|   | 
Details
   web
Records
Author Nixon, S.; Agwa, A.; Robinson, S.; Walker, A.; Touchard, A.; Schroeder, C.; Vetter, I.; Kotze, A.C.; Herzig, V.; King, G.F.
Title Discovery and characterisation of novel peptides from Amazonian stinging ant venoms with antiparasitic activity Type Journal Article
Year 2020 Publication Toxicon Abbreviated Journal Toxicon
Volume (down) 177 Issue 1 Pages S60
Keywords
Abstract
Address The Institute for Molecular Bioscience, The University of Queensland, Australia; CSIRO Agriculture and Food, Australia; CNRS, UMR Ecologie des forêts de Guyane, France
Corporate Author Thesis
Publisher NLM (Medline) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 18793150 (Issn) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 973
Permanent link to this record
 

 
Author Christensen-Dalsgaard, K.K.; Fournier, M.; Ennos, A.R.; Barfod, A.S.
Title Changes in vessel anatomy in response to mechanical loading in six species of tropical trees Type Journal Article
Year 2007 Publication New Phytologist Abbreviated Journal New Phytol.
Volume (down) 176 Issue 3 Pages 610-622
Keywords hydraulic architecture; hydraulic-mechanical trade-off; mechanical adaptation; rooting morphology; tropical trees; vascular anatomy
Abstract It is well known that trees adapt their supportive tissues to changes in loading conditions, yet little is known about how the vascular anatomy is modified in this process. We investigated this by comparing more and less mechanically loaded sections in six species of tropical trees with two different rooting morphologies. We measured the strain, vessel size, frequency and area fraction and from this calculated the specific conductivity, then measured the conductivity, modulus of elasticity and yield stress. The smallest vessels and the lowest vessel frequency were found in the parts of the trees subjected to the greatest stresses or strains. The specific conductivity varied up to two orders of magnitude between mechanically loaded and mechanically unimportant parts of the root system. A trade-off between conductivity and stiffness or strength was revealed, which suggests that anatomical alterations occur in response to mechanical strain. By contrast, between-tree comparisons showed that average anatomical features for the whole tree seemed more closely related to their ecological strategy.
Address Univ Manchester, Fac Life Sci, Manchester M60 1QD, Lancs, England, Email: karen@cd-mail.dk
Corporate Author Thesis
Publisher BLACKWELL PUBLISHING Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646X ISBN Medium
Area Expedition Conference
Notes ISI:000250275000013 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 156
Permanent link to this record
 

 
Author Yatabe, Y.; Kane, N.C.; Scotti-Saintagne, C.; Rieseberg, L.H.
Title Rampant gene exchange across a strong reproductive barrier between the annual sunflowers, Helianthus annuus and H-petiolaris Type Journal Article
Year 2007 Publication Genetics Abbreviated Journal Genetics
Volume (down) 175 Issue 4 Pages 1883-1893
Keywords
Abstract Plant species may remain morphologically distinct despite gene exchange with congeners, yet little is known about the genomewide pattern of introgression among species. Here we analyze the effects of persistent gene flow on genomic differentiation between the sympatric sunflower species Helianthus annuus and H. petiolaris. While the species are strongly isolated in testcrosses, genetic distances at 108 microsatellite loci and 14 sequenced genes are highly variable and much lower (on average) than for more closely related but historically allopatric congeners. Our analyses failed to detect a positive association between levels of genetic differentiation and chromosomal rearrangements (as reported in a prior publication) or proximity to QTL for morphological differences or hybrid sterility. However, a significant increase in differentiation was observed for markers within 5 cM of chromosomal breakpoints. Together, these results suggest that islands of differentiation between these two species are small, except in areas of low recombination. Furthermore, only microsatellites associated with ESTs were identified as outlier loci in tests for selection, which might indicate that the ESTs themselves are the targets of selection rather than linked genes (or that coding regions are not randomly distributed). In general, these results indicate that even strong and genetically complex reproductive barriers cannot prevent widespread introgression.
Address Indiana Univ, Dept Biol, Bloomington, IN 47405 USA, Email: lriesebe@indiana.edu
Corporate Author Thesis
Publisher GENETICS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes ISI:000246448800029 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 216
Permanent link to this record
 

 
Author Petit, M.; Céréghino, R.; Carrias, J.-F.; Corbara, B.; Dezerald, O.; Petitclerc, F.; Dejean, A.; Leroy, C.
Title Are ontogenetic shifts in foliar structure and resource acquisition spatially conditioned in tank-bromeliads? Type Journal Article
Year 2014 Publication Botanical Journal of the Linnean Society Abbreviated Journal Bot J Linn Soc
Volume (down) 175 Issue 2 Pages 299-312
Keywords Aechmea mertensii; Camponotus femoratus; French Guiana; leaf traits; mutualistic ants; natural stable isotopes; ontogeny; Pachycondyla goeldii; phenotypic plasticity; plant morphology
Abstract The phenotypic plasticity of plants has been explored as a function of either ontogeny (apparent plasticity) or environment (adaptive plasticity), although few studies have analyzed these factors together. In the present study, we take advantage of the dispersal of Aechmea mertensii bromeliads by Camponotus femoratus or Pachycondyla goeldii ants in shaded and sunny environments, respectively, to quantify ontogenetic changes in morphological, foliar, and functional traits, and to analyze ontogenetic and ant species effects on 14 traits. Most of the morphological (plant height, number of leaves), foliar (leaf thickness, leaf mass area, total water content, trichome density), and functional (leaf δ13C) traits differed as a function of ontogeny. Conversely, only leaf δ15N showed an adaptive phenotypic plasticity. On the other hand, plant width, tank width, longest leaf length, stomatal density, and leaf C concentration showed an adaptation to local environment with ontogeny. The exception was leaf N concentration, which showed no trend at all. Aechmea mertensii did not show an abrupt morphological modification such as in heteroblastic bromeliads, although it was characterized by strong, size-related functional modifications for CO2 acquisition. The adaptive phenotypic variation found between the two ant species indicates the spatially conditioned plasticity of A. mertensii in the context of insect-assisted dispersal. However, ant-mediated effects on phenotypic plasticity in A. mertensii are not obvious because ant species and light environment are confounding variables. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175, 299–312.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-8339 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number EcoFoG @ webmaster @ Serial 564
Permanent link to this record
 

 
Author Phillips, P.D.; de Azevedo, C.P.; Degen, B.; Thompson, I.S.; Silva, J.N.M.; van Gardingen, P.R.
Title An individual-based spatially explicit simulation model for strategic forest management planning in the eastern Amazon Type Journal Article
Year 2004 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume (down) 173 Issue 4 Pages 335-354
Keywords model; individual; tropical forest; tree; spatial; Brazil; Amazon; competition; species grouping; management; certification; regulation
Abstract A model to simulate the ecological processes of tree growth, mortality and recruitment, and the processes of forest management, in the terra firme forests of the eastern Amazon is described. It is implemented within the SYMFOR (http://www.symfor.org) framework. It is based on measurements of all trees that have a diameter greater than 5 cm from experimental plots in the Jari Cellulose and Tapajos National Forest areas over a 16-year period. Ten species groups are used to describe the natural processes affecting tree behaviour. Growth rates are calculated for each species group using the tree diameter and a competition index. Mortality and recruitment are simulated as stochastic processes. Recruitment probability is based on the predicted growth rate of a hypothetical tree. Options exist to vary the human interaction with the forest reflecting forest management decisions, as for other SYMFOR models. Model evaluation compares the performance of the model with data describing forest recovery for 16 years following logging. The model was applied to simulate current forest management practice in the Brazilian Amazon, with 40 m(3) ha(-1) of timber extracted with a cutting cycle of 30 years. Results show that yields are sustained for three harvests following the first logging of primary forest, but that the composition of timber moves towards lightwooded species rather than hardwooded. The predicted size of extracted trees decreases and the number of trees extracted increases with successive harvests, leading to a prediction of increased costs and lower profits for the logging company despite constant yields. The standing volume of all trees just before harvest is reduced by 15% over 150 years, with pioneer species becoming increasingly prevalent in the stand. The model, in the SYMFOR framework, can be used to help understand the differences between alternative forest management strategies in the Brazilian Amazon. Such knowledge is required to improve forest management, regulation and certification, and help to conserve the worlds largest remaining tropical forest. (C) 2003 Elsevier B.V. All rights reserved.
Address EMBRAPA Amazonia Oriental, BR-69011970 Manaus, Amazonas, Brazil, Email: Paul.Phillips@envams.co.uk
Corporate Author Thesis
Publisher ELSEVIER SCIENCE BV Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium
Area Expedition Conference
Notes ISI:000220392200002 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 238
Permanent link to this record
 

 
Author Stahl, C.; Herault, B.; Rossi, V.; Burban, B.; Bréchet, C.; Bonal, D.
Title Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? Type Journal Article
Year 2013 Publication Oecologia Abbreviated Journal Oecologia
Volume (down) 173 Issue 4 Pages 1191-1201
Keywords Deuterium; Oxygen; Root; Soil water; Tropical rainforest
Abstract Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models. © 2013 Springer-Verlag Berlin Heidelberg.
Address INRA, UMR EEF 1137, 54280 Champenoux, France
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00298549 (Issn) ISBN Medium
Area Expedition Conference
Notes Export Date: 6 December 2013; Source: Scopus; Coden: Oecob; doi: 10.1007/s00442-013-2724-6; Language of Original Document: English; Correspondence Address: Bonal, D.; INRA, UMR EEF 1137, 54280 Champenoux, France; email: bonal@nancy.inra.fr; References: Améglio, T., Archer, P., Cohen, M., Valancogne, C., Daudet, F.A., Dayau, S., Cruiziat, P., Significance and limits in the use of predawn leaf water potential for tree irrigation (1999) Plant Soil, 207, pp. 155-167; Baraloto, C., Morneau, F., Bonal, D., Blanc, L., Ferry, B., Seasonal water stress tolerance and habitat associations within four Neotropical tree genera (2007) Ecology, 88, pp. 478-489; Bonal, D., Barigah, T.S., Granier, A., Guehl, J.-M., Late-stage canopy tree species with extremely low delta C-13 and high stomatal sensitivity to seasonal soil drought in the tropical rainforest of French Guiana (2000) Plant Cell Environ, 23, pp. 445-459; Bonal, D., Atger, C., Barigah, T.S., Ferhi, A., Guehl, J.-M., Ferry, B., Water acquisition patterns of two wet tropical canopy tree species of French Guiana as inferred from H218O extraction profiles (2000) Ann For Sci, 57, pp. 717-724; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob Chang Biol, 14, pp. 1917-1933; Cao, K.F., Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture (2000) J Trop Ecol, 16, pp. 101-116; Carvalheiro, K.O., Nepstad, D.C., Deep soil heterogeneity and fine root distribution in forests and pastures of eastern Amazonia (1996) Plant Soil, 182, pp. 279-285; Chmura, D.J., Anderson, P.D., Howe, G.T., Harrington, C.A., Halofsky, J.E., Peterson, D.L., Shaw, D.C., Brad St Claire, J., Forest responses to climate change in the northwestern United States: ecophysiological foundations for adaptive management (2011) For Ecol Manage, 261, pp. 1121-1142; da Rocha, H.R., Goulden, M.L., Miller, S.D., Menton, M.C., Pinto, L.D.V.O., de Freitas, H.C., e Silva Figueira, A.M., Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia (2004) Ecol Appl, 14, pp. 22-32; Davidson, E., Lefebvre, P.A., Brando, P.M., Ray, D.M., Trumbore, S.E., Solorzano, L.A., Ferreira, J.N., Nepstad, D.C., Carbon inputs and water uptake in deep soils of an eastern Amazon forest (2011) For Sci, 57, pp. 51-58; Engelbrecht, B.M.J., Kursar, T.A., Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants (2003) Oecologia, 136, pp. 383-393; Engelbrecht, B.M.J., Wright, S.J., De Steven, D., Survival and ecophysiology of tree seedlings during El Nino drought in a tropical moist forest in Panama (2002) J Trop Ecol, 18, pp. 569-579; Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L., Meir, P., Evidence from Amazonian forests is consistent with isohydric control of leaf water potential (2006) Plant Cell Environ, 29, pp. 151-165; Goulden, M.L., Miller, S.D., da Rocha, H.R., Menton, M.C., De Freitas, H.C., Silva Figueira, A.M.E., De Sousa, C.A.D., Diel and seasonal patterns of tropical forest CO2 exchange (2004) Ecol Appl, 14, pp. 42-54; Gourlet-Fleury, S., Ferry, B., Molino, J.F., Petronelli, P., Schmitt, L., Experimental plots: key features (2004) Ecology and management of a Neotropical Rainforest, pp. 3-60. , In: Gourlet-Fleury S, Guehl JM, Laroussinie O (eds) Lessons drawn from Paracou, a long-term experimental research site in French Guiana. Elsevier, Paris; Huc, R., Ferhi, A., Guehl, J.M., Pioneer and late stage tropical rainforest tree species (French Guyana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential (1994) Oecologia, 99, pp. 297-305; Hutyra, L.R., Munger, J.W., Saleska, S., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J Geophys Res, 112, pp. G03008. , doi:10.1029/2006JG000365; Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E., Schulze, E.D., A global analysis of root distributions for terrestrial biomes (1996) Oecologia, 108, pp. 389-411; Jobbagy, E.G., Jackson, R.B., The distribution of soil nutrients with depth: global patterns and the imprint of plants (2001) Biogeochemistry, 53, pp. 51-77; Kozlowski, T.T., Pallardy, S.G., Acclimation and adaptive responses of woody plants to environmental stresses (2002) Bot Rev, 68, pp. 270-334; Malhi, Y., Wright, J., Spatial patterns and recent trends in the climate of tropical rainforest regions (2004) Phil Trans R Soc Lond B, 359, pp. 311-329; Markewitz, D., Devine, S., Davidson, E.A., Brando, P., Nepstad, D.C., Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake (2010) New Phytol, 187, pp. 592-607; Meinzer, F.C., Andrade, J.L., Goldstein, G., Holbrook, N.M., Cavelier, J., Wright, S.J., Partitioning of soil water among trees in a seasonally dry tropical forest (1999) Oecologia, 121, pp. 293-301; Merbold, L., Ardo, J., Arneth, A., Scholes, R.J., Nouvellon, Y., de Grandcourt, A., Archibald, S., Kutsch, W.L., Precipitation as driver of carbon fluxes in 11 African ecosystems (2009) Biogeosciences, 6, pp. 1027-1041; Moreira, M., Sternberg, L., Nepstad, D., Vertical patterns of soil water uptake by plants in a primary forest and an abandoned pasture in the eastern Amazon: an isotopic approach (2000) Plant Soil, 222, pp. 95-107; Nepstad, D.C., De Carvalho, C.R., Davidson, E.A., Jipp, P.H., Lefebvre, P.A., Negreiros, G.H., Da Silva, E.D., Vieira, S., The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures (1994) Nature, 372, pp. 666-669; Oliveira, R., Dawson, T., Burgess, S., Nepstad, D., Hydraulic redistribution in three Amazonian trees (2005) Oecologia, 145, pp. 354-363; Poorter, L., Markesteijn, L., Seedling traits determine drought tolerance of tropical tree species (2008) Biotropica, 40, pp. 321-331; (2010) R: A Language and Environment for Statistical Computing, , R Development Core Team, Vienna: R Foundation for Statistical Computing; Romero-Saltos, H., LdSL, S., Moreira, M.Z., Nepstad, D.C., Rainfall exclusion in an eastern Amazonian forest alters soil water movement and depth of water uptake (2005) Am J Bot, 92, pp. 443-455; Sobrado, M.A., Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest (1997) Acta Oecol, 18, pp. 383-391; Stahl, C., Burban, B., Bompy, F., Jolin, Z.B., Sermage, J., Bonal, D., Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana (2010) J Trop Ecol, 26, pp. 393-405; Stahl, C., Burban, B., Goret, J.-Y., Bonal, D., Seasonal variations in stem CO2 efflux in the Neotropical rainforest of French Guiana (2011) Ann For Sci, 68, pp. 771-782; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees (2013) Biotropia, 45, pp. 155-164; Sternberg, L., Green, L., Moreira, M.Z., Nepstad, D.C., Martinelli, L.A., Victoria, R., Root distribution in an Amazonian seasonal forest (1998) Plant Soil, 205, pp. 45-50; Sternberg, L., Moreira, M., Nepstad, D.C., Uptake of water by lateral roots of small trees in an Amazonian tropical forest (2002) Plant Soil, 238, pp. 151-158; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agric For Meteorol, 151, pp. 1202-1213; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Hérault, B., Water availability is the main climate driver of Neotropical tree growth (2012) PLoS ONE, 7, pp. e34074; Wang, G., Alo, C., Mei, R., Sun, S., Droughts, hydraulic redistribution, and their impact on vegetation composition in the Amazon forest (2011) Plant Ecol, 212, pp. 663-673; Williams, M., Malhi, Y., Nobre, A.D., Rastetter, E.B., Grace, J., Pereira, M.G.P., Seasonal variation in net carbon exchange and evapotranspiration in a Brazilian rainforest: a modelling analysis (1998) Plant Cell Environ, 21, pp. 953-968; Yavitt, J.B., Wright, S.J., Drought and irrigation effects on fine root dynamics in a tropical moist forest, Panama (2001) Biotropica, 33, pp. 421-434; Zapater, M., Hossann, C., Bréda, N., Bréchet, C., Bonal, D., Granier, A., Evidence of hydraulic lift in a young beech and oak mixed forest using 18O soil water labelling (2011) Trees Struct Funct, 25, pp. 885-894; Zhang, Y., Tan, Z., Song, Q., Yu, G., Sun, X., Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest (2010) Atmos Environ, 44, pp. 3886-3893 Approved no
Call Number EcoFoG @ webmaster @ Serial 514
Permanent link to this record
 

 
Author Maia, A.C.D.; Schlindwein, C.; Navarro, D.M.A.F.; Gibernau, M.
Title Pollination of Philodendron Acutatum (Araceae) in the Atlantic Forest of Northeastern Brazil: A Single Scarab Beetle Species Guarantees High Fruit Set Type Journal Article
Year 2010 Publication International Journal of Plant Sciences Abbreviated Journal Int. J. Plant Sci.
Volume (down) 171 Issue 7 Pages 740-748
Keywords Cyclocephala; floral volatiles; pollination specificity; reproductive success; thermogenesis
Abstract Philodendron acutatum (Araceae) is a hemiepiphyte common to the Atlantic Forest of northeastern Brazil. In two localities, we studied the species' breeding system and associations with flower-visiting insects, along with an analysis of its floral scent composition. The fruit set of self-incompatible P. acutatum was high, more than 90%, and inflorescences were exclusively pollinated by one species of scarab beetle, Cyclocephala celata (Scarabaeidae, Dynastinae). Pollinators are drawn toward the inflorescences at dusk by strong floral fragrances given off during the female phase of anthesis, along with endogenous heating of the spadix, whose temperatures were recorded at more than 11 degrees C above ambient air. Two other species of flower-visiting Cyclocephala were also consistently recovered in blacklight trappings during the flowering period of P. acutatum. The fact that only C. celata was found in association with P. acutatum suggests a local reproductive dependence of the plant to this scarab beetle species. Dihydro-beta-ionone and 2-hydroxy-5-methyl-3-hexanone, a rare volatile molecule so far unreported as a floral compound, together accounted for more than 97% of the unique scent composition of P. acutatum and might be involved in specific attraction of C. celata.
Address [Dalia Maia, Artur Campos] Univ Fed Paraiba, Programa Posgrad Ciencias Biol, BR-58059900 Joao Pessoa, Paraiba, Brazil, Email: arturcamposmaia@yahoo.com.br
Corporate Author Thesis
Publisher UNIV CHICAGO PRESS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1058-5893 ISBN Medium
Area Expedition Conference
Notes ISI:000280855800003 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 46
Permanent link to this record
 

 
Author Svensk, M.; Coste, S.; Gérard, B.; Gril, E.; Julien, F.; Maillard, P.; Stahl, C.; Leroy, C.
Title Drought effects on resource partition and conservation among leaf ontogenetic stages in epiphytic tank bromeliads Type Journal Article
Year 2020 Publication Physiologia Plantarum Abbreviated Journal Physiol. Plant.
Volume (down) 170 Issue 4 Pages 488-507
Keywords chlorophyll; nitrogen; water; Bromeliaceae; drought; metabolism; photosynthesis; plant leaf; Bromeliaceae; Chlorophyll; Droughts; Nitrogen; Photosynthesis; Plant Leaves; Water
Abstract Studying the response to drought stress of keystone epiphytes such as tank bromeliads is essential to better understand their resistance capacity to future climate change. The objective was to test whether there is any variation in the carbon, water and nutrient status among different leaf ontogenetic stages in a bromeliad rosette subjected to a gradient of drought stress. We used a semi-controlled experiment consisting in a gradient of water shortage in Aechmea aquilega and Lutheria splendens. For each bromeliad and drought treatment, three leaves were collected based on their position in the rosette and several functional traits related to water and nutrient status, and carbon metabolism were measured. We found that water status traits (relative water content, leaf succulence, osmotic and midday water potentials) and carbon metabolism traits (carbon assimilation, maximum quantum yield of photosystem II, chlorophyll and starch contents) decreased with increasing drought stress, while leaf soluble sugars and carbon, nitrogen and phosphorus contents remained unchanged. The different leaf ontogenetic stages showed only marginal variations when subjected to a gradient of drought. Resources were not reallocated between different leaf ontogenetic stages but we found a reallocation of soluble sugars from leaf starch reserves to the root system. Both species were capable of metabolic and physiological adjustments in response to drought. Overall, this study advances our understanding of the resistance of bromeliads faced with increasing drought stress and paves the way for in-depth reflection on their strategies to cope with water shortage. © 2020 Scandinavian Plant Physiology Society
Address Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, 31062, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00319317 (Issn) ISBN Medium
Area Expedition Conference
Notes PDF trop gros voir la documentaliste – merci Approved no
Call Number EcoFoG @ webmaster @ Serial 943
Permanent link to this record
 

 
Author Scotti-Saintagne, C.; Mariette, S.; Porth, I.; Goicoechea, P.G.; Barreneche, T.; Bodenes, K.; Burg, K.; Kremer, A.
Title Genome scanning for interspecific differentiation between two closely related oak species [Quercus robur L. and Q petraea (Matt.) Liebl.] Type Journal Article
Year 2004 Publication Genetics Abbreviated Journal Genetics
Volume (down) 168 Issue 3 Pages 1615-1626
Keywords
Abstract Interspecific differentiation values (G(ST)) between two closely related oak species (Quercus petraea and Q. robur) were compiled across different studies with the aim to explore the distribution of differentiation at the genome level. The study was based on a total set of 389 markers (isozymes, AFLPs, SCARs, microsatellites, and SNPs) for which allelic frequencies were estimated in pairs of populations sampled throughout the sympatric distribution of the two species. The overall distribution of GST values followed an L-shaped curve with most markers exhibiting low species differentiation (G(ST) < 0.01) and only a few loci reaching >10% levels. Twelve percent of the loci exhibited significant G(ST) deviations to neutral expectations, suggesting that selection contributed to species divergence. Coding regions expressed higher differentiation than noncoding regions. Among the 389 markers, 158 could be mapped on the 12 linkage groups of the existing Q. robur genetic map. Outlier loci with large G, values were distributed over 9 linkage groups. One cluster of three outlier loci was found within 0.51 cM; but significant autocorrelation of GST was observed at distances <2 cM. The size and distribution of genomic regions involved in species divergence are discussed in reference to hitchhiking effects and disruptive selection.
Address INRA, UMR Biodivers Genes & Ecosyst, F-33612 Cestas, France, Email: kremer@pierronton.inra.fr
Corporate Author Thesis
Publisher GENETICS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6731 ISBN Medium
Area Expedition Conference
Notes ISI:000225767400041 Approved no
Call Number EcoFoG @ eric.marcon @ Serial 258
Permanent link to this record
 

 
Author Barantal, S.; Roy, J.; Fromin, N.; Schimann, H.; Hattenschwiler, S.
Title Long-term presence of tree species but not chemical diversity affect litter mixture effects on decomposition in a neotropical rainforest Type Journal Article
Year 2011 Publication Oecologia Abbreviated Journal Oecologia
Volume (down) 167 Issue 1 Pages 241-252
Keywords Amazonian rainforest; Chemical diversity; Decomposition; Functional diversity indices; Litter traits
Abstract Plant litter diversity effects on decomposition rates are frequently reported, but with a strong bias towards temperate ecosystems. Altered decomposition and nutrient recycling with changing litter diversity may be particularly important in tree species-rich tropical rainforests on nutrient-poor soils. Using 28 different mixtures of leaf litter from 16 Amazonian rainforest tree species, we tested the hypothesis that litter mixture effects on decomposition increase with increasing functional litter diversity. Litter mixtures and all single litter species were exposed in the field for 9 months using custom-made microcosms with soil fauna access. In order to test the hypothesis that the long-term presence of tree species contributing to the litter mixtures increases mixture effects on decomposition, microcosms were installed in a plantation at sites including the respective tree species composition and in a nearby natural forest where these tree species are absent. We found that mixture decomposition deviated from predictions based on single species, with predominantly synergistic effects. Functional litter diversity, defined as either richness, evenness, or divergence based on a wide range of chemical traits, did not explain the observed litter mixture effects. However, synergistic effects in litter mixtures increased with the long-term presence of tree species contributing to these mixtures as the home field advantage hypothesis assumes. Our data suggest that complementarity effects on mixed litter decomposition may emerge through long-term interactions between aboveground and belowground biota.
Address [Barantal, S; Roy, J; Fromin, N; Hattenschwiler, S] CEFE CNRS, UMR 5175, F-34293 Montpellier 5, France, Email: sandra.barantal@cefe.cnrs.fr
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-8549 ISBN Medium
Area Expedition Conference
Notes WOS:000293914000024 Approved no
Call Number EcoFoG @ webmaster @ Serial 336
Permanent link to this record