toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Leroy, C.; Maes, A.Q.; Louisanna, E.; Séjalon-Delmas, N. url  doi
openurl 
  Title How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species Type Journal Article
  Year 2019 Publication Fungal Ecology Abbreviated Journal Fungal Ecol.  
  Volume 39 Issue Pages 296-306  
  Keywords Aechmea; Bromeliads; Endophytic fungi; Fusarium spp.; Germination; Survival; Trichoderma spp.; Vertical transmission  
  Abstract In bromeliads, nothing is known about the associations fungi form with seeds and seedling roots. We investigated whether fungal associations occur in the seeds and seedling roots of two epiphytic Aechmea species, and we explored whether substrate and fungal associations contribute to seed germination, and seedling survival and performance after the first month of growth. We found a total of 21 genera and 77 species of endophytic fungi in the seeds and seedlings for both Aechmea species by Illumina MiSeq sequencing. The fungal associations in seeds were found in the majority of corresponding seedlings, suggesting that fungi are transmitted vertically. Substrate quality modulated the germination and growth of seedlings, and beneficial endophytic fungi were not particularly crucial for germination but contributed positively to survival and growth. Overall, this study provides the first evidence of an endophytic fungal community in both the seeds and seedlings of two epiphytic bromeliads species that subsequently benefit plant growth. © 2019 Elsevier Ltd and British Mycological Society  
  Address INRA, UMR Ecologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou cedex, F-97379, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 17545048 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 867  
Permanent link to this record
 

 
Author Honorio Coronado, E.N.; Blanc-Jolivet, C.; Mader, M.; García-Dávila, C.R.; Sebbenn, A.M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Tysklind, N.; Troispoux, V.; Massot, M.; Degen, B. url  doi
openurl 
  Title Development of nuclear and plastid SNP markers for genetic studies of Dipteryx tree species in Amazonia Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Genet. Res.  
  Volume 11 Issue 3 Pages 333-336  
  Keywords  
  Abstract We developed nuclear and plastid single nucleotide polymorphism (SNP) and insertion/deletion (INDEL) markers for Dipteryx species using a combination of restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing. Of the total 315 loci genotyped using a MassARRAY platform, 292 loci were variable and polymorphic among the 73 sampled individuals from French Guiana, Brasil, Peru, and Bolivia. A final set of 56 nuclear SNPs, 26 chloroplast SNPs, 2 chloroplast INDELs, and 32 mitochondrial SNPs identifying significant population structure was developed. This set of loci will be useful for studies on population genetics of Dipteryx species in Amazonia.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1877-7260 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Honorio Coronado2019 Serial 906  
Permanent link to this record
 

 
Author Sebbenn, A.M.; Blanc-Jolivet, C.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; García-Dávila, C.; Tysklind, N.; Troispoux, V.; Delcamp, A.; Degen, B. url  doi
openurl 
  Title Nuclear and plastidial SNP and INDEL markers for genetic tracking studies of Jacaranda copaia Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 11 Issue 3 Pages 341-343  
  Keywords DNA fingerprints; Geographical origin; Jacaranda copaia; MassARRAY; MiSeq; RADSeq; Tropical timber  
  Abstract Nuclear and plastidial single nucleotide polymorphism (SNP) and INDEL markers were developed using restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing for population genetics and timber tracking purposes in the Neotropical timber species Jacaranda copaia. We used 407 nuclear SNPs, 29 chloroplast, and 31 mitochondrial loci to genotype 92 individuals from Brazil, Bolivia, French Guiana, and Peru. Based on high amplification rates and genetic differentiation among populations, 113 nuclear SNPs, 11 chloroplast, and 4 mitochondrial loci were selected, and their use validated for genetic tracking of timber origin.  
  Address BIOGECO, INRA, Univ. Bordeaux, Cestas, 33610, France  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 907  
Permanent link to this record
 

 
Author Chaves, C.L.; Blanc-Jolivet, C.; Sebbenn, A.M.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; Garcia-Davila, C.; Tysklind, N.; Troispoux, V.; Massot, M.; Degen, B. url  doi
openurl 
  Title Nuclear and chloroplastic SNP markers for genetic studies of timber origin for Hymenaea trees Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 11 Issue 3 Pages 329-331  
  Keywords DNA fingerprints; Geographical origin; MiSeq; RADSeq  
  Abstract We developed nuclear and chloroplastic single nucleotide polymorphism (SNP) and INDEL (insertion/deletion) markers using restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing to set up a genetic tracking method of the geographical origin of Hymenaea sp. From two initial sets of 358 and 32 loci used to genotype at least 94 individuals, a final set of 75 nSNPs, 50 cpSNPs and 6 INDELs identifying significant population structure was developed. © 2018, Springer Nature B.V.  
  Address Departamento de Fitotecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, SP, Brazil  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 908  
Permanent link to this record
 

 
Author Tysklind, N.; Blanc-Jolivet, C.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; García-Dávila, C.R.; Sebbenn, A.M.; Caron, H.; Troispoux, V.; Guichoux, E.; Degen, B. url  doi
openurl 
  Title Development of nuclear and plastid SNP and INDEL markers for population genetic studies and timber traceability of Carapa species Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 11 Issue 3 Pages 337-339  
  Keywords Carapa guianensis; Carapa surinamensis; DNA-fingerprints; Geographical origin; MassARRAY; MiSeq; RADSeq; Tropical timber  
  Abstract Low coverage MiSeq genome sequencing and restriction associated DNA sequencing (RADseq) were used to identify nuclear and plastid SNP and INDEL genetic markers in Carapa guianensis. 261 genetic markers including 237 nuclear SNPs, 22 plastid SNPs, and 2 plastid INDELs are described based on 96 genotyped individuals from French Guiana, Brazil, Peru, and Bolivia. The best 117 SNPs for identifying population structure and performing individual assignment are assembled into four multiplexes for MassARRAY genotyping.  
  Address BIOGECO, INRA, University Bordeaux, Cestas, 33610, France  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 909  
Permanent link to this record
 

 
Author Hofman, M.P.; Hayward, M.W.; Heim, M.; Marchand, P.; Rolandsen, C.M.; Mattisson, J.; Urbano, F.; Heurich, M.; Mysterud, A.; Melzheimer, J.; Morellet, N.; Voigt, U.; Allen, B.L.; Gehr, B.; Rouco, C.; Ullmann, W.; Holand, Ø.; Jørgensen, N.H.; Steinheim, G.; Cagnacci, F.; Kroeschel, M.; Kaczensky, P.; Buuveibaatar, B.; Payne, J.C.; Palmegiani, I.; Jerina, K.; Kjellander, P.; Johansson, Ö.; LaPoint, S.; Bayrakcismith, R.; Linnell, J.D.C.; Zaccaroni, M.; Jorge, M.L.S.; Oshima, J.E.F.; Songhurst, A.; Fischer, C.; Mc Bride, R.T., Jr.; Thompson, J.J.; Streif, S.; Sandfort, R.; Bonenfant, C.; Drouilly, M.; Klapproth, M.; Zinner, D.; Yarnell, R.; Stronza, A.; Wilmott, L.; Meisingset, E.; Thaker, M.; Vanak, A.T.; Nicoloso, S.; Graeber, R.; Said, S.; Boudreau, M.R.; Devlin, A.; Hoogesteijn, R.; May-Junior, J.A.; Nifong, J.C.; Odden, J.; Quigley, H.B.; Tortato, F.; Parker, D.M.; Caso, A.; Perrine, J.; Tellaeche, C.; Zieba, F.; Zwijacz-Kozica, T.; Appel, C.L.; Axsom, I.; Bean, W.T.; Cristescu, B.; Périquet, S.; Teichman, K.J.; Karpanty, S.; Licoppe, A.; Menges, V.; Black, K.; Scheppers, T.L.; Schai-Braun, S.C.; Azevedo, F.C.; Lemos, F.G.; Payne, A.; Swanepoel, L.H.; Weckworth, B.V.; Berger, A.; Bertassoni, A.; McCulloch, G.; Sustr, P.; Athreya, V.; Bockmuhl, D.; Casaer, J.; Ekori, A.; Melovski, D.; Richard-Hansen, C.; Van De Vyver, D.; Reyna-Hurtado, R.; Robardet, E.; Selva, N.; Sergiel, A.; Farhadinia, M.S.; Sunde, P.; Portas, R.; Ambarli, H.; Berzins, R.; Kappeler, P.M.; Mann, G.K.; Pyritz, L.; Bissett, C.; Grant, T.; Steinmetz, R.; Swedell, L.; Welch, R.J.; Armenteras, D.; Bidder, O.R.; González, T.M.; Rosenblatt, A.; Kachel, S.; Balkenhol, N. pdf  doi
openurl 
  Title Right on track? Performance of satellite telemetry in terrestrial wildlife research Type Journal Article
  Year 2019 Publication PLoS One Abbreviated Journal  
  Volume 14 Issue 5 Pages e0216223  
  Keywords article; nonhuman; telemetry; terrestrial species; wildlife  
  Abstract Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.  
  Address South African National Parks, Scientific Services, Kimberley, South Africa  
  Corporate Author Thesis  
  Publisher Public Library of Science Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 19326203 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 874  
Permanent link to this record
 

 
Author Ciminera, M.; Auger-Rozenberg, M.-A.; Caron, H.; Herrera, M.; Scotti-Saintagne, C.; Scotti, I.; Tysklind, N.; Roques, A. url  doi
openurl 
  Title Genetic Variation and Differentiation of Hylesia metabus (Lepidoptera: Saturniidae): Moths of Public Health Importance in French Guiana and in Venezuela Type Journal Article
  Year 2019 Publication Journal of medical entomology Abbreviated Journal J. Med. Entomol.  
  Volume 56 Issue 1 Pages 137-148  
  Keywords  
  Abstract Hylesia moths impact human health in South America, inducing epidemic outbreaks of lepidopterism, a puriginous dermatitis caused by the urticating properties of females' abdominal setae. The classification of the Hylesia genus is complex, owing to its high diversity in Amazonia, high intraspecific morphological variance, and lack of interspecific diagnostic traits which may hide cryptic species. Outbreaks of Hylesia metabus have been considered responsible for the intense outbreaks of lepidopterism in Venezuela and French Guiana since the C20, however, little is known about genetic variability throughout the species range, which is instrumental for establishing control strategies on H. metabus. Seven microsatellites and mitochondrial gene markers were analyzed from Hylesia moths collected from two major lepidopterism outbreak South American regions. The mitochondrial gene sequences contained significant genetic variation, revealing a single, widespread, polymorphic species with distinct clusters, possibly corresponding to populations evolving in isolation. The microsatellite markers validated the mitochondrial results, and suggest the presence of three populations: one in Venezuela, and two in French Guiana. All moths sampled during outbreak events in French Guiana were assigned to a single coastal population. The causes and implications of this finding require further research.  
  Address INRA, Unité de Recherche Ecologie des forêts méditerranéennes, Avignon, UR629, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 19382928 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 857  
Permanent link to this record
 

 
Author Longo, M.; Knox, R.G.; Levine, N.M.; Swann, A.L.S.; Medvigy, D.M.; Dietze, M.C.; Kim, Y.; Zhang, K.; Bonal, D.; Burban, B.; Camargo, P.B.; Hayek, M.N.; Saleska, S.R.; Da Silva, R.; Bras, R.L.; Wofsy, S.C.; Moorcroft, P.R. pdf  url
doi  openurl
  Title The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: The Ecosystem Demography model, version 2.2-Part 2: Model evaluation for tropical South America Type Journal Article
  Year 2019 Publication Geoscientific Model Development Abbreviated Journal Geoscientific Model Dev.  
  Volume 12 Issue 10 Pages 4347-4374  
  Keywords  
  Abstract The Ecosystem Demography model version 2.2 (ED-2.2) is a terrestrial biosphere model that simulates the biophysical, ecological, and biogeochemical dynamics of vertically and horizontally heterogeneous terrestrial ecosystems. In a companion paper (Longo et al., 2019a), we described how the model solves the energy, water, and carbon cycles, and verified the high degree of conservation of these properties in long-term simulations that include long-term (multi-decadal) vegetation dynamics. Here, we present a detailed assessment of the model's ability to represent multiple processes associated with the biophysical and biogeochemical cycles in Amazon forests. We use multiple measurements from eddy covariance towers, forest inventory plots, and regional remote-sensing products to assess the model's ability to represent biophysical, physiological, and ecological processes at multiple timescales, ranging from subdaily to century long. The ED-2.2 model accurately describes the vertical distribution of light, water fluxes, and the storage of water, energy, and carbon in the canopy air space, the regional distribution of biomass in tropical South America, and the variability of biomass as a function of environmental drivers. In addition, ED-2.2 qualitatively captures several emergent properties of the ecosystem found in observations, specifically observed relationships between aboveground biomass, mortality rates, and wood density; however, the slopes of these relationships were not accurately captured. We also identified several limitations, including the model's tendency to overestimate the magnitude and seasonality of heterotrophic respiration and to overestimate growth rates in a nutrient-poor tropical site. The evaluation presented here highlights the potential of incorporating structural and functional heterogeneity within biomes in Earth system models (ESMs) and to realistically represent their impacts on energy, water, and carbon cycles. We also identify several priorities for further model development.  
  Address Georgia Institute of Technology, Atlanta, GA, United States  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1991959x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 27 October 2019; Correspondence Address: Longo, M.; Harvard UniversityUnited States; email: mdplongo@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 890  
Permanent link to this record
 

 
Author Lehnebach, R.; Bossu, J.; Va, S.; Morel, H.; Amusant, N.; Nicolini, E.; Beauchene, J. pdf  url
doi  openurl
  Title Wood density variations of legume trees in French Guiana along the shade tolerance continuum: Heartwood effects on radial patterns and gradients Type Journal Article
  Year 2019 Publication Forests Abbreviated Journal Forests  
  Volume 10 Issue 2 Pages  
  Keywords French Guiana; Growth-mortality rate; Heartwood; Heartwood extractives; Legumes; Sapwood; Shade tolerance; Tropical tree species; Wood density variations  
  Abstract Increasing or decreasing wood density (WD) from pith to bark is commonly observed in tropical tree species. The different types of WD radial variations, long been considered to depict the diversity of growth and mechanical strategies among forest guilds (heliophilic vs. shade-tolerant), were never analyzed in the light of heartwood (HW) formation. Yet, the additional mass of chemical extractives associated to HW formation increases WD and might affect both WD radial gradient (i.e., the slope of the relation between WD and radial distance) and pattern (i.e., linear or nonlinear variation). We studied 16 legumes species from French Guiana representing a wide diversity of growth strategies and positions on the shade-tolerance continuum. Using WD measurements and available HW extractives content values, we computed WD corrected by the extractive content and analyzed the effect of HW on WD radial gradients and patterns. We also related WD variations to demographic variables, such as sapling growth and mortality rates. Regardless of the position along the shade-tolerance continuum, correcting WD gradients reveals only increasing gradients. We determined three types of corrected WD patterns: (1) the upward curvilinear pattern is a specific feature of heliophilic species, whereas (2) the linear and (3) the downward curvilinear patterns are observed in both mid- and late-successional species. In addition, we found that saplings growth and mortality rates are better correlated with the corrected WD at stem center than with the uncorrected value: taking into account the effect of HW extractives on WD radial variations provides unbiased interpretation of biomass accumulation and tree mechanical strategies. Rather than a specific feature of heliophilic species, the increasing WD gradient is a shared strategy regardless of the shade tolerance habit. Finally, our study stresses to consider the occurrence of HW when using WD.  
  Address Ecology of Guianan Forests (EcoFoG), AgroParisTech, French Agricultural Research and International Cooperation Organization (CIRAD), French National Centre for Scientific Research (CNRS), French National Institute for Agricultural Research (INRA), Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 19994907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019; Correspondence Address: Lehnebach, R.; Laboratory of Botany and Modeling of Plant Architecture and Vegetation (AMAP), French Agricultural Research and International Cooperation Organization (CIRAD)France; email: romain.lehnebach@cirad.fr; Funding details: Agence Nationale de la Recherche, ANR; Funding details: Federación Española de Enfermedades Raras, FEDER; Funding text 1: The authors thank Grégoire Vincent, Jean-François Molino, and Daniel Sabatier for providing demographical data.). The French Agricultural Research Centre for International Development (CIRAD) funded Romain Lehnebach PhD scholarship. This research project was also funded by the European Regional Development Fund (FEDER, no 31703) and benefits from an 'Investissements d'Avenir' grant managed by the French National Research Agency (CEBA, ref. ANR-10-LABX-25-01).; References: Kollmann, F.F.P., Côté, W.A., (1984) Principles of Wood Science and Technology: I Solid Wood, , Springer: Berlin, Germany; Muller-Landau, H.C., Interspecific and inter-site variation in wood specific gravity of tropical trees (2004) Biotropica, 36, pp. 20-32; Van Gelder, H.A., Poorter, L., Sterck, F.J., Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community (2006) New Phyt, 171, pp. 367-378; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecol. Lett, 12, pp. 351-366; Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Condit, R., Díaz, S., Functional traits and the growth-mortality trade-off in tropical trees (2010) Ecology, 91, pp. 3664-3674; Niklas, K.J., Influence of tissue density-specific mechanical properties on the scaling of plant height (1993) Ann. Bot, 72, pp. 173-179; Niklas, K.J., Spatz, H.-C., Worldwide correlations of mechanical properties and green wood density (2010) Am. J. Bot, 97, pp. 1587-1594; Pratt, R.B., Jacobsen, A.L., Ewers, F.W., Davis, S.D., Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral (2007) New Phyt, 174, pp. 787-798; Lachenbruch, B., Moore, J., Evans, R., Radial Variation in Wood Structure and Function in Woody Plants, and Hypotheses for Its Occurrence (2011) In Size-and Age-Related Changes in Tree Structure and Function, 4, pp. 121-164. , Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Springer: Berlin, Germany; Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure (2001) Oecologia, 126, pp. 457-461; Markesteijn, L., Poorter, L., Paz, H., Sack, L., Bongers, F., Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits (2011) Plant Cell Environ, 34, pp. 137-148; Rosner, S., Wood density as a proxy for vulnerability to cavitation: Size matters (2017) J. Plant Hydraul, 4, pp. 1-10; Zanne, A.E., Westoby, M., Falster, D.S., Ackerly, D.D., Loarie, S.R., Arnold, S.E.J., Coomes, D.A., Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity (2010) Am. J. Bot, 97, pp. 207-215; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., The role of wood density and stem support costs in the growth and mortality of tropical trees (2006) J. Ecol, 94, pp. 670-680; Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Mazer, S.J., Are functional traits good predictors of demographic rates? Evidence from five neotropical forests (2008) Ecology, 89, pp. 1908-1920; Nascimento, H.E.M., Laurance, W.F., Condit, R., Laurance, S.G., D'Angelo, S., Andrade, A.C., Demographic and life-history correlates for Amazonian trees (2005) J. Veg. Sci, 16, pp. 625-634; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., (2011) Size-and Age-Related Changes in Tree Structure and Function, , Springer: Dordrecht, The Netherlands; Wiemann, M., Williamson, G., Extreme radial changes in wood specific gravity in some tropical pioneers (1988) Wood Fiber Sci, 20, pp. 344-349; Rueda, R., Williamson, G.B., Radial and vertical wood specific gravity in Ochroma pyramidale (Cav. ex Lam.) Urb (Bombacaceae) (1992) Biotropica, 24, pp. 512-518; Williamson, G.B., Wiemann, M.C., Geaghan, J.P., Radial wood allocation in Schizolobium parahyba (2012) Am. J. Bot, 99, pp. 1010-1019; Bastin, J.-F., Fayolle, A., Tarelkin, Y., Van den Bulcke, J., de Haulleville, T., Mortier, F., Beeckman, H., Bogaert, J., Wood specific gravity variations and biomass of central African tree species: The simple choice of the outer wood (2015) PLoS ONE, 10; Longuetaud, F., Mothe, F., Santenoise, P., Diop, N., Dlouha, J., Fournier, M., Deleuze, C., Patterns of withinstem variations in wood specific gravity and water content for five temperate tree species (2017) Ann. For. Sci, 74, p. 64; Wiemann, M.C., Williamson, B., Testing a novel method to approximate wood specific gravity of trees (2012) For. Sci, 58, pp. 577-591; Wiemann, M.C., Williamson, G.B., Wood specific gravity gradients in tropical dry and montane rain forest trees (1989) Am. J. Bot, 76, pp. 924-928; Wiemann, M.C., Williamson, G.B., Radial gradients in the specific gravity of wood in some tropical and temperate trees (1989) For. Sci, 35, pp. 197-210; Parolin, P., Radial gradients in wood specific gravity in trees of central amazonian floodplains (2002) IAWA J, 23, pp. 449-457; Abe, H., Kuroda, K., Yamashita, K., Yazaki, K., Noshiro, S., Fujiwara, T., Radial variation of wood density of Quercus spp (Fagaceae) in Japan (2012) Mokuzai Gakkaishi, 58, pp. 329-338; Lei, H., Milota, M.R., Gartner, B.L., Between-and within-tree variation in the anatomy and specific gravity of wood in oregon White Oak (Quercus garryana Dougl.) (1996) IAWA J, 17, pp. 445-461; Woodcock, D., Shier, A., Wood specific gravity and its radial variations: The many ways to make a tree (2002) Trees, 16, pp. 437-443; Hérault, B., Beauchêne, J., Muller, F., Wagner, F., Baraloto, C., Blanc, L., Martin, J.-M., Modeling decay rates of dead wood in a neotropical forest (2010) Oecologia, 164, pp. 243-251; Thibaut, B., Baillères, H., Chanson, B., Fournier-Djimbi, M., Plantations d'arbres à croissance rapide et qualité des produits forestiers sous les tropiques (1997) Bois For. Trop, 252, pp. 49-54; Nock, C.A., Geihofer, D., Grabner, M., Baker, P.J., Bunyavejchewin, S., Hietz, P., Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand (2009) Ann. Bot, 104, pp. 297-306; Hietz, P., Valencia, R., Joseph Wright, S., Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests (2013) Funct. Ecol, 27, pp. 684-692; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Radial variation in wood specific gravity of tropical tree species differing in growth-mortality strategies (2014) Am. J. Bot, 101, pp. 803-811; Plourde, B.T., Boukili, V.K., Chazdon, R.L., Radial changes in wood specific gravity of tropical trees: Interand intraspecific variation during secondary succession (2015) Funct. Ecol, 29, pp. 111-120; Hillis, W.E., Secondary Changes in Wood (1977) In The Structure, Biosynthesis, and Degradation of Wood, 11, pp. 247-309. , Loewus, F., Runeckles, V.C., Eds.; Plenum Press: New York, NY, USA; Hillis, W.E., (1987) Heartwood and Tree Exudates, , Springer-Verlag: Berlin, Germany; Yang, K.C., (1990) The Ageing Process of Sapwood Ray Parenchyma Cells in Four Woody Species, , Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada; Royer, M., Stien, D., Beauchêne, J., Herbette, G., McLean, J.P., Thibaut, A., Thibaut, B., Extractives of the tropical wood wallaba (Eperua falcata Aubl.) as natural anti-swelling agents (2010) Holzforschung, 64, pp. 211-215; Amusant, N., Moretti, C., Richard, B., Prost, E., Nuzillard, J.M., Thévenon, M.F., Chemical compounds from Eperua falcata and Eperua grandiflora heartwood and their biological activities against wood destroying fungus (Coriolus versicolor) (2006) Holz Roh Werkst, 65, pp. 23-28; Lehnebach, R., (2015) Variabilité Ontogénique du Profil Ligneux chez les Légumineuses de Guyane Française, , Ph.D. Thesis, Université de Montpellier, Montpellier, France; Sabatier, D., Prévost, M.F., Quelques données sur la composition floristique, et la diversite des peuplements forestiers de guyane francaise (1990) Bois For. Trop, 219, pp. 31-55; Ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F., Castellanos, H., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Ter Steege, H., Vaessen, R.W., Cárdenas-López, D., Sabatier, D., Antonelli, A., de Oliveira, S.M., Pitman, N.C.A., Salomão, R.P., The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa (2016) Sci. Rep, 6, p. 29549; Woodcock, D.W., Shier, A.D., Does canopy position affect wood specific gravity in temperate forest trees? (2003) Ann. Bot, 91, pp. 529-537; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Linking wood traits to vital rates in tropical rainforest trees: Insights from comparing sapling and adult wood (2017) Am. J. Bot, 104, pp. 1464-1473; Favrichon, V., Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d'un modèle de dynamique de peuplement en forêt guyanaise (1994) Rev. Ecol. Terre Vie, 49, pp. 379-403; (2016) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing: Vienna, Austria; Taylor, A.M., Gartner, B.L., Morrell, J.J., Heartwood formation and natural durability-A review (2002) Wood Fiber Sci, 34, pp. 587-611; Molino, J.F., Sabatier, D., Tree diversity in tropical rain forests: A validation of the intermediate disturbance hypothesis (2001) Science, 294, pp. 1702-1704; Vincent, G., Molino, J.-F., Marescot, L., Barkaoui, K., Sabatier, D., Freycon, V., Roelens, J.B., The relative importance of dispersal limitation and habitat preference in shaping spatial distribution of saplings in a tropical moist forest: A case study along a combination of hydromorphic and canopy disturbance gradients (2011) Ann. For. Sci, 68, pp. 357-370; Pinheiro, J., Bates, D., (2000) Mixed-Effects Models in S and S-PLUS, , Springer-Verlag: New York, NY, USA; Hurvich, C.M., Tsai, C.-L., Bias of the corrected AIC criterion for underfitted regression and time series models (1991) Biometrika, 78, pp. 499-509; Mazerolle, M.J., AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c), , https://cran.r-project.org/package=AICcmodavg, R Package Version 2.1-0. 2016 (accessed on 1 December 2018); Harrel, F.E.J., Hmisc: Harrell Miscellaneous, , https://CRAN.R-project.org/package=Hmisc, R Package Version 3.14-3. 2016 (accessed on 1 December 2018); De Mendiburu, F., (2016) Agricolae: Statistical Procedures for Agricultural Research, , https://CRAN.R-project.org/package=agricolae, (accessed on 1 December 2018). R Package Version 1.2-4; Morel, H., Lehnebach, R., Cigna, J., Ruelle, J., Nicolini, E., Beauchêne, J., Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic Neotropical rainforest tree (2018) Bois For. Trop, 335, pp. 59-69; Bossu, J., (2015) Potentiel de Bagassa guianensis et Cordia alliodora pour la Plantation en Zone Tropicale: Description d'une Stratégie de Croissance Optimale Alliant Vitesse de Croissance et Qualité du Bois, , Ph.D. Thesis, Université de Guyane, Kourou, French Guiana; Oldeman, R.A.A., (1974) L'Architecture de la Forêt Guyanaise, , Office de la Recherche Scientifique et Technique Outre-Mer: Paris, France; Anten, N.P.R., Schieving, F., The role of wood mass density and mechanical constraints in the economy of tree architecture (2010) Am. Nat, 175, p. 11; Larjavaara, M., Muller-Landau, H.C., Rethinking the value of high wood density (2010) Funct. Ecol, 24, pp. 701-705; Lachenbruch, B., McCulloh, K.A., Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant (2014) New Phyt, 204, pp. 747-764; Chapotin, S.M., Razanameharizaka, J.H., Holbrook, N.M., A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae) (2006) Am. J. Bot, 93, pp. 1251-1264; Kuo, M.-L., Arganbright, D.G., Cellular distribution of extractives in redwood and incense cedar-Part II Microscopic observation of the location of cell wall and cell cavity extractives (1980) Holzforschung, 34, pp. 41-47; Olson, J.R., Carpenter, S.B., Specific gravity, fibre length, and extractive content of young Paulownia (1985) Wood Fiber Sci, 17, pp. 428-438; Stringer, J.W., Olson, J.R., Radial and vertical variations in stem properties of juvenile black locust (Robinia pseudoacacia) (1987) Wood Fiber Sci, 19, pp. 59-67; Gierlinger, N., Wimmer, R., Radial distribution of heartwood extractives and lignin in mature European larch (2004) Wood Fiber Sci, 36, pp. 387-394; Bossu, J., Beauchêne, J., Estevez, Y., Duplais, C., Clair, B., New insights on wood dimensional stability influenced by secondary metabolites: The case of a fast-growing tropical species Bagassa guianensis Aubl (2016) PLoS ONE, 11; Amusant, N., Beauchene, J., Fournier, M., Janin, G., Thevenon, M.-F., Decay resistance in Dicorynia guianensis Amsh.: Analysis of inter-tree and intra-tree variability and relations with wood colour (2004) Ann. For. Sci, 61, pp. 373-380; Hillis, W.E., Distribution, properties and formation of some wood extractives (1971) Wood Sci. Tech, 5, pp. 272-289; Taylor, A., Freitag, C., Cadot, E., Morrell, J., Potential of near infrared spectroscopy to assess hot-watersoluble extractive content and decay resistance of a tropical hardwood (2008) Holz Roh Werkst, 66, pp. 107-111; Amusant, N., Nigg, M., Thibaut, B., Beauchene, J., Diversity of decay resistance strategies of durable tropical woods species: Bocoa prouacensis Aublet, Vouacapoua americana Aublet, Inga alba (Sw.) Wild (2014) Int. Biodeterior. Biodegrad, 94, pp. 103-108; Falster, D.S., Westoby, M., Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession (2005) Oikos, 111, pp. 57-66; Panshin, A.J., de Zeeuw, C., (1980) Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada, , McGraw-Hill: New York, NY, USA; Hernández, R.E., Influence of accessory substances, wood density and interlocked grain on the compressive properties of hardwoods (2007) Wood Sci. Tech, 41, pp. 249-265; Gherardi Hein, P.R., Tarcísio Lima, J., Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood (2012) Maderas. Cienc. Tecnol, 14, pp. 267-274; Cave, I.D., Walker, J.C.F., Stiffness of wood in fast-grown plantation softwoods: Theinfluence of microfibril angle (1994) For. Prod. J, 44, pp. 43-48; Bossu, J., Lehnebach, R., Corn, S., Regazzi, A., Beauchêne, J., Clair, B., Interlocked grain and density patterns in Bagassa guianensis: Changes with ontogeny and mechanical consequences for trees (2018) Trees, 32, pp. 1643-1655; Hart, J., Johnson, K., Production of decay-resistant sapwood in response to injury (1970) Wood Sci. Tech, 4, pp. 267-272; Boddy, L., Microenvironmental Aspects of Xylem Defenses to Wood Decay Fungi (1992) Defense Mechanisms of Woody Plants Against Fungi, pp. 96-132. , Blanchette, R.A., Biggs, A.R., Eds.; Springer: Berlin, Germany; Roszaini, K., Hale, M.D., Salmiah, U., In-vitro decay resistance of 12 malaysian broadleaf hardwood trees as a function of wood density and extractives compounds (2016) J. Trop. For. Sci, 28, pp. 533-540; Stamm, A.J., Density of wood substance, adsorption by wood, and permeability of wood (1929) J. Phys. Chem, 33, pp. 398-414 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 858  
Permanent link to this record
 

 
Author Cantera, I.; Cilleros, K.; Valentini, A.; Cerdan, A.; Dejean, T.; Iribar, A.; Taberlet, P.; Vigouroux, R.; Brosse, S. pdf  url
doi  openurl
  Title Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 3085  
  Keywords  
  Abstract Environmental DNA (eDNA) metabarcoding is a promising tool to estimate aquatic biodiversity. It is based on the capture of DNA from a water sample. The sampled water volume, a crucial aspect for efficient species detection, has been empirically variable (ranging from few centiliters to tens of liters). This results in a high variability of sampling effort across studies, making comparisons difficult and raising uncertainties about the completeness of eDNA inventories. Our aim was to determine the sampling effort (filtered water volume) needed to get optimal inventories of fish assemblages in species-rich tropical streams and rivers using eDNA. Ten DNA replicates were collected in six Guianese sites (3 streams and 3 rivers), resulting in sampling efforts ranging from 17 to 340 liters of water. We show that sampling 34 liters of water detected more than 64% of the expected fish fauna and permitted to distinguish the fauna between sites and between ecosystem types (stream versus rivers). Above 68 liters, the number of detected species per site increased slightly, with a detection rate higher than 71%. Increasing sampling effort up to 340 liters provided little additional information, testifying that filtering 34 to 68 liters is sufficient to inventory most of the fauna in highly diverse tropical aquatic ecosystems. © 2019, The Author(s).  
  Address HYDRECO, Laboratoire Environnement de Petit Saut, B.P 823, Kourou Cedex, F-97388, French Guiana  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 865  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: