toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Chaves, C.L.; Blanc-Jolivet, C.; Sebbenn, A.M.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; Garcia-Davila, C.; Tysklind, N.; Troispoux, V.; Massot, M.; Degen, B. url  doi
openurl 
  Title Nuclear and chloroplastic SNP markers for genetic studies of timber origin for Hymenaea trees Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 11 Issue 3 Pages 329-331  
  Keywords DNA fingerprints; Geographical origin; MiSeq; RADSeq  
  Abstract We developed nuclear and chloroplastic single nucleotide polymorphism (SNP) and INDEL (insertion/deletion) markers using restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing to set up a genetic tracking method of the geographical origin of Hymenaea sp. From two initial sets of 358 and 32 loci used to genotype at least 94 individuals, a final set of 75 nSNPs, 50 cpSNPs and 6 INDELs identifying significant population structure was developed. © 2018, Springer Nature B.V.  
  Address Departamento de Fitotecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, SP, Brazil  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 908  
Permanent link to this record
 

 
Author Tysklind, N.; Blanc-Jolivet, C.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; García-Dávila, C.R.; Sebbenn, A.M.; Caron, H.; Troispoux, V.; Guichoux, E.; Degen, B. url  doi
openurl 
  Title Development of nuclear and plastid SNP and INDEL markers for population genetic studies and timber traceability of Carapa species Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 11 Issue 3 Pages 337-339  
  Keywords Carapa guianensis; Carapa surinamensis; DNA-fingerprints; Geographical origin; MassARRAY; MiSeq; RADSeq; Tropical timber  
  Abstract Low coverage MiSeq genome sequencing and restriction associated DNA sequencing (RADseq) were used to identify nuclear and plastid SNP and INDEL genetic markers in Carapa guianensis. 261 genetic markers including 237 nuclear SNPs, 22 plastid SNPs, and 2 plastid INDELs are described based on 96 genotyped individuals from French Guiana, Brazil, Peru, and Bolivia. The best 117 SNPs for identifying population structure and performing individual assignment are assembled into four multiplexes for MassARRAY genotyping.  
  Address BIOGECO, INRA, University Bordeaux, Cestas, 33610, France  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 909  
Permanent link to this record
 

 
Author Sebbenn, A.M.; Blanc-Jolivet, C.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; García-Dávila, C.; Tysklind, N.; Troispoux, V.; Delcamp, A.; Degen, B. url  doi
openurl 
  Title Nuclear and plastidial SNP and INDEL markers for genetic tracking studies of Jacaranda copaia Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 11 Issue 3 Pages 341-343  
  Keywords DNA fingerprints; Geographical origin; Jacaranda copaia; MassARRAY; MiSeq; RADSeq; Tropical timber  
  Abstract Nuclear and plastidial single nucleotide polymorphism (SNP) and INDEL markers were developed using restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing for population genetics and timber tracking purposes in the Neotropical timber species Jacaranda copaia. We used 407 nuclear SNPs, 29 chloroplast, and 31 mitochondrial loci to genotype 92 individuals from Brazil, Bolivia, French Guiana, and Peru. Based on high amplification rates and genetic differentiation among populations, 113 nuclear SNPs, 11 chloroplast, and 4 mitochondrial loci were selected, and their use validated for genetic tracking of timber origin.  
  Address BIOGECO, INRA, Univ. Bordeaux, Cestas, 33610, France  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 907  
Permanent link to this record
 

 
Author Steidinger, B.S.; Crowther, T.W.; Liang, J.; Van Nuland, M.E.; Werner, G.D.A.; Reich, P.B.; Nabuurs, G.; de-Miguel, S.; Zhou, M.; Picard, N.; Herault, B.; Zhao, X.; Zhang, C.; Routh, D.; Peay, K.G.; Abegg, M.; Adou Yao, C.Y.; Alberti, G.; Almeyda Zambrano, A.; Alvarez-Davila, E.; Alvarez-Loayza, P.; Alves, L.F.; Ammer, C.; Antón-Fernández, C.; Araujo-Murakami, A.; Arroyo, L.; Avitabile, V.; Aymard, G.; Baker, T.; Bałazy, R.; Banki, O.; Barroso, J.; Bastian, M.; Bastin, J.-F.; Birigazzi, L.; Birnbaum, P.; Bitariho, R.; Boeckx, P.; Bongers, F.; Bouriaud, O.; Brancalion, P.H.S.; Brandl, S.; Brearley, F.Q.; Brienen, R.; Broadbent, E.; Bruelheide, H.; Bussotti, F.; Cazzolla Gatti, R.; Cesar, R.; Cesljar, G.; Chazdon, R.; Chen, H.Y.H.; Chisholm, C.; Cienciala, E.; Clark, C.J.; Clark, D.; Colletta, G.; Condit, R.; Coomes, D.; Cornejo Valverde, F.; Corral-Rivas, J.J.; Crim, P.; Cumming, J.; Dayanandan, S.; de Gasper, A.L.; Decuyper, M.; Derroire, G.; DeVries, B.; Djordjevic, I.; Iêda, A.; Dourdain, A.; Obiang, N.L.E.; Enquist, B.; Eyre, T.; Fandohan, A.B.; Fayle, T.M.; Feldpausch, T.R.; Finér, L.; Fischer, M.; Fletcher, C.; Fridman, J.; Frizzera, L.; Gamarra, J.G.P.; Gianelle, D.; Glick, H.B.; Harris, D.; Hector, A.; Hemp, A.; Hengeveld, G.; Herbohn, J.; Herold, M.; Hillers, A.; Honorio Coronado, E.N.; Huber, M.; Hui, C.; Cho, H.; Ibanez, T.; Jung, I.; Imai, N.; Jagodzinski, A.M.; Jaroszewicz, B.; Johannsen, V.; Joly, C.A.; Jucker, T.; Karminov, V.; Kartawinata, K.; Kearsley, E.; Kenfack, D.; Kennard, D.; Kepfer-Rojas, S.; Keppel, G.; Khan, M.L.; Killeen, T.; Kim, H.S.; Kitayama, K.; Köhl, M.; Korjus, H.; Kraxner, F.; Laarmann, D.; Lang, M.; Lewis, S.; Lu, H.; Lukina, N.; Maitner, B.; Malhi, Y.; Marcon, E.; Marimon, B.S.; Marimon-Junior, B.H.; Marshall, A.R.; Martin, E.; Martynenko, O.; Meave, J.A.; Melo-Cruz, O.; Mendoza, C.; Merow, C.; Monteagudo Mendoza, A.; Moreno, V.; Mukul, S.A.; Mundhenk, P.; Nava-Miranda, M.G.; Neill, D.; Neldner, V.; Nevenic, R.; Ngugi, M.; Niklaus, P.; Oleksyn, J.; Ontikov, P.; Ortiz-Malavasi, E.; Pan, Y.; Paquette, A.; Parada-Gutierrez, A.; Parfenova, E.; Park, M.; Parren, M.; Parthasarathy, N.; Peri, P.L.; Pfautsch, S.; Phillips, O.; Piedade, M.T.; Piotto, D.; Pitman, N.C.A.; Polo, I.; Poorter, L.; Poulsen, A.D.; Poulsen, J.R.; Pretzsch, H.; Ramirez Arevalo, F.; Restrepo-Correa, Z.; Rodeghiero, M.; Rolim, S.; Roopsind, A.; Rovero, F.; Rutishauser, E.; Saikia, P.; Saner, P.; Schall, P.; Schelhaas, M.-J.; Schepaschenko, D.; Scherer-Lorenzen, M.; Schmid, B.; Schöngart, J.; Searle, E.; Seben, V.; Serra-Diaz, J.M.; Salas-Eljatib, C.; Sheil, D.; Shvidenko, A.; Silva-Espejo, J.; Silveira, M.; Singh, J.; Sist, P.; Slik, F.; Sonké, B.; Souza, A.F.; Stereńczak, K.; Svenning, J.-C.; Svoboda, M.; Targhetta, N.; Tchebakova, N.; Steege, H.; Thomas, R.; Tikhonova, E.; Umunay, P.; Usoltsev, V.; Valladares, F.; van der Plas, F.; Van Do, T.; Vasquez Martinez, R.; Verbeeck, H.; Viana, H.; Vieira, S.; von Gadow, K.; Wang, H.-F.; Watson, J.; Westerlund, B.; Wiser, S.; Wittmann, F.; Wortel, V.; Zagt, R.; Zawila-Niedzwiecki, T.; Zhu, Z.-X.; Zo-Bi, I.C.; GFBI consortium url  doi
openurl 
  Title Climatic controls of decomposition drive the global biogeography of forest-tree symbioses Type Journal Article
  Year 2019 Publication Nature Abbreviated Journal Nature  
  Volume 569 Issue 7756 Pages 404-408  
  Keywords Fungi  
  Abstract The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.  
  Address Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00280836 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 872  
Permanent link to this record
 

 
Author Baudrimont, M.; Arini, A.; Guégan, C.; Venel, Z.; Gigault, J.; Pedrono, B.; Prunier, J.; Maurice, L.; Ter Halle, A.; Feurtet-Mazel, A. url  doi
openurl 
  Title Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves) Type Journal Article
  Year 2020 Publication Environmental Science and Pollution Research Abbreviated Journal Environ. Sci. Pollut. Res.  
  Volume 27 Issue 4 Pages 3746-3755  
  Keywords Cordicula fluminea; Ecotoxicity; Nanoplastics; Polyethylene; Scenedesmus subspicatus; Thalassiosira weissiflogii; bivalve; concentration (composition); ecotoxicology; filter feeder; gyre; microalga; nanoparticle; plastic waste; pollution exposure; polymer; Atlantic Ocean; Atlantic Ocean (North); Bivalvia; Chlorophyta; Corbicula fluminea; Desmodesmus subspicatus; Nitzschia alba; Thalassiosira  
  Abstract Each year, 5 to 10 million tons of plastic waste is dumped in the oceans via freshwaters and accumulated in huge oceanic gyres. Under the effect of several abiotic factors, macro plastic wastes (or plastic wastes with macro sizes) are fractionated into microplastics (MP) and finally reach the nanometric size (nanoplastic NP). To reveal potential toxic impacts of these NPs, two microalgae, Scenedemus subspicatus (freshwater green algae), and Thalassiosira weissiflogii (marine diatom) were exposed for up to 48 h at 1, 10, 100, 1000, and 10,000 μg/L to reference polyethylene NPs (PER) or NPs made from polyethylene collected in the North Atlantic gyre (PEN, 7th continent expedition in 2015). Freshwater filter-feeding bivalves, Corbicula fluminea, were exposed to 1000 μg/L of PER and PEN for 48 h to study a possible modification of their filtration or digestion capacity. The results show that PER and PEN do not influence the cell growth of T. weissiflogii, but the PEN exposure causes growth inhibition of S. subspicatus for all exposure concentrations tested. This growth inhibition is enhanced for a higher concentration of PER or PEN (10,000 μg/L) in S. subspicatus. The marine diatom T. weissiflogii appears to be less impacted by plastic pollution than the green algae S. subspicatus for the exposure time. Exposure to NPs does not lead to any alteration of bivalve filtration; however, fecal and pseudo-fecal production increased after PEN exposure, suggesting the implementation of rejection mechanisms for inedible particles. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.  
  Address UMR IMRCP 5623, Université Paul Sabatier, CNRS, 118, route de Narbonne, Toulouse, 31062, France  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09441344 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 23 March 2020; Coden: Esple; Correspondence Address: Baudrimont, M.; UMR EPOC 5805, Université de Bordeaux—CNRS, Place du Dr Peyneau, France; email: magalie.baudrimont@u-bordeaux.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 925  
Permanent link to this record
 

 
Author Leroy, C.; Gril, E.; Si Ouali, L.; Coste, S.; Gérard, B.; Maillard, P.; Mercier, H.; Stahl, C. url  doi
openurl 
  Title Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads Type Journal Article
  Year 2019 Publication Environmental and Experimental Botany Abbreviated Journal Environ. Exp. Bot.  
  Volume 163 Issue Pages 112-123  
  Keywords 15 N labelling; Carbon metabolism; Nutrient uptake; Plant performance; Tank bromeliad; Water status; Aechmea  
  Abstract The water and nutrient uptake mechanisms used by vascular epiphytes have been the subject of a few studies. While leaf absorbing trichomes (LATs) are the main organ involved in resource uptake by bromeliads, little attention has been paid to the absorbing role of epiphytic bromeliad roots. This study investigates the water and nutrient uptake capacity of LATs vs. roots in two epiphytic tank bromeliads Aechmea aquilega and Lutheria splendens. The tank and/or the roots of bromeliads were watered, or not watered at all, in different treatments. We show that LATs and roots have different functions in resource uptake in the two species, which we mainly attributed to dissimilarities in carbon acquisition and growth traits (e.g., photosynthesis, relative growth rate, non-structural carbohydrates, malate), to water relation traits (e.g., water and osmotic potentials, relative water content, hydrenchyma thickness) and nutrient uptake (e.g., 15 N-labelling). While the roots of A. aquilega did contribute to water and nutrient uptake, the roots of L. splendens were less important than the role played by the LATs in resource uptake. We also provide evidenced for a synergistic effect of combined watering of tank and root in the Bromelioideae species. These results call for a more complex interpretation of LATs vs. roots in resource uptake in bromeliads. © 2019 Elsevier B.V.  
  Address INRA, UMR EcoFoG, CNRS, CIRAD, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00988472 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 871  
Permanent link to this record
 

 
Author Caron, H.; Molino, J.-F.; Sabatier, D.; Léger, P.; Chaumeil, P.; Scotti-Saintagne, C.; Frigério, J.-M.; Scotti, I.; Franc, A.; Petit, R.J. pdf  url
doi  openurl
  Title Chloroplast DNA variation in a hyperdiverse tropical tree community Type Journal Article
  Year 2019 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution  
  Volume 9 Issue 8 Pages 4897-4905  
  Keywords chloroplast DNA; DNA barcoding; genetic diversity; hybridization; incomplete lineage sorting; introgression; species diversity; tropical trees  
  Abstract We investigate chloroplast DNA variation in a hyperdiverse community of tropical rainforest trees in French Guiana, focusing on patterns of intraspecific and interspecific variation. We test whether a species genetic diversity is higher when it has congeners in the community with which it can exchange genes and if shared haplotypes are more frequent in genetically diverse species, as expected in the presence of introgression. We sampled a total of 1,681 individual trees from 472 species corresponding to 198 genera and sequenced them at a noncoding chloroplast DNA fragment. Polymorphism was more frequent in species that have congeneric species in the study site than in those without congeners (30% vs. 12%). Moreover, more chloroplast haplotypes were shared with congeners in polymorphic species than in monomorphic ones (44% vs. 28%). Despite large heterogeneities caused by genus-specific behaviors in patterns of hybridization, these results suggest that the higher polymorphism in the presence of congeners is caused by local introgression rather than by incomplete lineage sorting. Our findings suggest that introgression has the potential to drive intraspecific genetic diversity in species-rich tropical forests.  
  Address INRA, UR629 Ecologie des Forêts Méditerranéennes, URFM, Avignon, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 870  
Permanent link to this record
 

 
Author Van Langenhove, L.; Depaepe, T.; Vicca, S.; van den Berge, J.; Stahl, C.; Courtois, E.; Weedon, J.; Urbina, I.; Grau, O.; Asensio, D.; Peñuelas, J.; Boeckx, P.; Richter, A.; Van Der Straeten, D.; Janssens, I.A. pdf  url
doi  openurl
  Title Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield Type Journal Article
  Year 2019 Publication Plant and Soil Abbreviated Journal Plant Soil  
  Volume Issue Pages  
  Keywords Free-living nitrogen fixation; French Guiana; Molybdenum; Nutrients; Phosphorus; Tropical forest  
  Abstract Background and aims: Biological fixation of atmospheric nitrogen (N 2 ) is the main pathway for introducing N into unmanaged ecosystems. While recent estimates suggest that free-living N fixation (FLNF) accounts for the majority of N fixed in mature tropical forests, the controls governing this process are not completely understood. The aim of this study was to quantify FLNF rates and determine its drivers in two tropical pristine forests of French Guiana. Methods: We used the acetylene reduction assay to measure FLNF rates at two sites, in two seasons and along three topographical positions, and used regression analyses to identify which edaphic explanatory variables, including carbon (C), nitrogen (N), phosphorus (P) and molybdenum (Mo) content, pH, water and available N and P, explained most of the variation in FLNF rates. Results: Overall, FLNF rates were lower than measured in tropical systems elsewhere. In soils seasonal variability was small and FLNF rates differed among topographies at only one site. Water, P and pH explained 24% of the variation. In leaf litter, FLNF rates differed seasonally, without site or topographical differences. Water, C, N and P explained 46% of the observed variation. We found no regulatory role of Mo at our sites. Conclusions: Rates of FLNF were low in primary rainforest on poor soils on the Guiana shield. Water was the most important rate-regulating factor and FLNF increased with increasing P, but decreased with increasing N. Our results support the general assumption that N fixation in tropical lowland forests is limited by P availability. © 2019, The Author(s).  
  Address Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr. 14, Vienna, 1090, Austria  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032079x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 868  
Permanent link to this record
 

 
Author Leroy, C.; Maes, A.Q.; Louisanna, E.; Séjalon-Delmas, N. url  doi
openurl 
  Title How significant are endophytic fungi in bromeliad seeds and seedlings? Effects on germination, survival and performance of two epiphytic plant species Type Journal Article
  Year 2019 Publication Fungal Ecology Abbreviated Journal Fungal Ecol.  
  Volume 39 Issue Pages 296-306  
  Keywords Aechmea; Bromeliads; Endophytic fungi; Fusarium spp.; Germination; Survival; Trichoderma spp.; Vertical transmission  
  Abstract In bromeliads, nothing is known about the associations fungi form with seeds and seedling roots. We investigated whether fungal associations occur in the seeds and seedling roots of two epiphytic Aechmea species, and we explored whether substrate and fungal associations contribute to seed germination, and seedling survival and performance after the first month of growth. We found a total of 21 genera and 77 species of endophytic fungi in the seeds and seedlings for both Aechmea species by Illumina MiSeq sequencing. The fungal associations in seeds were found in the majority of corresponding seedlings, suggesting that fungi are transmitted vertically. Substrate quality modulated the germination and growth of seedlings, and beneficial endophytic fungi were not particularly crucial for germination but contributed positively to survival and growth. Overall, this study provides the first evidence of an endophytic fungal community in both the seeds and seedlings of two epiphytic bromeliads species that subsequently benefit plant growth. © 2019 Elsevier Ltd and British Mycological Society  
  Address INRA, UMR Ecologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, Kourou cedex, F-97379, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17545048 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 867  
Permanent link to this record
 

 
Author Bodin, S.C.; Scheel-Ybert, R.; Beauchene, J.; Molino, J.-F.; Bremond, L. url  doi
openurl 
  Title CharKey: An electronic identification key for wood charcoals of French Guiana Type Journal Article
  Year 2019 Publication IAWA Journal Abbreviated Journal Iawa J.  
  Volume 40 Issue 1 Pages 75-91  
  Keywords anthracology; Charcoal anatomy; computeraided identification; Note: Supplementary material can be accessed in the online edition of this journal via brill.com/iawa.; tropical flora; Xper 2  
  Abstract Tropical tree floras are highly diverse and many genera and species share similar anatomical patterns, making the identification of tropical wood charcoal very difficult. Appropriate tools to characterize charcoal anatomy are thus needed to facilitate and improve identification in such species-rich areas. This paper presents the first computer-aided identification key designed for charcoals from French Guiana, based on the wood anatomy of 507 species belonging to 274 genera and 71 families, which covers respectively 28%, 67% and 86% of the tree species, genera and families currently listed in this part of Amazonia. Species of the same genus are recorded together except those described under a synonym genus in Détienne et al. (1982) that were kept separately. As a result, the key contains 289 'items' and mostly aims to identify charcoals at the genus level. It records 26 anatomical features leading to 112 feature states, almost all of which are illustrated by SEM photographs of charcoal. The descriptions were mostly taken from Détienne et al.'s guidebook on tropical woods of French Guiana (1982) and follow the IAWA list of microscopic features for hardwood identification (Wheeler et al. 1989). Some adjustments were made to a few features and those that are unrelated to charcoal identification were excluded. The whole tool, named CharKey, contains the key itself and the associated database including photographs. It can be downloaded on Figshare at https://figshare.com/s/d7d40060b53d2ad60389 (doi: 10.6084/m9.figshare.6396005). CharKey is accessible using the free software Xper 2 , specifically conceived for taxonomic description and computer aided-identification.  
  Address Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France  
  Corporate Author Thesis  
  Publisher Brill Academic Publishers Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 09281541 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 864  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: