toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aubry-Kientz, M.; Rossi, V.; Cornu, G.; Wagner, F.; Herault, B. pdf  url
doi  openurl
  Title (down) Temperature rising would slow down tropical forest dynamic in the Guiana Shield Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 10235  
  Keywords article; biomass; climate change; controlled study; diagnostic test accuracy study; driver; human; joint; mortality rate; precipitation; prediction; sensitivity analysis; simulation; statistics; tree growth; tropical rain forest; water stress  
  Abstract Increasing evidence shows that the functioning of the tropical forest biome is intimately related to the climate variability with some variables such as annual precipitation, temperature or seasonal water stress identified as key drivers of ecosystem dynamics. How tropical tree communities will respond to the future climate change is hard to predict primarily because several demographic processes act together to shape the forest ecosystem general behavior. To overcome this limitation, we used a joint individual-based model to simulate, over the next century, a tropical forest community experiencing the climate change expected in the Guiana Shield. The model is climate dependent: temperature, precipitation and water stress are used as predictors of the joint growth and mortality rates. We ran simulations for the next century using predictions of the IPCC 5AR, building three different climate scenarios (optimistic RCP2.6, intermediate, pessimistic RCP8.5) and a control (current climate). The basal area, above-ground fresh biomass, quadratic diameter, tree growth and mortality rates were then computed as summary statistics to characterize the resulting forest ecosystem. Whatever the scenario, all ecosystem process and structure variables exhibited decreasing values as compared to the control. A sensitivity analysis identified the temperature as the strongest climate driver of this behavior, highlighting a possible temperature-driven drop of 40% in average forest growth. This conclusion is alarming, as temperature rises have been consensually predicted by all climate scenarios of the IPCC 5AR. Our study highlights the potential slow-down danger that tropical forests will face in the Guiana Shield during the next century. © 2019, The Author(s).  
  Address Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 878  
Permanent link to this record
 

 
Author Peterson, Michaela ; Jorge, Maria Luisa S.P. ; Jain, Avarna ; Keuroghlian, Alexine ; Oshima, Julia Emi F. ; Richard-Hansen, Cécile ; Berzins, Rachel ; Ribeiro, Milton Cezar ; Eaton, Don doi  openurl
  Title (down) Temperature induces activity reduction in a Neotropical ungulate Type Journal Article
  Year 2021 Publication Journal of Mammalogy Abbreviated Journal  
  Volume 102 Issue 6 Pages 1-11  
  Keywords activity patterns, global warming, South America, thermoregulation, tropical forest, white-lipped peccaries  
  Abstract Because global climate change results in increasingly extreme temperatures and more frequent droughts, behavioral thermoregulation is one avenue by which species may adjust. Changes in activity patterns in response to temperature have been observed in a number of mammal species, but rarely have been investigated in humid tropical habitats. Here we examine the relationship between activity patterns and microclimate temperatures for white-lipped peccaries (Tayassu pecari, Tayassuidae, Cetartiodactyla) in four distinct biomes—the Cerrado, the Pantanal, the Atlantic Forest, and the Amazon. From 2013 to 2017, we monitored 30 white-lipped peccaries fitted with GPS collars that included accelerometers and temperature sensors. White-lipped peccaries were primarily diurnal, with peaks of activity in the morning and late afternoon, except in the Amazon where activity was high throughout the day. Total time active did not vary seasonally. White-lipped peccaries were significantly less likely to be active as temperatures increased, with the probability of being active decreasing by >49% in all biomes between 30 and 40°C. Our findings indicate that white-lipped peccaries are likely to be adversely impacted by rising temperatures, through being forced to reduce foraging time during their prime active periods.  
  Address  
  Corporate Author Thesis  
  Publisher Oxford University Press Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1051  
Permanent link to this record
 

 
Author Leroy, Celine ; Maes, Arthur QuyManh ; Louisanna, Eliane ; Schimann, Heidy ; Séjalon-Delmas, Nathalie doi  openurl
  Title (down) Taxonomic, phylogenetic and functional diversity of rootassociated fungi in bromeliads: effects of host identity, life forms and nutritional modes Type Journal Article
  Year 2021 Publication New Phytologist Abbreviated Journal  
  Volume 231 Issue 3 Pages 1195-1209  
  Keywords  
  Abstract Bromeliads represent a major component of neotropical forests and encompass a considerable diversity of life forms and nutritional modes. Bromeliads explore highly stressful habitats and root-associated fungi may play a crucial role in this, but the driving factors and variations in root-associated fungi remain largely unknown.
We explored root-associated fungal communities in 17 bromeliad species and their variations linked to host identity, life forms and nutritional modes by using ITS1 gene-based high-throughput sequencing and by characterizing fungal functional guilds.
We found a dual association of mycorrhizal and nonmycorrhizal fungi. The different species, life forms and nutritional modes among bromeliad hosts had fungal communities that differ in their taxonomic and functional composition. Specifically, roots of epiphytic bromeliads had more endophytic fungi and dark septate endophytes and fewer mycorrhizal fungi than terrestrial bromeliads and lithophytes.
Our results contribute to a fundamental knowledge base on different fungal groups in previously undescribed Bromeliaceae. The diverse root-associated fungal communities in bromeliads may enhance plant fitness in both stressful and nutrient-poor environments and may give more flexibility to the plants to adapt to changing environmental conditions.
 
  Address  
  Corporate Author Thesis  
  Publisher New Phytologist Foundation Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1061  
Permanent link to this record
 

 
Author Guerrero, R.J.; Delabie, J.H.C.; Dejean, A. openurl 
  Title (down) Taxonomic Contribution to the aurita Group of the Ant Genus Azteca (Formicidae: Dolichoderinae) Type Journal Article
  Year 2010 Publication Journal of Hymenoptera Research Abbreviated Journal J. Hymenopt. Res.  
  Volume 19 Issue 1 Pages 51-65  
  Keywords  
  Abstract We describe five new species in the aurita group of the genus Azteca: Azteca andreae sp. n. (French Guiana), Azteca diabolica sp. n. (Panama), Azteca laurae sp. n. (Brazil), Azteca linamariae sp. n. (Brazil and Colombia) and Azteca snellingi sp. n. (Panama). Four of these new species are based on gynes, while the last is based only on the worker caste. All of them bear the aurita group characteristics. The second taxon is remarkable, as it differs from all of the other members of the group in the exaggerated, horn-like extensions of the posterolateral vertex margins. Azteca snellingi sp. n. is named in honor of our colleague, Roy Snelling, in tribute to his life-long contribution to knowledge of the world of Hymenoptera. A key to all known species of the aurita group, based on gynes, is provided. We report also for the first time an intercast case for the genus Azteca, based on an Azteca schimperi specimen.  
  Address [Guerrero, Roberto J.] Univ Magdalena, INTROPIC, Grp Invest Insectos Neotrop, Santa Marta, Magdalena, Colombia, Email: robertojoseguerreroflorez@gmail.com  
  Corporate Author Thesis  
  Publisher INT SOC HYMENOPTERISTS Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-9428 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000285775800005 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 279  
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Herault, B.; Fine, P.V.A.; Vedel, V.; Lupoli, R.; Mesones, I.; Baraloto, C. doi  openurl
  Title (down) Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests Type Journal Article
  Year 2016 Publication Journal of Animal Ecology Abbreviated Journal Journal of Animal Ecology  
  Volume 85 Issue 1 Pages 227-239  
  Keywords Amazon; Arthropod community; Environmental filtering; Forest habitat; French Guiana; Functional composition; Mass sampling; Peru; Trophic cascades  
  Abstract Arthropods represent most of global biodiversity, with the highest diversity found in tropical rain forests. Nevertheless, we have a very incomplete understanding of how tropical arthropod communities are assembled. We conducted a comprehensive mass sampling of arthropod communities within three major habitat types of lowland Amazonian rain forest, including terra firme clay, white-sand and seasonally flooded forests in Peru and French Guiana. We examined how taxonomic and functional composition (at the family level) differed across these habitat types in the two regions. The overall arthropod community composition exhibited strong turnover among habitats and between regions. In particular, seasonally flooded forest habitats of both regions comprised unique assemblages. Overall, 17·7% (26 of 147) of arthropod families showed significant preferences for a particular habitat type. We present a first reproducible arthropod functional classification among the 147 taxa based on similarity among 21 functional traits describing feeding source, major mouthparts and microhabitats inhabited by each taxon. We identified seven distinct functional groups whose relative abundance contrasted strongly across the three habitats, with sap and leaf feeders showing higher abundances in terra firme clay forest. Our novel arthropod functional classification provides an important complement to link these contrasting patterns of composition to differences in forest functioning across geographical and environmental gradients. This study underlines that both environment and biogeographical processes are responsible for driving arthropod taxonomic composition while environmental filtering is the main driver of the variance in functional composition. © 2016 British Ecological Society.  
  Address International Center for Tropical Botany, Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 17 February 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 731  
Permanent link to this record
 

 
Author Lacau, S.; Groc, S.; Dejean, A.; Oliveira, M.L.D.; Delabie, J.H.C. pdf  url
openurl 
  Title (down) Tatuidris kapasi sp. nov.: A new armadillo ant from French Guiana (Formicidae: Agroecomyrmecinae) Type Journal Article
  Year 2012 Publication Psyche Abbreviated Journal Psyche  
  Volume 926089 Issue Pages 1-6  
  Keywords  
  Abstract Tatuidris kapasi sp. nov. (Formicidae: Agroecomyrmecinae), the second known species of “armadillo ant”, is described after a remarkable specimen collected in French Guiana. This species can be easily distinguished from Tatuidris tatusia by characters related to the shape of the mesosoma and petiole as well as to the pilosity, the sculpture, and the color. Copyright © 2012 Sébastien Lacau et al.  
  Address Laboratório de Mirmecologia, CEPLAC/CEPEC/SECEN, CP 07, km 22, Rodovia, Ilhéus-Itabuna, 45600-970 Itabuna, BA, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00332615 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 28 March 2012; Source: Scopus; Art. No.: 926089; doi: 10.1155/2012/926089; Language of Original Document: English; Correspondence Address: Lacau, S.; Laboratório de Biossistemática Animal, Universidade Estadual Do Sudoeste da Bahia, UESB/DEBI, 45700-000 Itapetinga, BA, Brazil; email: slacau@cepec.gov.br Approved no  
  Call Number EcoFoG @ webmaster @ Serial 389  
Permanent link to this record
 

 
Author Dézerald, O.; Leroy, C.; Corbara, B.; Dejean, A.; Talaga, S.; Céréghino, R. url  doi
openurl 
  Title (down) Tank bromeliads sustain high secondary production in neotropical forests Type Journal Article
  Year 2018 Publication Aquatic Sciences Abbreviated Journal  
  Volume 80 Issue 14 Pages  
  Keywords Biomass turnover; Epiphytes; Food webs; Functional traits; Invertebrates; Rainforests  
  Abstract In neotropical landscapes, a substantial fraction of the still waters available is found within tank bromeliads, plants which hold a few milliliters to several litres of rainwater within their leaf axils. The bromeliad ecosystem is integrated into the functioning of rainforest environments, but no study has ever estimated the secondary production, nor the biomass turnover rates of bromeliad macroinvertebrates in relation to other functional traits. We estimated secondary production at invertebrate population to metacommunity level in bromeliads of French Guiana. Coleoptera, Diptera and Crustacea with traits that confer resistance to drought had lower biomass turnover, longer generation times, and slower individual growth than species without particular resistance traits, suggesting convergent life history strategies in phylogenetically distant species. Detritivores and predators accounted for 87% and 13% of the overall annual production, respectively, but had similar production to biomass ratios. An average bromeliad sustained a production of 23.93 g dry mass m−2 year−1, a value which exceeds the medians of 5.0–14.8 g DM m−2 year−1 for lakes and rivers worldwide. Extrapolations to the total water volumes held by bromeliads at our field site yielded secondary production estimates of 226.8 ± 32.5 g DM ha−1 year−1. We conclude that the ecological role of tank bromeliads in neotropical rainforests may be as important as that of other freshwater ecosystems. © 2018, Springer International Publishing AG, part of Springer Nature.  
  Address Université de Guyane, UMR Écologie des Forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université des Antilles), Campus Agronomique, BP 316, Kourou cedex, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 29 January 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 790  
Permanent link to this record
 

 
Author Talaga, S.; Dezerald, O.; Carteron, A.; Petitclerc, F.; Leroy, C.; Céréghino, R.; Dejean, A. url  openurl
  Title (down) Tank bromeliads as natural microcosms: A facultative association with ants influences the aquatic invertebrate community structure Type Journal Article
  Year 2015 Publication Comptes Rendus – Biologies Abbreviated Journal Comptes Rendus – Biologies  
  Volume 338 Issue 10 Pages 696-700  
  Keywords Aechmea; Ant-bromeliad associations; Aquatic communities; Odontomachus; Phytotelm  
  Abstract Many tank bromeliads have facultative relationships with ants as is the case in French Guiana between Aechmea aquilega (Salib.) Griseb. and the trap-jaw ant, Odontomachus haematodus Linnaeus. Using a redundancy analysis, we determined that the presence of O. haematodus colonies is accompanied by a greater quantity of fine particulate organic matter in the water likely due to their wastes. This increase in nutrient availability is significantly correlated with an increase in the abundance of some detritivorous taxa, suggesting a positive bottom-up influence on the aquatic macroinvertebrate communities living in the A. aquilega wells. On the other hand, the abundance of top predators is negatively affected by a lower number of available wells due to ant constructions for nesting, releasing a top-down pressure that could also favor lower trophic levels. © 2015 Académie des sciences.  
  Address CNRS, Ecolab (UMR-CNRS 5245), 118, route de Narbonne, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 October 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 627  
Permanent link to this record
 

 
Author Fu, T.; Touboul, D.; Della-Negra, S.; Houel, E.; Amusant, N.; Duplais, C.; Fisher, G.L.; Brunelle, A. url  doi
openurl 
  Title (down) Tandem Mass Spectrometry Imaging and in Situ Characterization of Bioactive Wood Metabolites in Amazonian Tree Species Sextonia rubra Type Journal Article
  Year 2018 Publication Analytical Chemistry Abbreviated Journal Anal. Chem.  
  Volume 90 Issue 12 Pages 7535-7543  
  Keywords  
  Abstract Driven by a necessity for confident molecular identification at high spatial resolution, a new time-of-flight secondary ion mass spectrometry (TOF-SIMS) tandem mass spectrometry (tandem MS) imaging instrument has been recently developed. In this paper, the superior MS/MS spectrometry and imaging capability of this new tool is shown for natural product study. For the first time, via in situ analysis of the bioactive metabolites rubrynolide and rubrenolide in Amazonian tree species Sextonia rubra (Lauraceae), we were able both to analyze and to image by tandem MS the molecular products of natural biosynthesis. Despite the low abundance of the metabolites in the wood sample(s), efficient MS/MS analysis of these γ-lactone compounds was achieved, providing high confidence in the identification and localization. In addition, tandem MS imaging minimized the mass interferences and revealed specific localization of these metabolites primarily in the ray parenchyma cells but also in certain oil cells and, further, revealed the presence of previously unidentified γ-lactone, paving the way for future studies in biosynthesis.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1021/acs.analchem.8b01157 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 834  
Permanent link to this record
 

 
Author Duplais, C.; Estevez, Y. doi  openurl
  Title (down) Tandem Biocatalysis Unlocks the Challenging de Novo Production of Plant Natural Products Type Journal Article
  Year 2017 Publication ChemBioChem Abbreviated Journal ChemBioChem  
  Volume 18 Issue 22 Pages 2192-2195  
  Keywords alkaloids; biosynthesis; enzyme catalysis; protein engineering; terpenes  
  Abstract Intimate partnership: Knowledge of the biocatalytic cascades in different cellular compartments is limited, but deciphering these systems in nature can be used to inspire synthetic strategies. Two studies report new insights into the biosynthesis of alkaloids and sesterterpenoids in plants. This highlight presents these novel biotransformations to illustrate how tandem biocatalysis can impact the future of natural product production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-7633 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 780  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: