toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Céréghino, R.; Pillar, V.D.; Srivastava, D.S.; de Omena, P.M.; MacDonald, A.A.M.; Barberis, I.M.; Corbara, B.; Guzman, L.M.; Leroy, C.; Ospina Bautista, F.; Romero, G.Q.; Trzcinski, M.K.; Kratina, P.; Debastiani, V.J.; Gonçalves, A.Z.; Marino, N.A.C.; Farjalla, V.F.; Richardson, B.A.; Richardson, M.J.; Dézerald, O.; Gilbert, B.; Petermann, J.; Talaga, S.; Piccoli, G.C.O.; Jocqué, M.; Montero, G. url  doi
openurl 
  Title Constraints on the functional trait space of aquatic invertebrates in bromeliads Type Journal Article
  Year (down) 2018 Publication Functional Ecology Abbreviated Journal  
  Volume 32 Issue 10 Pages 2435-2447  
  Keywords aquatic invertebrates; ecological strategies; functional diversity; functional trait space; niche hypervolume  
  Abstract Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. A plain language summary is available for this article. © 2018 The Authors. Functional Ecology © 2018 British Ecological Society  
  Address Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 22 October 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 829  
Permanent link to this record
 

 
Author Maréchaux, I.; Bonal, D.; Bartlett, M.K.; Burban, B.; Coste, S.; Courtois, E.A.; Dulormne, M.; Goret, J.-Y.; Mira, E.; Mirabel, A.; Sack, L.; Stahl, C.; Chave, J. url  doi
openurl 
  Title Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest Type Journal Article
  Year (down) 2018 Publication Functional Ecology Abbreviated Journal Funct Ecol  
  Volume 32 Issue 10 Pages 2285-2297  
  Keywords drought tolerance; hydraulic conductance; sap flow; sapflux density; tropical trees; turgor loss point; water potential; wilting point  
  Abstract Water availability is a key determinant of forest ecosystem function and tree species distributions. While droughts are increasing in frequency in many ecosystems, including in the tropics, plant responses to water supply vary with species and drought intensity and are therefore difficult to model. Based on physiological first principles, we hypothesized that trees with a lower turgor loss point (pi-tlp), that is, a more negative leaf water potential at wilting, would maintain water transport for longer into a dry season. We measured sapflux density of 22 mature trees of 10 species during a dry season in an Amazonian rainforest, quantified sapflux decline as soil water content decreased and tested its relationship to tree pi-tlp, size and leaf predawn and midday water potentials measured after the onset of the dry season. The measured trees varied strongly in the response of water use to the seasonal drought, with sapflux at the end of the dry season ranging from 37 to 117% (on average 83 +/- 5 %) of that at the beginning of the dry season. The decline of water transport as soil dried was correlated with tree pi-tlp (Spearman's rho > 0.63), but not with tree size or predawn and midday water potentials. Thus, trees with more drought-tolerant leaves better maintained water transport during the seasonal drought. Our study provides an explicit correlation between a trait, measurable at the leaf level, and whole-plant performance under drying conditions. Physiological traits such as pi-tlp can be used to assess and model higher scale processes in response to drying conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley/Blackwell (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/1365-2435.13188 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 830  
Permanent link to this record
 

 
Author Fu, Z.; Gerken, T.; Bromley, G.; Araújo, A.; Bonal, D.; Burban, B.; Ficklin, D.; Fuentes, J.D.; Goulden, M.; Hirano, T.; Kosugi, Y.; Liddell, M.; Nicolini, G.; Niu, S.; Roupsard, O.; Stefani, P.; Mi, C.; Tofte, Z.; Xiao, J.; Valentini, R.; Wolf, S.; Stoy, P.C. url  doi
openurl 
  Title The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology Type Journal Article
  Year (down) 2018 Publication Agricultural and Forest Meteorology Abbreviated Journal Agric. For. Meterol.  
  Volume 263 Issue Pages 292-307  
  Keywords Climate variability; Ecosystem respiration; Eddy covariance; Gross primary productivity; Net ecosystem carbon dioxide exchange; Tropical rainforest; acclimation; air temperature; anthropogenic effect; atmosphere-biosphere interaction; biodiversity; carbon flux; climate change; Cmip; eddy covariance; environmental change; flux measurement; methodology; net ecosystem exchange; net ecosystem production; radiative forcing; rainforest; sensitivity analysis; tropical environment  
  Abstract Tropical rainforests play a central role in the Earth system by regulating climate, maintaining biodiversity, and sequestering carbon. They are under threat by direct anthropogenic impacts like deforestation and the indirect anthropogenic impacts of climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) at the site scale across different forests in the tropical rainforest biome has not been undertaken to date. Here, we study NEE and its components, gross ecosystem productivity (GEP) and ecosystem respiration (RE), across thirteen natural and managed forests within the tropical rainforest biome with 63 total site-years of eddy covariance data. Our results reveal that the five ecosystems with the largest annual gross carbon uptake by photosynthesis (i.e. GEP > 3000 g C m−2 y-1) have the lowest net carbon uptake – or even carbon losses – versus other study ecosystems because RE is of a similar magnitude. Sites that provided subcanopy CO2 storage observations had higher average magnitudes of GEP and RE and lower average magnitudes of NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in ecosystems with characteristically tall and dense vegetation. A path analysis revealed that vapor pressure deficit (VPD) played a greater role than soil moisture or air temperature in constraining GEP under light saturated conditions across most study sites, but to differing degrees from -0.31 to -0.87 μmol CO2 m−2 s-1 hPa-1. Climate projections from 13 general circulation models (CMIP5) under the representative concentration pathway that generates 8.5 W m−2 of radiative forcing suggest that many current tropical rainforest sites on the lower end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, warmer sites will reach a climate not currently experienced, and all forests are likely to experience higher VPD. Results demonstrate the need to quantify if and how mature tropical trees acclimate to heat and water stress, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon exchange in tropical rainforests. © 2018 Elsevier B.V.  
  Address Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 01681923 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 November 2018; Coden: Afmee; Correspondence Address: Stoy, P.C.; Department of Land Resources and Environmental Sciences, Montana State UniversityUnited States; email: paul.stoy@montana.edu; Funding details: ANR-10-LABX-25-01; Funding details: U.S. Department of Energy, DOE, SC0011097; Funding details: Agence Nationale de la Recherche, ANR; Funding details: 1702029; Funding details: 1552976; Funding details: Graduate School, Ohio State University; Funding details: National Natural Science Foundation of China, NSFC, 31625006; Funding text 1: PCS and JDF acknowledges funding support from the U.S. Department of Energy as part of the GoAmazon project (Grant SC0011097 ). PCS additionally acknowledges the U.S. National Science Foundation grants 1552976 and 1702029 , and The Graduate School at Montana State University . ZF is supported by the China Scholarship Council and National Natural Science Foundation of China ( 31625006 ). This work used eddy covariance data acquired and shared by the FLUXNET community, including the AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, LBA, and TERN- OzFlux networks. The FLUXNET eddy covariance data processing and harmonization was carried out by the ICOS Ecosystem Thematic Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC, and the OzFlux, ChinaFlux and AsiaFlux offices. The Guyaflux program belongs to the SOERE F-ORE-T which is supported annually by Ecofor, Allenvi and the French national research infrastructure ANAEE-F. The Guyaflux program also received support from the “Observatoire du Carbone en Guyane” and an “investissement d'avenir” grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). Funding for the site PA-SPn was provided by the North-South Centre of ETH Zurich. We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling for the CMIP and thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Angela Tang and Taylor Rodenburg provided valuable comments to earlier drafts of this manuscript. We thank Dr. Tim Hill and two anonymous reviewers for their constructive comments on the manuscript.; References: Acevedo, O.C., Moraes, O.L.L., Degrazia, G.A., Fitzjarrald, D.R., Manzi, A.O., Campos, J.G., Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? (2009) Agric. For. Meteorol., 149, pp. 1-10; Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Agric (2018) For. Meteorol., 253-254, pp. 114-123; Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Jain, A.K., The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink (2015) Science, 348 (80), pp. 895-899; Aiba, S.I., Kitayama, K., Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu (1999) Borneo. Plant Ecol., 140, pp. 139-157; Andreae, M.O., Artaxo, P., Brandão, C., Carswell, F.E., Ciccioli, P., da Costa, A.L., Culf, A.D., Waterloo, M.J., Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: the LBA-EUSTACH experiments (2002) J. Geophys. Res., 107, p. 8066; Andreae, M.O., Acevedo, O.C., Araùjo, A., Artaxo, P., Barbosa, C.G.G., Barbosa, H.M.J., Brito, J., Yáñez-Serrano, A.M., The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols (2015) Atmos. Chem. Phys., 15, pp. 10723-10776; Araújo, A.C., Nobre, A.D., Kruijt, B., Elbers, J.A., Dallarosa, R., Stefani, P., Von Randow, C., Kabat, P., Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site (2002) J. Geophys. Res., 107, p. 8090; Asner, G.P., Anderson, C.B., Martin, R.E., Tupayachi, R., Knapp, D.E., Sinca, F., Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy (2015) Nat. Geosci., 8, pp. 567-573; Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C.B., Sinca, F., Vaughn, N.R., Llactayo, W., Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation (2017) Science, 355 (80), pp. 385-389; Avissar, R., Werth, D., Global hydroclimatological teleconnections resulting from tropical deforestation (2005) J. Hydrometeorol., 6, pp. 134-145; Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R.A., Tropical forests are a net carbon source based on aboveground measurements of gain and loss (2017) Science, 358 (80), pp. 230-234; Belelli Marchesini, L., Bombelli, A., Chiti, T., Consalvo, C., Forgione, A., Grieco, E., Mazzenga, F., Valentini, R., Ankasa flux tower: a new research facility for the study of the carbon cycle in a primary tropical forest in Africa (2008) Proceedings of the Open Science Conference on Africa and Carbon Cycle: The CarboAfrica Project; Beringer, J., Hutley, L.B., McHugh, I., Arndt, S.K., Campbell, D., Cleugh, H.A., Cleverly, J., Wardlaw, T., An introduction to the Australian and New Zealand flux tower network – OzFlux (2016) Biogeosciences, 13, pp. 5895-5916; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y.J.Y., Burban, B.T., Gross, P., Bonnefond, J.M.J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Chang. Biol., 14, pp. 1917-1933; Borma, L.S., da Rocha, H.R., Cabral, O.M., von Randow, C., Collicchio, E., Kurzatkowski, D., Brugger, P.J., Artaxo, P., Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia (2009) J. Geophys. Res. Biogeosci., 114; Bradford, M.G., Metcalfe, D.J., Ford, A., Liddell, M.J., McKeown, A., Floristics, stand structure and aboveground biomass of a 25-ha rainforest plot in the Wet Tropics of Australia (2014) J. Trop. For. Sci., pp. 543-553; Braga, N., da, S., Vitória, A.P., Souza, G.M., Barros, C.F., Freitas, L., Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees (2016) Biotropica, 48, pp. 453-464; Carswell, F.E., Costa, A.L., Palheta, M., Malhi, Y., Meir, P., Costa, J.D.P.R., Ruivo, M.D.L., Grace, J., Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest (2002) J. Geophys. Res. D Atmos., p. 107; Chambers, J.Q., Tribuzy, E.S., Toledo, L.C., Crispim, B.F., Higuchi, N., dos Santos, J., Araújo, A.C., Trumbore, S.E., Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency (2004) Ecol. Appl., 14, pp. 72-88; Chambers, J., Davies, S., Koven, C., Kueppers, L., Leung, R., McDowell, N., Norby, R., Rogers, A., Next Generation Ecosystem Experiment (NGEE) Tropics. US DOE NGEE Trop. white paper. (2014); Chiti, T., Certini, G., Grieco, E., Valentini, R., The role of soil in storing carbon in tropical rainforests: the case of Ankasa Park, Ghana (2010) Plant Soil, 331, pp. 453-461; Cleveland, C.C., Wieder, W.R., Reed, S.C., Townsend, A.R., Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere (2010) Ecology, 91, pp. 2313-2323; Cleveland, C.C., Townsend, A.R., Taylor, P., Alvarez-Clare, S., Bustamante, M.M.C., Chuyong, G., Dobrowski, S.Z., Wieder, W.R., Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis (2011) Ecol. Lett.; Cusack, D.F., Chou, W.W., Yang, W.H., Harmon, M.E., Silver, W.L., Controls on long-term root and leaf litter decomposition in neotropical forests (2009) Glob. Chang. Biol., 15, pp. 1339-1355; da Rocha, H.R., Manzi, A.O., Cabral, O.M., Miller, S.D., Goulden, M.L., Saleska, S.R., Coupe, N.R., Maia, J.F., Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil (2009) J. Geophys. Res. Biogeosci., 114. , G00B12; Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T.A., Page, S.E., Bocko, Y.E., Ifo, S.A., Age, extent and carbon storage of the central Congo Basin peatland complex (2017) Nature, 542, pp. 86-89; de Araújo, A.C., Dolman, A.J., Waterloo, M.J., Gash, J.H.C., Kruijt, B., Zanchi, F.B., de Lange, J.M.E., Backer, J., The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia (2010) Agric. For. Meteorol., 150, pp. 226-237; Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C., Wisniewski, J., Carbon pools and flux of global forest ecosystems (1994) Science, 263 (80), pp. 185-190; Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L., Meir, P., Evidence from Amazonian forests is consistent with isohydric control of leaf water potential (2006) Plant Cell Environ., 29, pp. 151-165; Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Snyder, P.K., Global consequences of land use (2005) Science, 309, pp. 570-574; Fu, Z., Dong, J., Zhou, Y., Stoy, P.C., Niu, S., Long term trend and interannual variability of land carbon uptake—the attribution and processes (2017) Environ. Res. Lett., 12, p. 14018; Fuentes, J.D., Chamecki, M., dos Santos, R.M.N., Von Randow, C., Stoy, P.C., Katul, G., Fitzjarrald, D., Yañez-Serrano, A.M., Linking meteorology, turbulence, and air chemistry in the amazon rain forest (2016) Bull. Am. Meteorol. Soc., 97, pp. 2329-2342; Gerken, T., Chamecki, M., Fuentes, J.D., Air-parcel residence times within forest canopies (2017) Boundary-Layer Meteorol., 165, pp. 29-54; Giardina, F., Konings, A.G., Kennedy, D., Alemohammad, S.H., Oliveira, R.S., Uriarte, M., Gentine, P., Tall Amazonian forests are less sensitive to precipitation variability (2018) Nat. Geosci., 11, pp. 405-409; Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., Peres, C.A., Sodhi, N.S., Primary forests are irreplaceable for sustaining tropical biodiversity (2011) Nature, 478, pp. 378-381; Goulden, M.L., Miller, S.D., Da Rocha, H.R., Nocturnal cold air drainage and pooling in a tropical forest (2006) J. Geophys. Res. Atmos., p. 111; Grace, J., Lloyd, J., Mcintyre, J., Miranda, A., Meir, P., Miranda, H., Moncrieff, J., Gash, J., Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia (1995) Glob. Chang. Biol., 1, pp. 1-12; Grace, J., Malhi, Y., Lloyd, J., McIntyre, J., Miranda, A.C., Meir, P., Miranda, H.S., The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest (1996) Glob. Chang. Biol., 2, pp. 209-217; Grace, J., Nagy, L., Forsberg, B.R., Artaxo, P., The Amazon carbon balance: an evaluation of methods and results (2016) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin., pp. 79-100. , Springer Berlin Heidelberg; Hall, C.A.S., Tian, H., Qi, Y., Pontius, G., Cornell, J., Modelling spatial and temporal patterns of tropical land use change (1995) J. Biogeogr., 22, pp. 753-757; Hayek, M.N., Wehr, R., Longo, M., Hutyra, L.R., Wiedemann, K., Munger, J.W., Bonal, D., Wofsy, S.C., A novel correction for biases in forest eddy covariance carbon balance (2018) Agric. For. Meteorol., 250-251, pp. 90-101; Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R., Osaki, M., Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia (2007) Glob. Chang. Biol., 13, pp. 412-425; Hirano, T., Jauhiainen, J., Inoue, T., Takahashi, H., Controls on the carbon balance of tropical peatlands (2008) Ecosystems, 12, pp. 873-887; Hirano, T., Segah, H., Kusin, K., Limin, S., Takahashi, H., Osaki, M., Effects of disturbances on the carbon balance of tropical peat swamp forests (2012) Glob. Change Biol., 18, pp. 3410-3422; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W., Myneni, R., Amazon rainforests green‐up with sunlight in dry season (2006) Geophys. Res. Lett., 33. , L06405; Huete, A.R., Restrepo-Coupe, N., Ratana, P., Didan, K., Saleska, S.R., Ichii, K., Panuthai, S., Gamo, M., Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia (2008) Agric. For. Meteorol., 148, pp. 748-760; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J. Geophys. Res. Biogeosci., 112; Hutyra, L.R., Munger, J.W., Hammond-Pyle, E., Saleska, S.R., Restrepo-Coupe, N., Daube, B.C., de Camargo, P.B., Wofsy, S.C., Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome (2008) Agric. For. Meteorol., 148, pp. 1266-1279; Inoue, Y., Ichie, T., Kenzo, T., Yoneyama, A., Kumagai, T., Nakashizuka, T., Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canpopy trees of Dryobalanops aromatica (Sipterocarpaceae) in a Malaysian tropical rain forest (2016) J. Trop. Pediatr., pp. 1-11; Jocher, G., Ottosson Löfvenius, M., De Simon, G., Hörnlund, T., Linder, S., Lundmark, T., Marshall, J., Peichl, M., Apparent winter CO2 uptake by a boreal forest due to decoupling (2017) Agric. For. Meteorol., 232, pp. 23-34; Kiew, F., Hirata, R., Hirano, T., Wong, G.X., Aeries, E.B., Musin, K.K., Waili, J.W., Melling, L., CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia (2018) Agric. For. Meteorol., 248, pp. 494-501; Kim, D.-H., Sexton, J.O., Townshend, J.R., Accelerated deforestation in the humid tropics from the 1990s to the 2000s (2015) Geophys. Res. Lett., 42, pp. 3495-3501; Klein, T., The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours (2014) Funct. Ecol., 28, pp. 1313-1320; Konings, A.G., Gentine, P., Global variations in ecosystem‐scale isohydricity (2016) Glob. Change Biol.; Körner, C., Leaf diffusive conductances in the major vegetation types of the globe (1995) Ecophysiology of Photosynthesis, pp. 463-490. , Springer; Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T., Tsutsumi, D., Nik, A.R., CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia (2008) Agric. For. Meteorol., 148, pp. 439-452; Kosugi, Y., Takanashi, S., Tani, M., Ohkubo, S., Matsuo, N., Itoh, M., Noguchi, S., Nik, A.R., Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia (2012) J. For. Res., 17, pp. 227-240; Kruijt, B., Elbers, J.A., Von Randow, C., Araujo, A.C., Oliveira, P.J., Culf, A., Manzi, A.O., Moors, E.J., The robustness of eddy correlation fluxes for Amazon rain forest conditions (2004) Ecol. Appl., 14, pp. 101-113; Kumagai, T., Porporato, A., Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? (2012) Plant Cell Environ., 35, pp. 61-71; Kutsch, W.L., Herbst, M., Vanselow, R., Hummelshøj, P., Jensen, N.O., Kappen, L., Stomatal acclimation influences water and carbon fluxes of a beech canopy in northern Germany (2001) Basic Appl. Ecol., 2, pp. 265-281; Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A.G., Stoy, P.C., Wohlfahrt, G., Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation (2010) Glob. Chang. Biol., 16, pp. 187-208; Levine, N.M., Zhang, K., Longo, M., Baccini, A., Phillips, O.L., Lewis, S.L., Alvarez-Dávila, E., Moorcroft, P.R., Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change (2016) Proc. Natl. Acad. Sci., 113, pp. 793-797; Lewis, S.L., Brando, P.M., Phillips, O.L., van der Heijden, G.M.F., Nepstad, D., The 2010 amazon drought (2011) Science, 331 (80), p. 554; Loescher, H.W., Oberbauer, S.F., Gholz, H.L., Clark, D.B., Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest (2003) Glob. Chang. Biol., 9, p. 396; Lopes, A.P., Nelson, B.W., Wu, J., Graça, P.M.L., de, A., Tavares, J.V., Prohaska, N., Saleska, S.R., Leaf flush drives dry season green-up of the Central Amazon (2016) Remote Sens. Environ., 182, pp. 90-98; Malhi, Y., Nobre, A.D., Grace, J., Kruijt, B., Pereira, M.G.P., Culf, A., Scott, S., Carbon dioxide transfer over a Central Amazonian rain forest (1998) J. Geophys. Res., 103, pp. 31593-31612; Marchin, R.M., Broadhead, A.A., Bostic, L.E., Dunn, R.R., Hoffmann, W.A., Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming (2016) Plant Cell Environ., 39, pp. 2221-2234; Martens, C.S., Shay, T.J., Mendlovitz, H.P., Matross, D.M., Saleska, S.R., Wofsy, S.C., Stephen Woodward, W., Crill, P.M., Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night‐time CO2 net ecosystem exchange derived from radon and eddy covariance methods (2004) Glob. Chang. Biol., 10, pp. 618-629; Martinez-Vilalta, J., Poyatos, R., Aguade, D., Retana, J., Mencuccini, M., A new look at water transport regulation in plants (2014) New Phytol., 204, pp. 105-115; Matheny, A.M., Mirfenderesgi, G., Bohrer, G., Trait-based representation of hydrological functional properties of plants in weather and ecosystem models (2017) Plant Divers., 39, pp. 1-12; Meir, P., Grace, J., Miranda, A.C., Leaf respiration in two tropical rainforests: constraints on physiology by phosphorus, nitrogen and temperature (2001) Funct. Ecol., 15, pp. 378-387; Miller, S.D., Goulden, M.L., Menton, M.C., da Rocha, H.R., de Freitas, H.C., Silva, E., Figueira, A.M., de Sousa, C.A.D., Biometric and micrometeorological measurements of tropical forest carbon balance (2004) Ecol. Appl., 14, pp. 114-126; Mitchard, E.T.A., The tropical forest carbon cycle and climate change (2018) Nature, 559, pp. 527-534; Navarro, M.N.V., Jourdan, C., Sileye, T., Braconnier, S., Mialet-Serra, I., Saint-Andre, L., Dauzat, J., Roupsard, O., Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation (2008) Tree Physiol., 28, pp. 1661-1674; Nepstad, D.C., Moutinho, P., Dias‐Filho, M.B., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res., 107. , 8085; Norby, R.J., De Kauwe, M.G., Domingues, T.F., Duursma, R.A., Ellsworth, D.S., Goll, D.S., Lapola, D.M., Zaehle, S., Model – data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments (2015) New Phytol., pp. 17-28; Novick, K., Oren, R., Stoy, P.C., Juang, J.Y., Siqueira, M., Katul, G., The relationship between reference canopy conductance and simplified hydraulic architecture (2009) Adv. Water Resour., 32, pp. 809-819; Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Phillips, R.P., The increasing importance of atmospheric demand for ecosystem water and carbon fluxes (2016) Nat. Clim. Change, 6, pp. 1023-1027; Oberbauer, S.F., Loescher, H.W., Clark, D.B., Effects of climate factors on daytime carbon exchange from an old growth forest in Costa rica (2000) Selbyana, pp. 66-73; Oren, R., Sperry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., Schäfer, K.V.R., Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit (1999) Plant Cell Environ., 22, pp. 1515-1526; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333 (80). , 988 LP-993; Paoli, G.D., Curran, L.M., Slik, J.W.F., Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo (2008) Oecologia, 155, pp. 287-299; Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Yakir, D., Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation (2006) Biogeosciences, 3, pp. 571-583; Pau, S., Detto, M., Kim, Y., Still, C.J., Tropical forest temperature thresholds for gross primary productivity (2018) Ecosphere, 9; Pavlick, R., Drewry, D.T., Bohn, K., Reu, B., Kleidon, A., The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs (2013) Biogeosciences, 10, pp. 4137-4177; Phillips, O.L., Malhi, Y., Higuchi, N., Laurance, W.F., Núñez, P.V., Vásquez, R.M., Laurance, S.G., Grace, J., Changes in the carbon balance of tropical forests: Evidence from long-term plots (1998) Science, 282 (80). , 439 LP-442; Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon Rainforest (2009) Science, 323 (80), pp. 1344-1347; Powell, T.L., Wheeler, J.K., de Oliveira, A.A.R., da Costa, A.C.L., Saleska, S.R., Meir, P., Moorcroft, P.R., Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees (2017) Glob. Change Biol.; Raich, J.W., Russell, A.E., Vitousek, P.M., Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i (1997) Ecology, 78, pp. 707-721; Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Valentini, R., On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm (2005) Glob. Change Biol., 11, pp. 1424-1439; Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., Saleska, S.R., What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network (2013) Agric. For. Meteorol.; Rice, W.R., Analyzing tables of statistical tests (1989) Evolution (N. Y.), 43, pp. 223-225; Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V., Near-surface remote sensing of spatial and temporal variation in canopy phenology (2009) Ecol. Appl., 19, pp. 1417-1428; Roderick, M.L., Farquhar, G.D., The cause of decreased Pan evaporation over the past 50 years (2002) Science, 298 (80), pp. 1410-1411; Roupsard, O., Bonnefond, J.-M., Irvine, M., Berbigier, P., Nouvellon, Y., Dauzat, J., Taga, S., Bouillet, J.-P., Partitioning energy and evapo-transpiration above and below a tropical palm canopy (2006) Agric. For. Meteorol., 139, pp. 252-268; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M., Wofsy, S., da Rocha, H.R., de Camargo, P.B., Silva, H., Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses (2003) Science, 302 (80), pp. 1554-1557; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (80), p. 612; Saleska, S., Da Rocha, H., Kruijt, B., Nobre, A., Ecosystem carbon fluxes and Amazonian forest metabolism (2009) Amazonia Glob. Change, pp. 389-407; Saleska, S.R., Wu, J., Guan, K., Araujo, A.C., Huete, A., Nobre, A.D., Restrepo-Coupe, N., Dry-season greening of Amazon forests (2016) Nature, 531, pp. E4-E5; Salinas, N., Malhi, Y., Meir, P., Silman, M., Roman Cuesta, R., Huaman, J., Salinas, D., Farfan, F., The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests (2011) New Phytol., 189, pp. 967-977; Santana, R.A., Dias-Júnior, C.Q., da Silva, J.T., Fuentes, J.D., do Vale, R.S., Alves, E.G., dos Santos, R.M.N., Manzi, A.O., Air turbulence characteristics at multiple sites in and above the Amazon rainforest canopy (2018) Agric. For. Meteorol., 260-261, pp. 41-54; Santos, D.M., Acevedo, O.C., Chamecki, M., Fuentes, J.D., Gerken, T., Stoy, P.C., Temporal scales of the nocturnal flow within and above a forest canopy in Amazonia (2016) Boundary-Layer Meteorol., pp. 1-26; Siddiq, Z., Chen, Y.-J., Zhang, Y.-J., Zhang, J.-L., Cao, K.-F., More sensitive response of crown conductance to VPD and larger water consumption in tropical evergreen than in deciduous broadleaf timber trees (2017) Agric. For. Meteorol., 247, pp. 399-407; Sulman, B.N., Roman, D.T., Yi, K., Wang, L., Phillips, R.P., Novick, K.A., High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil (2016) Geophys. Res. Lett., 43, pp. 9686-9695; Swann, A.L.S., Hoffman, F.M., Koven, C.D., Randerson, J.T., Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 10019-10024; Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design (2012) Bull. Am. Meteorol. Soc.; Taylor, P.G., Cleveland, C.C., Wieder, W.R., Sullivan, B.W., Doughty, C.E., Dobrowski, S.Z., Townsend, A.R., Temperature and rainfall interact to control carbon cycling in tropical forests (2017) Ecol. Lett., 20, pp. 779-788; Thomas, C.K., Martin, J.G., Law, B.E., Davis, K., Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon (2013) Agric. For. Meteorol., 173, pp. 14-27; Tóta, J., Fitzjarrald, D.R., da Silva Dias, M.A.F., Amazon rainforest exchange of carbon and subcanopy air flow: manaus LBA Site—a complex terrain condition (2012) Transfus. Apher. Sci., , 165067; Tyukavina, A., Baccini, A., Hansen, M.C., Potapov, P.V., Stehman, S.V., Houghton, R.A., Krylov, A.M., Goetz, S.J., Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012 (2015) Environ. Res. Lett., 10, p. 74002; van Marle, M.J.E., Field, R.D., van der Werf, G.R., Estrada de Wagt, I.A., Houghton, R.A., Rizzo, L.V., Artaxo, P., Tsigaridis, K., Fire and deforestation dynamics in Amazonia (1973-2014) (2017) Glob. Biogeochem. Cycles, 31, pp. 24-38; Wieder, W.R., Cleveland, C.C., Townsend, A.R., Controls over leaf litter decomposition in wet tropical forests (2009) Ecology, 90, pp. 3333-3341; Wolf, S., Eugster, W., Majorek, S., Buchmann, N., Afforestation of tropical pasture only marginally affects ecosystem-scale evapotranspiration (2011) Ecosystems, 14, pp. 1264-1275; Wolf, S., Eugster, W., Potvin, C., Buchmann, N., Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama (2011) Agric. For. Meteorol., 151, pp. 1139-1151; Wolf, S., Eugster, W., Potvin, C., Turner, B.L., Buchmann, N., Carbon sequestration potential of tropical pasture compared with afforestation in Panama (2011) Glob. Change Biol., 17, pp. 2763-2780; Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs (2004) Clim. Change, 62, pp. 189-216; Wu, J., Guan, K., Hayek, M., Restrepo-Coupe, N., Wiedemann, K.T., Xu, X., Wehr, R., Saleska, S.R., Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales (2017) Glob. Change Biol., 23, pp. 1240-1257; Xiao, J., Liu, S., Stoy, P.C., Preface: impacts of extreme climate events and disturbances on carbon dynamics (2016) Biogeosciences, 13, pp. 3665-3675 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 831  
Permanent link to this record
 

 
Author Meyer-Sand, B.R.V.; Blanc-Jolivet, C.; Mader, M.; Paredes-Villanueva, K.; Tysklind, N.; Sebbenn, A.M.; Guichoux, E.; Degen, B. url  doi
openurl 
  Title Development of a set of SNP markers for population genetics studies of Ipe (Handroanthus sp.), a valuable tree genus from Latin America Type Journal Article
  Year (down) 2018 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 10 Issue 4 Pages 779-781  
  Keywords Handroanthus sp; MassARRAY; Single nucleotide polymorphism  
  Abstract A combination of restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing was used for the development of single nucleotide polymorphisms (SNP) and INDEL (insertion/deletions) genetic markers for Ipe (Handroanthus sp.). Of the 402 putative loci identified, 389 SNPs and INDELs (315 nuclear SPNs, six chloroplast INDELs, 15 chloroplast SNPs, 12 mitochondrial INDELs and 41 mitochondrial SNPs) were successfully genotyped at 93 individuals from Brazil, Bolivia and French Guiana using a MassARRAY® iPLEX™ platform. This set of markers will be invaluable for population genetics, phylogeography and DNA fingerprinting studies. © 2017, Springer Science+Business Media B.V., part of Springer Nature.  
  Address Plateforme Génome Transcriptome de Bordeaux, INRA Pierroton, Bâtiment Artiga, 69 route d’Arcachon, Cestas, 33610, France  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 November 2018; Correspondence Address: Blanc-Jolivet, C.; Thünen Institute of Forest Genetics, Sieker Landstrasse 2, Germany; email: celine.blanc-jolivet@thuenen.de; References: Blanc-Jolivet, C., Kersten, B., Bourland, N., Guichoux, E., Delcamp, A., Doucet, J.-L., Degen, B., Development of nuclear SNP markers for the timber tracking of the African tree species Sapelli, Entandrophragma cylindricum (2017) Conserv Genet Resour; Blanc-Jolivet, C., Kersten, B., Daïnou, K., Hardy, O., Guichoux, E., Delcamp, A., Degen, B., Development of nuclear SNP markers for genetic tracking of Iroko, Milicia excelsa and Milicia regia (2017) Conserv Genet Resour; Braga, A.C., Reis, A.M.M., Leoi, L.T., Pereira, R.W., Collevatti, R.G., Development and characterization of microsatellite markers for the tropical tree species Tabebuia aurea (Bignoniaceae) (2007) Mol Ecol Notes, 7, pp. 53-56. , COI: 1:CAS:528:DC%2BD2sXis1Sjuro%3D; Dumolin, S., Demesure, B., Pettit, R., Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method (1995) Theor Appl Genet, 91, pp. 1253-1256. , COI: 1:CAS:528:DyaK28XhsFKmsLo%3D; Goudet, J., Fstat (Version 2.9.3.2.): a computer program to calculate F-statistics (2002) J Heredity, 86, pp. 485-486; Grose, S.O., Olmstead, R.G., Evolution of a charismatic neotropical clade: molecular phylogeny of Tabebuia s. L crescentieae, and allied genera (Bignoniaceae) (2007) Syst Bot, 32, pp. 650-659; Jardine, D.I., Blanc-Jolivet, C., Dixon, R.R.M., Dormontt, E.E., Dunker, B., Gerlach, J., Development of SNP markers for Ayous (Triplochiton scleroxylon K. Schum) an economically important tree species from tropical West and Central Africa (2016) Conserv Genet Resour, 8 (2), pp. 129-139; Miller, M.R., Dunham, J.P., Amores, A., Cresko, W.A., Johnson, E.A., Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers (2007) Genome Res, 17, pp. 240-248. , COI: 1:CAS:528:DC%2BD2sXhsFKis7w%3D; Pakull, B., Mader, M., Kersten, B., Ekue, M.R.M., Dipelet, U.G.B., Paulini, M., Development of nuclear, chloroplast and mitochondrial SNP markers for Khaya sp (2016) Conserv Genet Resour, 8 (3), pp. 283-297; Schulze, M., Grogan, J., Uhl, C., Lentini, M., Vidal, E., Evaluating Ipê (Tabebuia, Bignoniaceae) logging in amazonia: Sustainable management or catalyst for forest degradation? (2008) Biol Conserv, 141, pp. 2071-2085; Straub, S.C., Parks, M., Weitemier, K., fishbein, M., Cronn, R.C., Liston, A., Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics (2012) Am J Bot, 99, pp. 349-364. , COI: 1:CAS:528:DC%2BC38XksValtbo%3D Approved no  
  Call Number EcoFoG @ webmaster @ Serial 832  
Permanent link to this record
 

 
Author Denis, T.; Hérault, B.; Brunaux, O.; Guitet, S.; Richard-Hansen, C. url  doi
openurl 
  Title Weak environmental controls on the composition and diversity of medium and large-sized vertebrate assemblages in neotropical rain forests of the Guiana Shield Type Journal Article
  Year (down) 2018 Publication Diversity and Distributions Abbreviated Journal Diversity Distrib.  
  Volume 24 Issue 11 Pages 1545-1559  
  Keywords biodiversity; birds; functional traits; mammals; refugia hypothesis; spatial patterns; Aves; Mammalia; Vertebrata  
  Abstract Aim: Despite their often high-trophic position and their contribution to many ecosystem functions, little is known about the factors affecting assemblage structure of medium- and large-sized neotropical vertebrates. We examined the relative roles played by the physical and biological environment, and by purely spatial processes, in shaping the composition and diversities of these vertebrate assemblages. Then, based on the theory that the Guianan forest cover shrank to isolated pockets during the late Pleistocene–Holocene, we tested if the past forest refugia may have shaped current vertebrate assemblages. Location: French Guiana, Guiana Shield, South America. Methods: Abundances of 19 medium- and large-sized vertebrates were estimated at 21 locations in undisturbed Guianan rain forests. Using taxonomic, functional and phylogenetic metrics, we partitioned the effects of a range of physical and biological environmental conditions and purely spatial predictors in shaping both assemblage composition and (alpha and beta) diversities. Results: We identified a significant, but weak relationship between taxonomic, functional and phylogenetic assemblage composition and environmental conditions. Assemblage diversity patterns were mainly explained by spatial predictors irrespective of the metrics. Current assemblage diversities are correlated with Pleistocene–Holocene forest history, with the highest alpha diversities outside of putative forest refugia, and the highest beta diversities inside these areas. Main conclusions: Current vertebrate assemblage composition is not strongly marked by common environmental factors. Our main conclusion is that assemblage composition results from individual species responses to the environment. Our findings also suggest that dispersal-related processes or more probably historical processes shape (alpha and beta) diversity patterns. In fact, forest fragmentation during Pleistocene–Holocene climate changes could have led to isolated vertebrate assemblages evolving into unique species assemblages creating the current high beta diversity inside refugia, whereas the lower habitat stability outside of refugia could have led to mixed assemblages in areas recolonized by forest vertebrates (current high alpha diversity outside of refugia).  
  Address IRD, UMR AMAP (Cirad, CNRS, INRA, Université de Montpellier), Montpellier, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13669516 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 833  
Permanent link to this record
 

 
Author Salas-Lopez, A.; Violle, C.; Mallia, L.; Orivel, J. url  doi
openurl 
  Title Land-use change effects on the taxonomic and morphological trait composition of ant communities in French Guiana Type Journal Article
  Year (down) 2018 Publication Insect Conservation and Diversity Abbreviated Journal Insect Conserv Divers  
  Volume 11 Issue 2 Pages 162-173  
  Keywords Community assembly; Formicidae; functional diversity; gradient analysis; habitat filtering; land-use intensification; n-dimensional hypervolume approach  
  Abstract Abstract Land-use changes frequently lead to major changes in the composition and diversity of organisms. A reduction in the range of strategies enabling organisms to survive in a given environment and changes in the average trait values of species may potentially be associated with variations in species? number and identity. We investigated the variation in ant taxonomic composition and morphological trait diversity along a land-use gradient in French Guiana. We measured 13 core ant morphological traits on all species sampled. We then selected the set of five traits that best captured changes along the land-use gradient. Potential effects of the variation in morphological trait diversity and average values were evaluated by examining morphological traits individually as well as in combination. We found that variation in taxonomic diversity was unrelated to the plot-level morphospace. Conversely, a significant shift in taxonomic composition was accompanied by changes in the average values of community traits along the studied gradient, examined both individually and in combination. We argue that morphological trait values may be related to the success of different species in surviving in a given environment and, therefore, are indicative of the taxonomic turnover in ants along the land-use gradient. Nevertheless, in contradiction with theoretical expectations, the morphospace is only slightly affected by habitat filtering and loosely impacted by taxonomic changes. Examining the sensitivity of the morphospace to abiotic and biotic factors and how it reflects varying ecological pressures for species is thus of the utmost importance.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1752-458x ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/icad.12248 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 892  
Permanent link to this record
 

 
Author Orivel, J.; Klimes, P.; Novotny, V.; Leponce, M. url  doi
openurl 
  Title Resource use and food preferences in understory ant communities along a complete elevational gradient in Papua New Guinea Type Journal Article
  Year (down) 2018 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 50 Issue 4 Pages 641-648  
  Keywords altitudinal gradient; food resources; Formicidae; Mt Wilhelm; nutritional ecology  
  Abstract Elevational gradients provide an interesting opportunity for studying the effect of climatic drivers over short distances on the various facets of biodiversity. It is globally assumed that the decrease in species richness with increasing elevation follows mainly the decrease in ecosystem productivity, but studies on functional diversity still remain limited. Here, we investigated how resource use and food preferences by both individual ant species and communities foraging in the understory vary with elevation along a complete elevational gradient (200 to 3200 m asl). Five bait types reflecting some of the main ecosystem processes in which ants are involved were tested: mutualism (sucrose and melezitose), predation (live termites), and detritivory (crushed insects and chicken feces). The observed monotonic decrease in both species richness and occurrences with elevation increase was accompanied by changes in some of the tested ecosystem processes. Such variations can be explained by resource availability and/or resource limitation: Predation and bird feces removal decreased with increasing elevation possibly reflecting a decline in species able to use these resources, while insect detritivory and nectarivory were most probably driven by resource limitation (or absence of limitation), as their relative use did not change along the gradient. Consequently, resource attractiveness (i.e., food preferences at the species level) appears as an important factor in driving community structuring in ants together with the abiotic environmental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3606 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/btp.12539 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 893  
Permanent link to this record
 

 
Author Talaga, S.; Dejean, A.; Mouza, C.; Dumont, Y.; Leroy, C. doi  openurl
  Title Larval interference competition between the native Neotropical mosquito Limatus durhamii and the invasive Aedes aegypti improves the fitness of both species Type Journal Article
  Year (down) 2018 Publication Insect Science Abbreviated Journal Insect Science  
  Volume 25 Issue Pages 1102-1107  
  Keywords Aedes aegypti; increased fitness; interference competition; Limatus durhamii; phenotypic plasticity; resistance to invasion  
  Abstract Abstract Interspecific competition with native species during biological invasions can sometimes limit alien expansion. We aimed to determine the potential ecological effects of Limatus durhamii Theobald 1901, a native Neotropical mosquito (Diptera: Culicidae) species, on the invasive species Aedes (Stegomyia) aegypti (Linnaeus 1762) that breeds in the same artificial water containers. Development time and adult dry mass were measured in 3 rearing conditions: control (a single larva), intraspecific competition (2 conspecific larvae), and interspecific competition (2 heterospecific larvae). Food was provided ad libitum to eliminate exploitative competition. For Ae. aegypti, development time was not affected by interspecific interference competition (nonsignificant differences with the control) and the adult dry mass was significantly higher, meaning that individual fitness likely increased. Yet, because previous studies showed longer development time and lighter adults during competition with other invasive mosquitoes, it is likely that Ae. aegypti can express a different phenotype depending on the competing species. The similar pattern found for Li. durhamii females and the nonsignificant difference with the control for males explain in part why this species can compete with Ae. aegypti.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1672-9609 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 836  
Permanent link to this record
 

 
Author Dezecache, C.; Salles, J.-M.; Herault, B. pdf  url
doi  openurl
  Title Questioning emissions-based approaches for the definition of REDD+ deforestation baselines in high forest cover/low deforestation countries Type Journal Article
  Year (down) 2018 Publication Carbon Balance Manage. Abbreviated Journal  
  Volume 13 Issue 21 Pages  
  Keywords Baseline; Deforestation; Guiana Shield; HFLD countries; Redd+; Reference level; Spatial modelling  
  Abstract Background: REDD+ is being questioned by the particular status of High Forest/Low Deforestation countries. Indeed, the formulation of reference levels is made difficult by the confrontation of low historical deforestation records with the forest transition theory on the one hand. On the other hand, those countries might formulate incredibly high deforestation scenarios to ensure large payments even in case of inaction. Results: Using a wide range of scenarios within the Guiana Shield, from methods involving basic assumptions made from past deforestation, to explicit modelling of deforestation using relevant socio-economic variables at the regional scale, we show that the most common methodologies predict huge increases in deforestation, unlikely to happen given the existing socio-economic situation. More importantly, it is unlikely that funds provided under most of these scenarios could compensate for the total cost of avoided deforestation in the region, including social and economic costs. Conclusion: This study suggests that a useful and efficient international mechanism should really focus on removing the underlying political and socio-economic forces of deforestation rather than on hypothetical result-based payments estimated from very questionable reference levels.  
  Address  
  Corporate Author Thesis  
  Publisher BioMed Central Ltd. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17500680 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 837  
Permanent link to this record
 

 
Author Santiago, L.S.; De Guzman, M.E.; Baraloto, C.; Vogenberg, J.E.; Brodie, M.; Hérault, B.; Fortunel, C.; Bonal, D. url  doi
openurl 
  Title Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species Type Journal Article
  Year (down) 2018 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 218 Issue 3 Pages 1015-1024  
  Keywords Amazonian forest; cavitation; drought; hydraulic conductivity; sapwood capacitance; turgor loss point; wood density; xylem; cavitation; climate change; drought; forest canopy; forest ecosystem; hydraulic conductivity; rainforest; species diversity; tree; tropical forest; vulnerability; wood; Amazonia; French Guiana; Paracou  
  Abstract Predicting responses of tropical forests to climate change-type drought is challenging because of high species diversity. Detailed characterization of tropical tree hydraulic physiology is necessary to evaluate community drought vulnerability and improve model parameterization. Here, we measured xylem hydraulic conductivity (hydraulic efficiency), xylem vulnerability curves (hydraulic safety), sapwood pressure–volume curves (drought avoidance) and wood density on emergent branches of 14 common species of Eastern Amazonian canopy trees in Paracou, French Guiana across species with the densest and lightest wood in the plot. Our objectives were to evaluate relationships among hydraulic traits to identify strategies and test the ability of easy-to-measure traits as proxies for hard-to-measure hydraulic traits. Xylem efficiency was related to capacitance, sapwood water content and turgor loss point, and other drought avoidance traits, but not to xylem safety (P50). Wood density was correlated (r = −0.57 to −0.97) with sapwood pressure–volume traits, forming an axis of hydraulic strategy variation. In contrast to drier sites where hydraulic safety plays a greater role, tropical trees in this humid tropical site varied along an axis with low wood density, high xylem efficiency and high capacitance at one end of the spectrum, and high wood density and low turgor loss point at the other.  
  Address INRA, UMR Silva, AgroParisTech, Université de Lorraine, Nancy, 54000, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :6; Export Date: 3 December 2018; Coden: Nepha; Correspondence Address: Santiago, L.S.; Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, United States; email: santiago@ucr.edu; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, FEDER 2014–2020; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, Project; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, GY0006894; Funding details: University of California, UC; Funding details: National Institute of Food and Agriculture, NIFA; Funding details: ANR-10-LABX-0025; Funding text 1: We would like to thank Benôıt Burban and Jean-Yves Goret for laboratory support, Jocelyn Cazal and Valentine Alt for skillfully climbing trees for samples, Aurelie Dourdain for database support, and Clement Stahl, John Sperry, Sean Gleason, Todd Dawson, Steve Davis, JoséLuiz Silva, Aleyda Acosta Rangel and three anonymous reviewers for comments and discussions on the data presented. The study has been supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Boenisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is currently supported by Future Earth/ bioDISCOVERY and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. We also acknowledge the University of California, Botany and Plant Sciences Department and the USDA National Institute of Food and Agriculture for support. We are grateful to the CIRAD and the GFclim project (FEDER 2014–2020, Project GY0006894) for financial support of the Paracou research station. Funding for fieldwork and data acquisition was provided by Investissement d’Avenir grants of the French ANR (CEBA: ANR-10-LABX-0025), through the ‘DRAMA’ and ‘HydroSTAT’ projects.; References: Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Hogg, E.H., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests (2010) Forest Ecology and Management, 259, pp. 660-684; Anderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., Anderegg, L.D.L., Field, C.B., The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off (2012) Proceedings of the National Academy of Sciences, USA, 109, pp. 233-237; Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., Jansen, S., Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe (2016) Proceedings of the National Academy of Sciences, USA, 113, pp. 5024-5029; Baraloto, C., Goldberg, D.E., Bonal, D., Performance trade-offs among tropical tree seedlings in contrasting microhabitats (2005) Ecology, 86, pp. 2461-2472; Baraloto, C., Hardy, O.J., Paine, C., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.A., Savolainen, V., Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities (2012) Journal of Ecology, 100, pp. 690-701; Barnard, D.M., Meinzer, F.C., Lachenbruch, B., McCulloh, K.A., Johnson, D.M., Woodruff, D.R., Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance (2011) Plant, Cell & Environment, 34, pp. 643-654; Bartlett, M.K., Scoffoni, C., Sack, L., The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis (2012) Ecology Letters, 15, pp. 393-405; Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Bonan, G.B., Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate (2010) Science, 329, pp. 834-838; Benjamini, Y., Hochberg, Y., On the adaptive control of the false discovery rate in multiple testing with independent statistics (2000) Journal of educational and Behavioral Statistics, 25, pp. 60-83; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Global Change Biology, 14, pp. 1917-1933; Bonal, D., Burban, B., Stahl, C., Wagner, F., Herault, B., The response of tropical rainforests to drought-lessons from recent research and future prospects (2016) Annals of Forest Science, 73, pp. 27-44; Borchert, R., Pockman, W.T., Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees (2005) Tree Physiology, 25, pp. 457-466; Bucci, S.J., Goldstein, G., Scholz, F.G., Meinzer, F.C., Physiological significance of hydraulic segmentation, nocturnal transpiration and capacitance in tropical trees: paradigms revisited (2016) Tropical tree physiology: adaptations and responses in a changing environment, pp. 205-225. , In, Goldstein G, Santiago LS, eds., Cham, Switzerland, Springer International; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Choat, B., Drayton, W.M., Brodersen, C., Matthews, M.A., Shackel, K.A., Wada, H., McElrone, A.J., Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species (2010) Plant, Cell & Environment, 33, pp. 1502-1512; Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Hacke, U.G., Global convergence in the vulnerability of forests to drought (2012) Nature, 491, pp. 752-755; Christoffersen, B.O., Gloor, M., Fauset, S., Fyllas, N.M., Galbraith, D.R., Baker, T.R., Kruijt, B., Binks, O.J., Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro) (2016) Geoscientific Model Development, 9, pp. 4227-4255; De Guzman, M.E., Santiago, L.S., Schnitzer, S.A., Álvarez-Cansino, L., Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species (2017) Tree Physiology, 37, pp. 1404-1414; Dray, S., Dufour, A.-B., The ade4 package: implementing the duality diagram for ecologists (2007) Journal of Statistical Software, 22, pp. 1-20; Fortunel, C., Ruelle, J., Beauchene, J., Fine, P.V.A., Baraloto, C., Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients (2014) New Phytologist, 202, pp. 79-94; Fu, R., Yin, L., Li, W.H., Arias, P.A., Dickinson, R.E., Huang, L., Chakraborty, S., Fisher, R., Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection (2013) Proceedings of the National Academy of Sciences, USA, 110, pp. 18110-18115; Gleason, S.M., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., Bhaskar, R., Cao, K.-F., Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species (2016) New Phytologist, 209, pp. 123-136; Gourlet-Fleury, S., Guehl, J.-M., Laroussinie, O., (2004) Ecology and management of a neotropical rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana, , Paris, France, Elsevier; Hacke, U.G., Sperry, J.S., Wheeler, J.K., Castro, L., Scaling of angiosperm xylem structure with safety and efficiency (2006) Tree Physiology, 26, pp. 689-701; Holtum, J.A.M., Winter, K., Elevated [CO2] and forest vegetation: more a water issue than a carbon issue? (2010) Functional Plant Biology, 37, pp. 694-702; Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L.M., Sitch, S., Fisher, R., Lomas, M., Booth, B.B.B., Simulated resilience of tropical rainforests to CO2-induced climate change (2013) Nature Geoscience, 6, pp. 268-273; Joetzjer, E., Delire, C., Douville, H., Ciais, P., Decharme, B., Fisher, R., Christoffersen, B., Ferreira, L.V., Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models (2014) Geoscientific Model Development, 7, pp. 2933-2950; Joetzjer, E., Douville, H., Delire, C., Ciais, P., Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3 (2013) Climate Dynamics, 41, pp. 2921-2936; Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., Garnier, E., Wright, I.J., TRY – a global database of plant traits (2011) Global Change Biology, 17, pp. 2905-2935; Maherali, H., Pockman, W.T., Jackson, R.B., Adaptive variation in the vulnerability of woody plants to xylem cavitation (2004) Ecology, 85, pp. 2184-2199; Manzoni, S., Vico, G., Katul, G., Palmroth, S., Jackson, R.B., Porporato, A., Hydraulic limits on maximum plant transpiration and the emergence of the safety–efficiency trade-off (2013) New Phytologist, 198, pp. 169-178; Maréchaux, I., Bartlett, M.K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., Chave, J., Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest (2015) Functional Ecology, 29, pp. 1268-1277; Martínez-Vilalta, J., Piñol, J., Beven, K., A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean (2002) Ecological Modelling, 155, pp. 127-147; Medlyn, B.E., De Kauwe, M.G., Duursma, R.A., New developments in the effort to model ecosystems under water stress (2016) New Phytologist, 212, pp. 5-7; Meinzer, F.C., Goldstein, G., Scaling up from leaves to whole plants and canopies for photosynthetic gas exchange (1996) Tropical forest plant ecophysiology, pp. 114-138. , In, Mulkey SS, Chazdon RL, Smith AP, eds., New York, NY, USA, Chapman & Hall; Meinzer, F.C., James, S.A., Goldstein, G., Woodruff, D., Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees (2003) Plant, Cell & Environment, 26, pp. 1147-1155; Meinzer, F.C., Johnson, D.M., Lachenbruch, B., McCulloh, K.A., Woodruff, D.R., Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance (2009) Functional Ecology, 23, pp. 922-930; Meinzer, F.C., Woodruff, D.R., Domec, J.C., Goldstein, G., Campanello, P.I., Gatti, M.G., Villalobos-Vega, R., Coordination of leaf and stem water transport properties in tropical forest trees (2008) Oecologia, 156, pp. 31-41; Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J., Hölttä, T., Coordination of physiological traits involved in drought-induced mortality of woody plants (2015) New Phytologist, 208, pp. 396-409; Morris, H., Plavcova, L., Cvecko, P., Fichtler, E., Gillingham, M.A.F., Martinez-Cabrera, H.I., McGlinn, D.J., Zieminska, K., A global analysis of parenchyma tissue fractions in secondary xylem of seed plants (2016) New Phytologist, 209, pp. 1553-1565; Phillips, O.L., van der Heijden, G., Lewis, S.L., Lopez-Gonzalez, G., Aragao, L., Lloyd, J., Malhi, Y., Davila, E.A., Drought-mortality relationships for tropical forests (2010) New Phytologist, 187, pp. 631-646; Pike, N., Using false discovery rates for multiple comparisons in ecology and evolution (2011) Methods in Ecology and Evolution, 2, pp. 278-282; Pivovaroff, A.L., Pasquini, S.C., De Guzman, M.E., Alstad, K.P., Stemke, J., Santiago, L.S., Multiple strategies for drought survival among woody plant species (2016) Functional Ecology, 30, pp. 517-526; Pockman, W.T., Sperry, J.S., Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation (2000) American Journal of Botany, 87, pp. 1287-1299; Preston, K.A., Cornwell, W.K., DeNoyer, J.L., Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms (2006) New Phytologist, 170, pp. 807-818; (2015) R: a language and environment for statistical computing, , Vienna, Austria, R Core Development Team; Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., Hagen, S., Benchmark map of forest carbon stocks in tropical regions across three continents (2011) Proceedings of the National Academy of Sciences, USA, 108, pp. 9899-9904; Sack, L., Pasquet-Kok, J., (2011) Leaf pressure–volume curve parameters, , http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Leaf+pressure-volume+curve+parameters, [WWW document] URL, [accessed 9 August 2016] In Prometheus Wiki; Santiago, L.S., Bonal, D., De Guzman, M.E., Ávila-Lovera, E., Drought survival strategies of tropical trees (2016) Tropical tree physiology: adaptations and responses in a changing environment, pp. 243-258. , In, Goldstein G, Santiago LS, eds., Cham, Switzerland, Springer International; Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., Jones, T., Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees (2004) Oecologia, 140, pp. 543-550; Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees (2007) Plant, Cell & Environment, 30, pp. 236-248; Scholz, F., Phillips, N., Bucci, S., Meinzer, F., Goldstein, G., Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size (2011) Size- and age-related changes in tree structure and function, pp. 341-361. , In, Meinzer FC, Lachenbruch B, Dawson TE, eds., Dordrecht, the Netherlands, Springer; Sperry, J.S., Donnelly, J.R., Tyree, M.T., A method for measuring hydraulic conductivity and embolism in xylem (1988) Plant, Cell & Environment, 11, pp. 35-40; Sperry, J.S., Meinzer, F.C., McCulloh, K.A., Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees (2008) Plant, Cell & Environment, 31, pp. 632-645; ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F., Castellanos, H., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Taiz, L., Zeiger, E., Møller, I.M., Murphy, A., (2015) Plant physiology and development, , Sunderland, MA, USA, Sinauer Associates; Tyree, M., Negative turgor pressure in plant cells: fact or fallacy? (1976) Canadian Journal of Botany, 54, pp. 2738-2746; Tyree, M.T., Davis, S.D., Cochard, H., Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? (1994) IAWA Journal, 15, pp. 335-360; Tyree, M.T., Ewers, F.W., The hydraulic architecture of trees and other woody plants (1991) New Phytologist, 119, pp. 345-360; Webb, C.O., Donoghue, M.J., Phylomatic: tree assembly for applied phylogenetics (2005) Molecular Ecology Notes, 5, pp. 181-183; Wheeler, J.K., Sperry, J.S., Hacke, U.G., Hoang, N., Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport (2005) Plant, Cell & Environment, 28, pp. 800-812; Xu, C., McDowell, N.G., Sevanto, S., Fisher, R.A., Our limited ability to predict vegetation dynamics under water stress (2013) New Phytologist, 200, pp. 298-300; Xu, X.T., Medvigy, D., Powers, J.S., Becknell, J.M., Guan, K.Y., Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests (2016) New Phytologist, 212, pp. 80-95; Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., Reich, P.B., Three keys to the radiation of angiosperms into freezing environments (2014) Nature, 506, pp. 89-92; Zanne, A.E., Westoby, M., Falster, D.S., Ackerly, D.D., Loarie, S.R., Arnold, S.E.J., Coomes, D.A., Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity (2010) American Journal of Botany, 97, pp. 207-215 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 842  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: