiber Sci, 36, pp. 387-394; Bossu, J., Beauchêne, J., Estevez, Y., Duplais, C., Clair, B., New insights on wood dimensional stability influenced by secondary metabolites: The case of a fast-growing tropical species Bagassa guianensis Aubl (2016) PLoS ONE, 11; Amusant, N., Beauchene, J., Fournier, M., Janin, G., Thevenon, M.-F., Decay resistance in Dicorynia guianensis Amsh.: Analysis of inter-tree and intra-tree variability and relations with wood colour (2004) Ann. For. Sci, 61, pp. 373-380; Hillis, W.E., Distribution, properties and formation of some wood extractives (1971) Wood Sci. Tech, 5, pp. 272-289; Taylor, A., Freitag, C., Cadot, E., Morrell, J., Potential of near infrared spectroscopy to assess hot-watersoluble extractive content and decay resistance of a tropical hardwood (2008) Holz Roh Werkst, 66, pp. 107-111; Amusant, N., Nigg, M., Thibaut, B., Beauchene, J., Diversity of decay resistance strategies of durable tropical woods species: Bocoa prouacensis Aublet, Vouacapoua americana Aublet, Inga alba (Sw.) Wild (2014) Int. Biodeterior. Biodegrad, 94, pp. 103-108; Falster, D.S., Westoby, M., Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession (2005) Oikos, 111, pp. 57-66; Panshin, A.J., de Zeeuw, C., (1980) Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada, , McGraw-Hill: New York, NY, USA; Hernández, R.E., Influence of accessory substances, wood density and interlocked grain on the compressive properties of hardwoods (2007) Wood Sci. Tech, 41, pp. 249-265; Gherardi Hein, P.R., Tarcísio Lima, J., Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood (2012) Maderas. Cienc. Tecnol, 14, pp. 267-274; Cave, I.D., Walker, J.C.F., Stiffness of wood in fast-grown plantation softwoods: Theinfluence of microfibril angle (1994) For. Prod. J, 44, pp. 43-48; Bossu, J., Lehnebach, R., Corn, S., Regazzi, A., Beauchêne, J., Clair, B., Interlocked grain and density patterns in Bagassa guianensis: Changes with ontogeny and mechanical consequences for trees (2018) Trees, 32, pp. 1643-1655; Hart, J., Johnson, K., Production of decay-resistant sapwood in response to injury (1970) Wood Sci. Tech, 4, pp. 267-272; Boddy, L., Microenvironmental Aspects of Xylem Defenses to Wood Decay Fungi (1992) Defense Mechanisms of Woody Plants Against Fungi, pp. 96-132. , Blanchette, R.A., Biggs, A.R., Eds.; Springer: Berlin, Germany; Roszaini, K., Hale, M.D., Salmiah, U., In-vitro decay resistance of 12 malaysian broadleaf hardwood trees as a function of wood density and extractives compounds (2016) J. Trop. For. Sci, 28, pp. 533-540; Stamm, A.J., Density of wood substance, adsorption by wood, and permeability of wood (1929) J. Phys. Chem, 33, pp. 398-414 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 858  
Permanent link to this record
 

 
Author Fichaux, M.; Béchade, B.; Donald, J.; Weyna, A.; Delabie, J.H.C.; Murienne, J.; Baraloto, C.; Orivel, J. url  doi
openurl 
  Title Habitats shape taxonomic and functional composition of Neotropical ant assemblages Type Journal Article
  Year 2019 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 189 Issue (up) 2 Pages 501-513  
  Keywords Formicidae; Functional diversity; Habitat filtering; Rainforest; Traits; Formicidae  
  Abstract Determining assembly rules of co-occurring species persists as a fundamental goal in community ecology. At local scales, the relative importance of environmental filtering vs. competitive exclusion remains a subject of debate. In this study, we assessed the relative importance of habitat filtering and competition in structuring understory ant communities in tropical forests of French Guiana. Leaf-litter ants were collected using pitfall and Winkler traps across swamp, slope and plateau forests near Saül, French Guiana. We used a combination of univariate and multivariate analyses to evaluate trait response of ants to habitat characteristics. Null model analyses were used to investigate the effects of habitat filtering and competitive interactions on community assembly at the scale of assemblages and sampling points, respectively. Swamp forests presented a much lower taxonomic and functional richness compared to slope and plateau forests. Furthermore, marked differences in taxonomic and functional composition were observed between swamp forests and slope or plateau forests. We found weak evidence for competitive exclusion based on null models. Nevertheless, the contrasting trait composition observed between habitats revealed differences in the ecological attributes of the species in the different forest habitats. Our analyses suggest that competitive interactions may not play an important role in structuring leaf-litter ant assemblages locally. Rather, habitats are responsible for driving both taxonomic and functional composition of ant communities.  
  Address International Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL 33199, United States  
  Corporate Author Thesis  
  Publisher Springer Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00298549 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 863  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: