toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vleminckx, J.; Schimann, H.; Decaëns, T.; Fichaux, M.; Vedel, V.; Jaouen, G.; Roy, M.; Lapied, E.; Engel, J.; Dourdain, A.; Petronelli, P.; Orivel, J.; Baraloto, C. pdf  doi
openurl 
  Title (up) Coordinated community structure among trees, fungi and invertebrate groups in Amazonian rainforests Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 11337  
  Keywords  
  Abstract Little is known regarding how trophic interactions shape community assembly in tropical forests. Here we assess multi-taxonomic community assembly rules using a rare standardized coordinated inventory comprising exhaustive surveys of five highly-diverse taxonomic groups exerting key ecological functions: trees, fungi, earthworms, ants and spiders. We sampled 36 1.9-ha plots from four remote locations in French Guiana including precise soil measurements, and we tested whether species turnover was coordinated among groups across geographic and edaphic gradients. All species group pairs exhibited significant compositional associations that were independent from soil conditions. For some of the pairs, associations were also partly explained by soil properties, especially soil phosphorus availability. Our study provides evidence for coordinated turnover among taxonomic groups beyond simple relationships with environmental factors, thereby refining our understanding regarding the nature of interactions occurring among these ecologically important groups. © 2019, The Author(s).  
  Address CIRAD, UMR Ecologie des Forêts de Guyane, Campus agronomique, BP 316, Kourou Cedex, 97379, France  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 879  
Permanent link to this record
 

 
Author Santiago, L.S.; De Guzman, M.E.; Baraloto, C.; Vogenberg, J.E.; Brodie, M.; Hérault, B.; Fortunel, C.; Bonal, D. url  doi
openurl 
  Title (up) Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species Type Journal Article
  Year 2018 Publication New Phytologist Abbreviated Journal New Phytol.  
  Volume 218 Issue 3 Pages 1015-1024  
  Keywords Amazonian forest; cavitation; drought; hydraulic conductivity; sapwood capacitance; turgor loss point; wood density; xylem; cavitation; climate change; drought; forest canopy; forest ecosystem; hydraulic conductivity; rainforest; species diversity; tree; tropical forest; vulnerability; wood; Amazonia; French Guiana; Paracou  
  Abstract Predicting responses of tropical forests to climate change-type drought is challenging because of high species diversity. Detailed characterization of tropical tree hydraulic physiology is necessary to evaluate community drought vulnerability and improve model parameterization. Here, we measured xylem hydraulic conductivity (hydraulic efficiency), xylem vulnerability curves (hydraulic safety), sapwood pressure–volume curves (drought avoidance) and wood density on emergent branches of 14 common species of Eastern Amazonian canopy trees in Paracou, French Guiana across species with the densest and lightest wood in the plot. Our objectives were to evaluate relationships among hydraulic traits to identify strategies and test the ability of easy-to-measure traits as proxies for hard-to-measure hydraulic traits. Xylem efficiency was related to capacitance, sapwood water content and turgor loss point, and other drought avoidance traits, but not to xylem safety (P50). Wood density was correlated (r = −0.57 to −0.97) with sapwood pressure–volume traits, forming an axis of hydraulic strategy variation. In contrast to drier sites where hydraulic safety plays a greater role, tropical trees in this humid tropical site varied along an axis with low wood density, high xylem efficiency and high capacitance at one end of the spectrum, and high wood density and low turgor loss point at the other.  
  Address INRA, UMR Silva, AgroParisTech, Université de Lorraine, Nancy, 54000, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028646x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :6; Export Date: 3 December 2018; Coden: Nepha; Correspondence Address: Santiago, L.S.; Department of Botany & Plant Sciences, University of California, 2150 Batchelor Hall, United States; email: santiago@ucr.edu; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, FEDER 2014–2020; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, Project; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD, GY0006894; Funding details: University of California, UC; Funding details: National Institute of Food and Agriculture, NIFA; Funding details: ANR-10-LABX-0025; Funding text 1: We would like to thank Benôıt Burban and Jean-Yves Goret for laboratory support, Jocelyn Cazal and Valentine Alt for skillfully climbing trees for samples, Aurelie Dourdain for database support, and Clement Stahl, John Sperry, Sean Gleason, Todd Dawson, Steve Davis, JoséLuiz Silva, Aleyda Acosta Rangel and three anonymous reviewers for comments and discussions on the data presented. The study has been supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY initiative and database is hosted, developed and maintained by J. Kattge and G. Boenisch (Max Planck Institute for Biogeochemistry, Jena, Germany). TRY is currently supported by Future Earth/ bioDISCOVERY and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. We also acknowledge the University of California, Botany and Plant Sciences Department and the USDA National Institute of Food and Agriculture for support. We are grateful to the CIRAD and the GFclim project (FEDER 2014–2020, Project GY0006894) for financial support of the Paracou research station. Funding for fieldwork and data acquisition was provided by Investissement d’Avenir grants of the French ANR (CEBA: ANR-10-LABX-0025), through the ‘DRAMA’ and ‘HydroSTAT’ projects.; References: Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Hogg, E.H., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests (2010) Forest Ecology and Management, 259, pp. 660-684; Anderegg, W.R.L., Berry, J.A., Smith, D.D., Sperry, J.S., Anderegg, L.D.L., Field, C.B., The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off (2012) Proceedings of the National Academy of Sciences, USA, 109, pp. 233-237; Anderegg, W.R.L., Klein, T., Bartlett, M., Sack, L., Pellegrini, A.F.A., Choat, B., Jansen, S., Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe (2016) Proceedings of the National Academy of Sciences, USA, 113, pp. 5024-5029; Baraloto, C., Goldberg, D.E., Bonal, D., Performance trade-offs among tropical tree seedlings in contrasting microhabitats (2005) Ecology, 86, pp. 2461-2472; Baraloto, C., Hardy, O.J., Paine, C., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.A., Savolainen, V., Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities (2012) Journal of Ecology, 100, pp. 690-701; Barnard, D.M., Meinzer, F.C., Lachenbruch, B., McCulloh, K.A., Johnson, D.M., Woodruff, D.R., Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance (2011) Plant, Cell & Environment, 34, pp. 643-654; Bartlett, M.K., Scoffoni, C., Sack, L., The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis (2012) Ecology Letters, 15, pp. 393-405; Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Bonan, G.B., Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate (2010) Science, 329, pp. 834-838; Benjamini, Y., Hochberg, Y., On the adaptive control of the false discovery rate in multiple testing with independent statistics (2000) Journal of educational and Behavioral Statistics, 25, pp. 60-83; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y., Burban, B., Gross, P., Bonnefond, J., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Global Change Biology, 14, pp. 1917-1933; Bonal, D., Burban, B., Stahl, C., Wagner, F., Herault, B., The response of tropical rainforests to drought-lessons from recent research and future prospects (2016) Annals of Forest Science, 73, pp. 27-44; Borchert, R., Pockman, W.T., Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees (2005) Tree Physiology, 25, pp. 457-466; Bucci, S.J., Goldstein, G., Scholz, F.G., Meinzer, F.C., Physiological significance of hydraulic segmentation, nocturnal transpiration and capacitance in tropical trees: paradigms revisited (2016) Tropical tree physiology: adaptations and responses in a changing environment, pp. 205-225. , In, Goldstein G, Santiago LS, eds., Cham, Switzerland, Springer International; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecology Letters, 12, pp. 351-366; Choat, B., Drayton, W.M., Brodersen, C., Matthews, M.A., Shackel, K.A., Wada, H., McElrone, A.J., Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species (2010) Plant, Cell & Environment, 33, pp. 1502-1512; Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Hacke, U.G., Global convergence in the vulnerability of forests to drought (2012) Nature, 491, pp. 752-755; Christoffersen, B.O., Gloor, M., Fauset, S., Fyllas, N.M., Galbraith, D.R., Baker, T.R., Kruijt, B., Binks, O.J., Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro) (2016) Geoscientific Model Development, 9, pp. 4227-4255; De Guzman, M.E., Santiago, L.S., Schnitzer, S.A., Álvarez-Cansino, L., Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species (2017) Tree Physiology, 37, pp. 1404-1414; Dray, S., Dufour, A.-B., The ade4 package: implementing the duality diagram for ecologists (2007) Journal of Statistical Software, 22, pp. 1-20; Fortunel, C., Ruelle, J., Beauchene, J., Fine, P.V.A., Baraloto, C., Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients (2014) New Phytologist, 202, pp. 79-94; Fu, R., Yin, L., Li, W.H., Arias, P.A., Dickinson, R.E., Huang, L., Chakraborty, S., Fisher, R., Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection (2013) Proceedings of the National Academy of Sciences, USA, 110, pp. 18110-18115; Gleason, S.M., Westoby, M., Jansen, S., Choat, B., Hacke, U.G., Pratt, R.B., Bhaskar, R., Cao, K.-F., Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species (2016) New Phytologist, 209, pp. 123-136; Gourlet-Fleury, S., Guehl, J.-M., Laroussinie, O., (2004) Ecology and management of a neotropical rainforest. Lessons drawn from Paracou, a long-term experimental research site in French Guiana, , Paris, France, Elsevier; Hacke, U.G., Sperry, J.S., Wheeler, J.K., Castro, L., Scaling of angiosperm xylem structure with safety and efficiency (2006) Tree Physiology, 26, pp. 689-701; Holtum, J.A.M., Winter, K., Elevated [CO2] and forest vegetation: more a water issue than a carbon issue? (2010) Functional Plant Biology, 37, pp. 694-702; Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L.M., Sitch, S., Fisher, R., Lomas, M., Booth, B.B.B., Simulated resilience of tropical rainforests to CO2-induced climate change (2013) Nature Geoscience, 6, pp. 268-273; Joetzjer, E., Delire, C., Douville, H., Ciais, P., Decharme, B., Fisher, R., Christoffersen, B., Ferreira, L.V., Predicting the response of the Amazon rainforest to persistent drought conditions under current and future climates: a major challenge for global land surface models (2014) Geoscientific Model Development, 7, pp. 2933-2950; Joetzjer, E., Douville, H., Delire, C., Ciais, P., Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3 (2013) Climate Dynamics, 41, pp. 2921-2936; Kattge, J., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Bönisch, G., Garnier, E., Wright, I.J., TRY – a global database of plant traits (2011) Global Change Biology, 17, pp. 2905-2935; Maherali, H., Pockman, W.T., Jackson, R.B., Adaptive variation in the vulnerability of woody plants to xylem cavitation (2004) Ecology, 85, pp. 2184-2199; Manzoni, S., Vico, G., Katul, G., Palmroth, S., Jackson, R.B., Porporato, A., Hydraulic limits on maximum plant transpiration and the emergence of the safety–efficiency trade-off (2013) New Phytologist, 198, pp. 169-178; Maréchaux, I., Bartlett, M.K., Sack, L., Baraloto, C., Engel, J., Joetzjer, E., Chave, J., Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest (2015) Functional Ecology, 29, pp. 1268-1277; Martínez-Vilalta, J., Piñol, J., Beven, K., A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean (2002) Ecological Modelling, 155, pp. 127-147; Medlyn, B.E., De Kauwe, M.G., Duursma, R.A., New developments in the effort to model ecosystems under water stress (2016) New Phytologist, 212, pp. 5-7; Meinzer, F.C., Goldstein, G., Scaling up from leaves to whole plants and canopies for photosynthetic gas exchange (1996) Tropical forest plant ecophysiology, pp. 114-138. , In, Mulkey SS, Chazdon RL, Smith AP, eds., New York, NY, USA, Chapman & Hall; Meinzer, F.C., James, S.A., Goldstein, G., Woodruff, D., Whole-tree water transport scales with sapwood capacitance in tropical forest canopy trees (2003) Plant, Cell & Environment, 26, pp. 1147-1155; Meinzer, F.C., Johnson, D.M., Lachenbruch, B., McCulloh, K.A., Woodruff, D.R., Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance (2009) Functional Ecology, 23, pp. 922-930; Meinzer, F.C., Woodruff, D.R., Domec, J.C., Goldstein, G., Campanello, P.I., Gatti, M.G., Villalobos-Vega, R., Coordination of leaf and stem water transport properties in tropical forest trees (2008) Oecologia, 156, pp. 31-41; Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J., Hölttä, T., Coordination of physiological traits involved in drought-induced mortality of woody plants (2015) New Phytologist, 208, pp. 396-409; Morris, H., Plavcova, L., Cvecko, P., Fichtler, E., Gillingham, M.A.F., Martinez-Cabrera, H.I., McGlinn, D.J., Zieminska, K., A global analysis of parenchyma tissue fractions in secondary xylem of seed plants (2016) New Phytologist, 209, pp. 1553-1565; Phillips, O.L., van der Heijden, G., Lewis, S.L., Lopez-Gonzalez, G., Aragao, L., Lloyd, J., Malhi, Y., Davila, E.A., Drought-mortality relationships for tropical forests (2010) New Phytologist, 187, pp. 631-646; Pike, N., Using false discovery rates for multiple comparisons in ecology and evolution (2011) Methods in Ecology and Evolution, 2, pp. 278-282; Pivovaroff, A.L., Pasquini, S.C., De Guzman, M.E., Alstad, K.P., Stemke, J., Santiago, L.S., Multiple strategies for drought survival among woody plant species (2016) Functional Ecology, 30, pp. 517-526; Pockman, W.T., Sperry, J.S., Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation (2000) American Journal of Botany, 87, pp. 1287-1299; Preston, K.A., Cornwell, W.K., DeNoyer, J.L., Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms (2006) New Phytologist, 170, pp. 807-818; (2015) R: a language and environment for statistical computing, , Vienna, Austria, R Core Development Team; Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T.A., Salas, W., Zutta, B.R., Hagen, S., Benchmark map of forest carbon stocks in tropical regions across three continents (2011) Proceedings of the National Academy of Sciences, USA, 108, pp. 9899-9904; Sack, L., Pasquet-Kok, J., (2011) Leaf pressure–volume curve parameters, , http://prometheuswiki.publish.csiro.au/tiki-index.php?page=Leaf+pressure-volume+curve+parameters, [WWW document] URL, [accessed 9 August 2016] In Prometheus Wiki; Santiago, L.S., Bonal, D., De Guzman, M.E., Ávila-Lovera, E., Drought survival strategies of tropical trees (2016) Tropical tree physiology: adaptations and responses in a changing environment, pp. 243-258. , In, Goldstein G, Santiago LS, eds., Cham, Switzerland, Springer International; Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., Jones, T., Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees (2004) Oecologia, 140, pp. 543-550; Scholz, F.G., Bucci, S.J., Goldstein, G., Meinzer, F.C., Franco, A.C., Miralles-Wilhelm, F., Biophysical properties and functional significance of stem water storage tissues in Neotropical savanna trees (2007) Plant, Cell & Environment, 30, pp. 236-248; Scholz, F., Phillips, N., Bucci, S., Meinzer, F., Goldstein, G., Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size (2011) Size- and age-related changes in tree structure and function, pp. 341-361. , In, Meinzer FC, Lachenbruch B, Dawson TE, eds., Dordrecht, the Netherlands, Springer; Sperry, J.S., Donnelly, J.R., Tyree, M.T., A method for measuring hydraulic conductivity and embolism in xylem (1988) Plant, Cell & Environment, 11, pp. 35-40; Sperry, J.S., Meinzer, F.C., McCulloh, K.A., Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees (2008) Plant, Cell & Environment, 31, pp. 632-645; ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F., Castellanos, H., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Taiz, L., Zeiger, E., Møller, I.M., Murphy, A., (2015) Plant physiology and development, , Sunderland, MA, USA, Sinauer Associates; Tyree, M., Negative turgor pressure in plant cells: fact or fallacy? (1976) Canadian Journal of Botany, 54, pp. 2738-2746; Tyree, M.T., Davis, S.D., Cochard, H., Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? (1994) IAWA Journal, 15, pp. 335-360; Tyree, M.T., Ewers, F.W., The hydraulic architecture of trees and other woody plants (1991) New Phytologist, 119, pp. 345-360; Webb, C.O., Donoghue, M.J., Phylomatic: tree assembly for applied phylogenetics (2005) Molecular Ecology Notes, 5, pp. 181-183; Wheeler, J.K., Sperry, J.S., Hacke, U.G., Hoang, N., Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport (2005) Plant, Cell & Environment, 28, pp. 800-812; Xu, C., McDowell, N.G., Sevanto, S., Fisher, R.A., Our limited ability to predict vegetation dynamics under water stress (2013) New Phytologist, 200, pp. 298-300; Xu, X.T., Medvigy, D., Powers, J.S., Becknell, J.M., Guan, K.Y., Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests (2016) New Phytologist, 212, pp. 80-95; Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., Reich, P.B., Three keys to the radiation of angiosperms into freezing environments (2014) Nature, 506, pp. 89-92; Zanne, A.E., Westoby, M., Falster, D.S., Ackerly, D.D., Loarie, S.R., Arnold, S.E.J., Coomes, D.A., Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity (2010) American Journal of Botany, 97, pp. 207-215 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 842  
Permanent link to this record
 

 
Author Verryckt, L.T.; Van Langenhove, L.; Ciais, P.; Courtois, E.A.; Vicca, S.; Peñuelas, J.; Stahl, C.; Coste, S.; Ellsworth, D.S.; Posada, J.M.; Obersteiner, M.; Chave, J.; Janssens, I.A. doi  openurl
  Title (up) Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest Type Journal Article
  Year 2020 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 52 Issue 4 Pages 608-615  
  Keywords branch cutting; canopy physiology; French Guiana; gas exchange; photosynthesis; rainforest; stomatal conductance; ecological modeling; environmental conditions; forest canopy; leaf; measurement method; photosynthesis; tree; tropical forest; Gruidae  
  Abstract Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions. © 2020 The Association for Tropical Biology and Conservation  
  Address UMR 5174 Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, CNRS, Toulouse, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 960  
Permanent link to this record
 

 
Author Lehnebach, R.; Beyer, R.; Letort, V.; Heuret, P. doi  openurl
  Title (up) Corrigendum: The pipe model theory half a century on: A review (Annals of Botany DOI: 10.1093/aob/mcx194) Type Journal Article
  Year 2018 Publication Annals of Botany Abbreviated Journal Annals of Botany  
  Volume 121 Issue 7 Pages 1427  
  Keywords  
  Abstract There was an error in the affiliations of Véronique Letort. The correct affiliation is Laboratory of Mathematics in Interaction with Computer Science (MICS), CentraleSupélec, France The online paper has been corrected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 July 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 810  
Permanent link to this record
 

 
Author Lebrini, M.; Robert, F.; Blandinieres, P.A.; Roos, C. pdf  openurl
  Title (up) Corrosion Inhibition by Isertia coccinea Plant Extract in Hydrochloric Acid Solution Type Journal Article
  Year 2011 Publication International Journal of Electrochemical Science Abbreviated Journal Int. J. Electrochem. Sci.  
  Volume 6 Issue 7 Pages 2443-2460  
  Keywords Isertia coccinea; corrosion inhibitors; C38 steel; acidic media; adsorption  
  Abstract The effect of alkaloids extracted from Isertia coccinea plant (AEIC) on the corrosion of C38 steel in 1 M hydrochloric acid was investigated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. Potentiodynamic polarization curves indicated that the extract behave as mixed-type inhibitor. The experimental data obtained from EIS method show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The inhibition efficiencies of the extract calculated by three methods show the same tendency. Inhibition was found to increase with increasing concentration of the plant extract. The results obtained show that the extract solution of the plant could serve as an effective inhibitor for the corrosion of C38 steel in hydrochloric acid solution. The apparent activation energy of the process taking place in inhibitor presence was determined on the ground of four temperature values in the range from 25 degrees C to 55 degrees C using the data obtained by two independent methods. Theoretical fitting of different isotherms, Langmuir, Temkin and Frunkin, were tested to clarify the nature of adsorption.  
  Address [Lebrini, M.; Robert, F.; Blandinieres, P. A.; Roos, C.] UAG UMR ECOFOG, Lab Mat & Mol Milieu Amazonien, Cayenne 97337, French Guiana, Email: florent.robert@guyane.univ-ag.fr  
  Corporate Author Thesis  
  Publisher Electrochemical Science Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1452-3981 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292331400014 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 324  
Permanent link to this record
 

 
Author Faustin, M.; Maciuk, A.; Salvin, P.; Roos, C.; Lebrini, M. url  openurl
  Title (up) Corrosion inhibition of C38 steel by alkaloids extract of Geissospermum laeve in 1M hydrochloric acid: Electrochemical and phytochemical studies Type Journal Article
  Year 2015 Publication Corrosion Science Abbreviated Journal Corrosion Science  
  Volume 92 Issue Pages 287-300  
  Keywords A. C38 steel; B. Eis; B. Sem; C. Acid corrosion; C. Anodic protection; C. Cathodic protection  
  Abstract Corrosion inhibition by alkaloids extract (AE) from Geissospermum laeve on C38 steel in 1. M HCl is investigated with electrochemical studies. Inhibition efficiency of 92% is reached with 100. mg/L of AE at 25. °C. Potentiodynamic polarization showed that the extract behaves as mixed-type inhibitors. The Nyquist plots showed that increasing AE concentration, charge-transfer resistance increased and double-layer capacitance decreased, involving increased inhibition efficiency. Adsorption of the inhibitor molecules corresponds to Langmuir adsorption isotherm. Immersion time and temperature effects were investigated using EIS and potentiodynamic polarization. SEM and EDX supported the adsorption conclusions. The active compound responsible for the corrosion inhibition is geissospermine.  
  Address Laboratoire de Pharmacognosie-Chimie des Substances Naturelles et Chimiotherapies Antiparasitaires, BioCIS, Université Paris-SudChâtenay-Malabry, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 6 February 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 584  
Permanent link to this record
 

 
Author Lebrini, M.; Robert, F.; Lecante, A.; Roos, C. openurl 
  Title (up) Corrosion inhibition of C38 steel in 1 M hydrochloric acid medium by alkaloids extract from Oxandra asbeckii plant Type Journal Article
  Year 2011 Publication Corrosion Science Abbreviated Journal Corrosion Sci.  
  Volume 53 Issue 2 Pages 687-695  
  Keywords Steel; EIS; Polarization; Raman spectroscopy; Acid inhibition  
  Abstract The inhibition effect of alkaloids extract from Oxandra asbeckii plant (OAPE) on the corrosion of C38 steel in 1 M hydrochloric acid solution has been investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiency increases on increasing plant extracts concentration. Cathodic and anodic polarization curves show that OAPE is a mixed-type inhibitor. The effect of temperature on the corrosion behavior of C38 steel in 1 M HCl with and without addition of plant extract was studied in the temperature range 25-55 degrees C. The thermodynamic functions of dissolution and adsorption processes were calculated from experimental polarization data and the interpretation of the results are given. The adsorption of this plant extract on the C38 steel surface obeys the Langmuir adsorption isotherm. Surface analysis (Raman) was also carried out to establish the corrosion inhibitive property of this plant extract in HCl solution. (C) 2010 Elsevier Ltd. All rights reserved.  
  Address [Robert, F.; Lecante, A.; Roos, C.] UAG UMR ECOFOG, Lab Mat & Mol Milieu Amazonien, Cayenne 97337, French Guiana, Email: christophe.roos@guyane.univ-ag.fr  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-938x ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287004700021 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 299  
Permanent link to this record
 

 
Author Suedile, F.; Robert, F.; Roos, C.; Lebrini, M. url  openurl
  Title (up) Corrosion inhibition of zinc by Mansoa alliacea plant extract in sodium chloride media: Extraction, Characterization and Electrochemical Studies Type Journal Article
  Year 2014 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 133 Issue Pages 631-638  
  Keywords Corrosion; Inhibition; Mansoa alliacea; sodium chloride; zinc  
  Abstract Ethanol extract of Mansoa alliacea was tested as corrosion inhibitor for zinc in NaCl 3% media using polarization and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization curves indicated that the plant extract behaves as mixed-type inhibitor. Impedance measurements showed that there are two phenomena in the process of inhibition. The results obtained show that this plant extract could serve as an effective inhibitor for the corrosion of zinc in NaCl 3% media. The extract obtained give inhibition around 90%. The experimental data obtained from EIS method show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPEα,Q) has been used. Graphical methods are illustrated by synthetic data to determine the parameter of CPE (α, Q). Polarization curves show that Mansoa alliacea extract affects the anodic and cathodic reactions and the corrosion potential values were shifted to the positive potentials in the presence of the crude extract. Studies on the phytochemical constituents of the total extract were also established. Electrochemical studies, on the chemical families present in the crude extract, were also carried out to find the main constituents responsible for corrosion inhibition properties of the plant extract. © 2014 Elsevier Ltd.  
  Address Laboratoire Matériaux et Molécules en Milieux Amazonien, UAG – UMR ECOFOG Campus Troubiran, Route de Baduel, 97337 Cayenne, French Guiana  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00134686 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 June 2014; Coden: Elcaa; Correspondence Address: Lebrini, M.; Laboratoire Matériaux et Molécules en Milieux Amazonien, UAG – UMR ECOFOG Campus Troubiran, Route de Baduel, 97337 Cayenne, French Guiana; email: mounim.lebrini@guyane.univ-ag.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 548  
Permanent link to this record
 

 
Author Lebrini, M.; Suedile, F.;Roos, C. doi  openurl
  Title (up) Corrosion inhibitory action of ethanol extract from Bagassa guianensis on the corrosion of zinc in ASTM medium Type Journal Article
  Year 2018 Publication Journal of Materials and Environmental Sciences Abbreviated Journal Journal of Materials and Environmental Sciences  
  Volume 9 Issue 2 Pages 414-423  
  Keywords  
  Abstract Ethanol extract of Bagassa guianensis was tested as corrosion inhibitor for zinc in ASTM medium using polarization and electrochemical impedance spectroscopy (EIS). The results obtained show that this plant extract could serve as an effective inhibitor for the corrosion of zinc in sodium chloride media. The extract obtained give inhibition around 85%. Polarization curves show that Bagassa guianensis extract affects the anodic and cathodic reactions and the corrosion potential values were shifted to the positive potentials in the presence of the crude extract in the ASTM medium. The experimental data obtained from EIS method show a frequency distribution and therefore a modelling element with frequency dispersion behavior, a constant phase element (CPE alpha,Q ) has been used. Graphical methods are illustrated by synthetic data to determine the parameter of CPE (alpha, Q). Studies on the phytochemical constituents of thetotal extract were also established. Electrochemical studies, on the chemical families present in the crude extract, were also carried out to find the main constituents responsible for corrosion inhibition properties of the plant extract.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 797  
Permanent link to this record
 

 
Author Faustin, M.; Lebrini, M.; Robert, F.; Roos, C. pdf  url
openurl 
  Title (up) Corrosion studies of C38 steel by alkaloids extract of a tropical plant type Type Journal Article
  Year 2011 Publication International Journal of Electrochemical Science Abbreviated Journal Int.J.Electrochem.Sci.  
  Volume 6 Issue 9 Pages 4095-4113  
  Keywords Acidic media; C38 steel; Corrosion inhibitor; Plant extract  
  Abstract Alkaloids extract of Aspidosperma album was tested as corrosion inhibitor for C38 steel in 1 M HCl by using polarization and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization curves indicated that the plant extract behaves as mixed-type inhibitors. Impedance measurements showed that the double-layer capacitance decreased and charge-transfer resistance increased with increase in the inhibitors concentration and hence increasing in inhibition efficiency. The effect of temperature on the corrosion behavior of C38 steel in 1 M HCl with and without addition of plant extract was studied in the temperature range 25 – 55°C. The adsorption of the inhibitor molecules was in accordance with the Langmuir adsorption isotherm. The results obtained show that this plant extract could serve as an effective inhibitor for the corrosion of C38 steel in hydrochloric acid. © 2011 by ESG.  
  Address Laboratoire Matériaux et Molécules en Milieu Amazonien, UAG-UMR ECOFOG, Campus Trou Biran, Cayenne 97337, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14523981 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 October 2011; Source: Scopus; Language of Original Document: English; Correspondence Address: Roos, C.; Laboratoire Matériaux et Molécules en Milieu Amazonien, UAG-UMR ECOFOG, Campus Trou Biran, Cayenne 97337, French Guiana; email: florent.robert@guyane.univ-ag.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 348  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: