toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wagner, F.H.; Herault, B.; Bonal, D.; Stahl, C.; Anderson, L.O.; Baker, T.R.; Sebastian Becker, G.; Beeckman, H.; Boanerges Souza, D.; Cesar Botosso, P.; Bowman, D.M.J.S.; Bräuning, A.; Brede, B.; Irving Brown, F.; Julio Camarero, J.; Camargo, P.B.; Cardoso, F.C.G.; Carvalho, F.A.; Castro, W.; Koloski Chagas, R.; Chave, J.; Chidumayo, E.N.; Clark, D.A.; Regina Capellotto Costa, F.; Couralet, C.; Henrique Da Silva Mauricio, P.; Dalitz, H.; Resende De Castro, V.; Milani, J.E.D.F.; Consuelo De Oliveira, E.; De Souza Arruda, L.; Devineau, J.L.; Drew, D.M.; Dünisch, O.; Durigan, G.; Elifuraha, E.; Fedele, M.; Ferreira Fedele, L.; Figueiredo Filho, A.; Finger, C.A.G.; César Franco, A.; Jnior, L.F.; Galvão, F.; Gebrekirstos, A.; Gliniars, R.; Maurício Lima De Alencastro Graça, P.; Griffiths, A.D.; Grogan, J.; Guan, K.; Homeier, J.; Raquel Kanieski, M.; Khoon Kho, L.; Koenig, J.; Valerio Kohler, S.; Krepkowski, J.; Lemos-Filho, J.P.; Lieberman, D.; Eugene Lieberman, M.; Sergio Lisi, C.; Longhi Santos, T.; Ayala, J.L.L.; Eijji Maeda, E.; Malhi, Y.; Maria, V.R.B.; Marques, M.C.M.; Marques, R.; Maza Chamba, H.; Mbwambo, L.; Liana Lisboa Melgaço, K.; Angela Mendivelso, H.; Murphy, B.P.; O'Brien, J.J.; F. Oberbauer, S.; Okada, N.; Plissier, R.; Prior, L.D.; Alejandro Roig, F.; Ross, M.; Rodrigo Rossatto, D.; Rossi, V.; Rowland, L.; Rutishauser, E.; Santana, H.; Schulze, M.; Selhorst, D.; Rodrigues Silva, W.; Silveira, M.; Spannl, S.; Swaine, M.D.; Toledo, J.J.; Miranda Toledo, M.; Toledo, M.; Toma, T.; Tomazello Filho, M.; Ignacio Valdez Hernández, J.; Verbesselt, J.; Aparecida Vieira, S.; Vincent, G.; Volkmer De Castilho, C.; Volland, F.; Worbes, M.; Lea Bolzan Zanon, M.; Aragão, L.E.O.C. url  doi
openurl 
  Title Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests Type Journal Article
  Year 2016 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume (up) 13 Issue 8 Pages 2537-2562  
  Keywords  
  Abstract The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rainfall is < 2000ĝ€-mmĝ€-yrĝ'1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000ĝ€-mmĝ€-yrĝ'1. Author(s) 2016.  
  Address College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 20 May 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 680  
Permanent link to this record
 

 
Author Alméras, T.; Clair, B. url  openurl
  Title Critical review on the mechanisms of maturation stress generation in trees Type Journal Article
  Year 2016 Publication Journal of the Royal Society Interface Abbreviated Journal J R Soc Interface  
  Volume (up) 13 Issue 122 Pages  
  Keywords  
  Abstract Trees control their posture by generating asymmetric mechanical stress around the periphery of the trunk or branches. This stress is produced in wood during the maturation of the cell wall. When the need for reaction is high, it is accompanied by strong changes in cell organization and composition called reaction wood, namely compression wood in gymnosperms and tension wood in angiosperms. The process by which stress is generated in the cell wall during its formation is not yet known, and various hypothetical mechanisms have been proposed in the literature. Here we aim at discriminating between these models. First, we summarize current knowledge about reaction wood structure, state and behaviour relevant to the understanding of maturation stress generation. Then, the mechanisms proposed in the literature are listed and discussed in order to identify which can be rejected based on their inconsistency with current knowledge at the frontier between plant science and mechanical engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 719  
Permanent link to this record
 

 
Author Pierrejean, I.; Mehinto, T.; Beauchene, J. url  openurl
  Title Comparative Analysis of Three Different Methods Used to Determine the Elastic Modulus for a Choice of Tropical Guianese Wood Species Type Journal Article
  Year 2017 Publication Pro Ligno Abbreviated Journal  
  Volume (up) 13 Issue 1 Pages 3-17  
  Keywords density; modulus of elasticity; static and dynamic tests; tropical woods  
  Abstract This study compares variability in the longitudinal Modulus of Elasticity (MOE) values, measured by three different methods, for eight tropical wood species covering a wide range of densities, a property that has been little described in the literature for some of the species studied. The modulus of elasticity in wood species is one of the main mechanical properties measured to characterize wood materials. However, this property is seldom described for the tropical wood species studied here, and the method used is often variable. The aim is to answer the following questions. In the methods used, what are the main variability factors which influence modulus measurement? Is the modulus different with regard to the solicitation direction (radial or tangential)? Which relationship exists between modulus and density for these species?
The samples were subjected to the four-point bending test, then to the free vibration test and to the forced-vibration test (which allows tests on small samples).The samples were subjected to stress in radial and tangential directions. The modulus values obtained by the different methods were well correlated for most of the species. The relationship between modulus and density was very good at inter-specific level because sampling covered a wide range of densities. But this relationship was not so good for each of the species sampled.
This kind of test was not appropriate for detecting differences in behavior between the two directions of solicitation for these species. The main features of the three methods were summarized, highlighting the advantages of each for the species studied.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 753  
Permanent link to this record
 

 
Author Dezecache, C.; Salles, J.-M.; Herault, B. pdf  url
doi  openurl
  Title Questioning emissions-based approaches for the definition of REDD+ deforestation baselines in high forest cover/low deforestation countries Type Journal Article
  Year 2018 Publication Carbon Balance Manage. Abbreviated Journal  
  Volume (up) 13 Issue 21 Pages  
  Keywords Baseline; Deforestation; Guiana Shield; HFLD countries; Redd+; Reference level; Spatial modelling  
  Abstract Background: REDD+ is being questioned by the particular status of High Forest/Low Deforestation countries. Indeed, the formulation of reference levels is made difficult by the confrontation of low historical deforestation records with the forest transition theory on the one hand. On the other hand, those countries might formulate incredibly high deforestation scenarios to ensure large payments even in case of inaction. Results: Using a wide range of scenarios within the Guiana Shield, from methods involving basic assumptions made from past deforestation, to explicit modelling of deforestation using relevant socio-economic variables at the regional scale, we show that the most common methodologies predict huge increases in deforestation, unlikely to happen given the existing socio-economic situation. More importantly, it is unlikely that funds provided under most of these scenarios could compensate for the total cost of avoided deforestation in the region, including social and economic costs. Conclusion: This study suggests that a useful and efficient international mechanism should really focus on removing the underlying political and socio-economic forces of deforestation rather than on hypothetical result-based payments estimated from very questionable reference levels.  
  Address  
  Corporate Author Thesis  
  Publisher BioMed Central Ltd. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17500680 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 837  
Permanent link to this record
 

 
Author Perrot, T.; Guillaume, S.; Nadine, A.; Jacques, B.; Philippe, G.; Stéphane, D.; Rodnay, S.; Mélanie, M.-R.; Eric, G. doi  openurl
  Title A reverse chemical ecology approach to explore wood natural durability Type Journal Article
  Year 2020 Publication Microbial Biotechnology Abbreviated Journal Microb. Biotechnol.  
  Volume (up) 13 Issue 5 Pages 1673-1677  
  Keywords glutathione transferase; Article; biodegradation; data base; detoxification; ecology; enzyme activity; enzyme metabolism; forest; molecular dynamics; physical parameters; species identification; thermal analysis; Trametes versicolor; wood; wood durability  
  Abstract The natural durability of wood species, defined as their inherent resistance to wood-destroying agents, is a complex phenomenon depending on many biotic and abiotic factors. Besides the presence of recalcitrant polymers, the presence of compounds with antimicrobial properties is known to be important to explain wood durability. Based on the advancement in our understanding of fungal detoxification systems, a reverse chemical ecology approach was proposed to explore wood natural durability using fungal glutathione transferases. A set of six glutathione transferases from the white-rot Trametes versicolor were used as targets to test wood extracts from seventeen French Guiana neotropical species. Fluorescent thermal shift assays quantified interactions between fungal glutathione transferases and these extracts. From these data, a model combining this approach and wood density significantly predicts the wood natural durability of the species tested previously using long-term soil bed tests. Overall, our findings confirm that detoxification systems could be used to explore the chemical environment encountered by wood-decaying fungi and also wood natural durability. © 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.  
  Address Université de Lorraine, INRAE, LERMAB, Nancy, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17517907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 955  
Permanent link to this record
 

 
Author Poyatos, Rafael ; Granda, Victor ; Flo, Victor ; Adams, Mark A. ; Adorjan, Balazs ; Aguadé, David ; Aidar, Marcos P.M. ; Allen, Scott ; Alvarado-Barrientos, M.Susana ; Anderson-Teixeira, Kristina J. ; Aparecido, Luiza Maria ; Arain, M. Altaf ; Aranda, Ismael ; Asbjornsen, Heidi ; Baxter, Robert doi  openurl
  Title Global transpiration data from sap flow measurements: the SAPFLUXNET database Type Journal Article
  Year 2021 Publication Earth System Science Data Abbreviated Journal  
  Volume (up) 13 Issue 6 Pages 2607–2649  
  Keywords  
  Abstract Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.  
  Address  
  Corporate Author Thesis  
  Publisher COPERNICUS PUBLICATIONS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1058  
Permanent link to this record
 

 
Author Bonal, D.; Bosc, A.; Ponton, S.; Goret, J.Y.; Burban, B.; Gross, P.; Bonnefond, J.M.; Elbers, J.; Longdoz, B.; Epron, D.; Guehl, J.M.; Granier, A. openurl 
  Title Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana Type Journal Article
  Year 2008 Publication Global Change Biology Abbreviated Journal Glob. Change Biol.  
  Volume (up) 14 Issue 8 Pages 1917-1933  
  Keywords dry season; ecosystem respiration; eddy covariance; gross ecosystem productivity; Neotropical rainforest; net ecosystem productivity; soil drought; solar radiation  
  Abstract The lack of information on the ways seasonal drought modifies the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and the resulting carbon balance hinders our ability to precisely predict how these ecosystems will respond as global environmental changes force them to face increasingly contrasting conditions in the future. To address this issue, seasonal variations in daily net ecosystem productivity (NEPd) and two main components of this productivity, daily total ecosystem respiration (R-Ed) and daily gross ecosystem productivity (GEP(d)), were estimated over 2 years at a flux tower site in French Guiana, South America (5 degrees 16'54'N, 52 degrees 54'44'W). We compared seasonal variations between wet and dry periods and between dry periods of contrasting levels of intensity (i.e. mild vs. severe) during equivalent 93-day periods. During the wet periods, the ecosystem was almost in balance with the atmosphere (storage of 9.0 g C m(-2)). Seasonal dry periods, regardless of their severity, are associated with higher incident radiation and lower R-Ed combined with reduced soil respiration associated with low soil water availability. During the mild dry period, as is normally the case in this region, the amount of carbon stored in the ecosystem was 32.7 g C m(-2). Severe drought conditions resulted in even lower R-Ed, whereas the photosynthetic activity was only moderately reduced and no change in canopy structure was observed. Thus, the severe dry period was characterized by greater carbon storage (64.6 g C m(-2)), emphasizing that environmental conditions, such as during a severe drought, modify the CO2 exchange between Neotropical rainforest ecosystems and the atmosphere and potentially the resulting carbon balance.  
  Address [Bonal, Damien; Goret, Jean-Yves; Burban, Benoit] INRA, UMR Ecol Forets Guyane, Kourou 97387, French Guiana, Email: damien.bonal@kourou.cirad.fr  
  Corporate Author Thesis  
  Publisher BLACKWELL PUBLISHING Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000257712400015 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 133  
Permanent link to this record
 

 
Author Orivel, J.; Leroy, C. openurl 
  Title The diversity and ecology of ant gardens (Hymenoptera: Formicidae; Spermatophyta: Angiospermae) Type Journal Article
  Year 2011 Publication Myrmecological News Abbreviated Journal Myrmecol. News  
  Volume (up) 14 Issue Pages 73-85  
  Keywords Ant-plant interactions; epiphytes; mutualisms; Neotropics; Paleotropics; phytotelm; parabiosis; seed dispersal; review  
  Abstract Mutualistic interactions between ants and plants are important features of many ecosystems, and they can be divided into three main categories: dispersal and protective mutualisms and myrmecotrophy. In both the Neotropics and the Southeastern Asian Paleotropics, ant gardens (AGs), a particular type of ant-plant interaction, are frequent. To initiate AGs, ants integrate the seeds of certain epiphyte species into the carton of their nest. The development of the plants leads to the formation of a cluster of epiphytes rooted in the carton. They have been defined as one of the most complex associations between ants and plants known because of the plurispecific, but also specialized nature of the association involving several phylogenetically-distant ant and plant species. The aim of this review is to provide a synthesis of the diversity and ecology of AGs, including the outcomes experienced by the partners in the interaction and the direct and indirect impacts ant-garden ants have on the plant and arthropod communities.  
  Address [Orivel, Jerome; Leroy, Celine] CNRS, UMR Ecol Forets Guyane, Kourou 97379, French Guiana, Email: jerome.orivel@ecofog.gf  
  Corporate Author Thesis  
  Publisher OESTERREICHISCHE GESELL ENTOMOFAUNISTIK, C/O NATURHISTOR MUSEUM WIEN Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1994-4136 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286844100009 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 292  
Permanent link to this record
 

 
Author Delnatte, C.; Meyer, J.-Y. url  openurl
  Title Plant introduction, naturalization, and invasion in French Guiana (South America) Type Journal Article
  Year 2012 Publication Biological Invasions Abbreviated Journal Biol. Invasions  
  Volume (up) 14 Issue 5 Pages 915-927  
  Keywords Acacia mangium; French Guiana; Invasive plant; Melaleuca quinquenervia; Naturalization; Savanna  
  Abstract Continental tropical ecosystems are generally viewed as less vulnerable to biological invasions than island ones. Their apparent resistance to invasive alien species is often attributed to their higher native biota diversity and complexity. However, with the increase of human activities and disturbances and the accelerate rate of introductions of plant species, these apparently resilient continental ecosystems are now experiencing alien plant naturalization and invasion events. In order to illustrate this emergent phenomenon, we compiled a list of all known introduced and naturalized plant species in French Guiana (Guiana Shield, South America). A total of 490 alien plants were recorded, about 34% of which are currently naturalized, mainly species belonging to the Acanthaceae and Fabaceae (Faboideae) in the Eudicotyledons, and Poaceae (grasses) and Arecaceae (palms) in the Monocotyledons. The coastal dry and wet savannas appears to be vulnerable to plant invasion (with 165 naturalized species, about 34% of the alien flora), especially by Acacia mangium (Mimosaceae) and Melaleuca quinquenervia (Myrtaceae) which are forming localized but dense monotypic stands. Both tree species, intentionnally introduced for reforestation, rehabilitation, and as garden ornamentals and have the potential to spread with increasing human disturbances The number and abundance of naturalized alien plants in the relatively undisturbed tropical lowland rainforests and savannas remains still very low. Therefore, surveillance, early detection, and eradication of potential plant invaders are crucial; moreover collaboration with neighbouring countries of the Guiana Shield is essential to prevent the introduction of potentially invasive species which are still not present in French Guiana. © 2011 Springer Science+Business Media B.V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 13873547 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 May 2012; Source: Scopus; Coden: Blinf; doi: 10.1007/s10530-011-0129-1; Language of Original Document: English; Correspondence Address: Delnatte, C.; Herbier de Guyane, Institut de Recherche pour le Développement, B.P. 165, Cayenne, French Guiana; email: cesar_delnatte@yahoo.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 399  
Permanent link to this record
 

 
Author Coq, S.; Weigel, J.; Bonal, D.; Hattenschwiler, S. url  openurl
  Title Litter mixture effects on tropical tree seedling growth – a greenhouse experiment Type Journal Article
  Year 2012 Publication Plant Biology Abbreviated Journal Plant Biol.  
  Volume (up) 14 Issue 4 Pages 630-640  
  Keywords Amazonian lowland rain forest; Autotoxicity; Belowground/aboveground interactions; Litter decomposition; Plant nutrition; Plant-soil feedback  
  Abstract Decomposing litter provides critical nutrients for plants, particularly in nutrient-poor ecosystems such as tropical forests. We hypothesised that decomposing litter improves the performance of a variety of tropical tree seedlings, and that this litter effect varies depending on the species of litter present in litter mixtures. We addressed these hypotheses with a large pot experiment manipulating a range of different litter mixtures of contrasting quality and using seedlings of four tree species from the Amazonian forest of French Guiana. In contrast to our initial hypothesis, decomposing litter had either neutral or negative impacts on seedling growth, despite strongly different growth rates, biomass allocation patterns and leaf and root traits among tree species. Tree species varied in their responses to litter additions, which were further modified by species identity of the added litter. Our data show litter species-specific effects on growth, biomass allocation and leaf and root traits of tropical tree seedlings. These results suggest that a net nutrient release from decomposing litter does not necessarily improve tree seedling growth, even under nutrient-limiting conditions. In conclusion, litter layer composition may affect seedling establishment and recruitment success beyond litter-derived plant nutrient availability, which may contribute to tree species composition and dynamics in the studied tropical forest. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.  
  Address INRA, UMR, Écologie et Écophysiologie, Champenoux, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14358603 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 27 June 2012; Source: Scopus; Coden: Pbiof; doi: 10.1111/j.1438-8677.2011.00534.x; Language of Original Document: English; Correspondence Address: Coq, S.; Laboratoire d'Ecologie Alpine (LECA), CNRS, Université Joseph Fourier, BP 53, F-38042 Grenoble, Cedex 09, France; email: sylvain.coq@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 407  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: