toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fu, Z.; Gerken, T.; Bromley, G.; Araújo, A.; Bonal, D.; Burban, B.; Ficklin, D.; Fuentes, J.D.; Goulden, M.; Hirano, T.; Kosugi, Y.; Liddell, M.; Nicolini, G.; Niu, S.; Roupsard, O.; Stefani, P.; Mi, C.; Tofte, Z.; Xiao, J.; Valentini, R.; Wolf, S.; Stoy, P.C. url  doi
openurl 
  Title The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology Type Journal Article
  Year 2018 Publication Agricultural and Forest Meteorology Abbreviated Journal Agric. For. Meterol.  
  Volume 263 Issue Pages 292-307  
  Keywords Climate variability; Ecosystem respiration; Eddy covariance; Gross primary productivity; Net ecosystem carbon dioxide exchange; Tropical rainforest; acclimation; air temperature; anthropogenic effect; atmosphere-biosphere interaction; biodiversity; carbon flux; climate change; Cmip; eddy covariance; environmental change; flux measurement; methodology; net ecosystem exchange; net ecosystem production; radiative forcing; rainforest; sensitivity analysis; tropical environment  
  Abstract Tropical rainforests play a central role in the Earth system by regulating climate, maintaining biodiversity, and sequestering carbon. They are under threat by direct anthropogenic impacts like deforestation and the indirect anthropogenic impacts of climate change. A synthesis of the factors that determine the net ecosystem exchange of carbon dioxide (NEE) at the site scale across different forests in the tropical rainforest biome has not been undertaken to date. Here, we study NEE and its components, gross ecosystem productivity (GEP) and ecosystem respiration (RE), across thirteen natural and managed forests within the tropical rainforest biome with 63 total site-years of eddy covariance data. Our results reveal that the five ecosystems with the largest annual gross carbon uptake by photosynthesis (i.e. GEP > 3000 g C m−2 y-1) have the lowest net carbon uptake – or even carbon losses – versus other study ecosystems because RE is of a similar magnitude. Sites that provided subcanopy CO2 storage observations had higher average magnitudes of GEP and RE and lower average magnitudes of NEE, highlighting the importance of measurement methodology for understanding carbon dynamics in ecosystems with characteristically tall and dense vegetation. A path analysis revealed that vapor pressure deficit (VPD) played a greater role than soil moisture or air temperature in constraining GEP under light saturated conditions across most study sites, but to differing degrees from -0.31 to -0.87 μmol CO2 m−2 s-1 hPa-1. Climate projections from 13 general circulation models (CMIP5) under the representative concentration pathway that generates 8.5 W m−2 of radiative forcing suggest that many current tropical rainforest sites on the lower end of the current temperature range are likely to reach a climate space similar to present-day warmer sites by the year 2050, warmer sites will reach a climate not currently experienced, and all forests are likely to experience higher VPD. Results demonstrate the need to quantify if and how mature tropical trees acclimate to heat and water stress, and to further develop flux-partitioning and gap-filling algorithms for defensible estimates of carbon exchange in tropical rainforests. © 2018 Elsevier B.V.  
  Address Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 01681923 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 12 November 2018; Coden: Afmee; Correspondence Address: Stoy, P.C.; Department of Land Resources and Environmental Sciences, Montana State UniversityUnited States; email: paul.stoy@montana.edu; Funding details: ANR-10-LABX-25-01; Funding details: U.S. Department of Energy, DOE, SC0011097; Funding details: Agence Nationale de la Recherche, ANR; Funding details: 1702029; Funding details: 1552976; Funding details: Graduate School, Ohio State University; Funding details: National Natural Science Foundation of China, NSFC, 31625006; Funding text 1: PCS and JDF acknowledges funding support from the U.S. Department of Energy as part of the GoAmazon project (Grant SC0011097 ). PCS additionally acknowledges the U.S. National Science Foundation grants 1552976 and 1702029 , and The Graduate School at Montana State University . ZF is supported by the China Scholarship Council and National Natural Science Foundation of China ( 31625006 ). This work used eddy covariance data acquired and shared by the FLUXNET community, including the AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, LBA, and TERN- OzFlux networks. The FLUXNET eddy covariance data processing and harmonization was carried out by the ICOS Ecosystem Thematic Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, with the support of CDIAC, and the OzFlux, ChinaFlux and AsiaFlux offices. The Guyaflux program belongs to the SOERE F-ORE-T which is supported annually by Ecofor, Allenvi and the French national research infrastructure ANAEE-F. The Guyaflux program also received support from the “Observatoire du Carbone en Guyane” and an “investissement d'avenir” grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). Funding for the site PA-SPn was provided by the North-South Centre of ETH Zurich. We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling for the CMIP and thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Angela Tang and Taylor Rodenburg provided valuable comments to earlier drafts of this manuscript. We thank Dr. Tim Hill and two anonymous reviewers for their constructive comments on the manuscript.; References: Acevedo, O.C., Moraes, O.L.L., Degrazia, G.A., Fitzjarrald, D.R., Manzi, A.O., Campos, J.G., Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? (2009) Agric. For. Meteorol., 149, pp. 1-10; Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Agric (2018) For. Meteorol., 253-254, pp. 114-123; Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Jain, A.K., The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink (2015) Science, 348 (80), pp. 895-899; Aiba, S.I., Kitayama, K., Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu (1999) Borneo. Plant Ecol., 140, pp. 139-157; Andreae, M.O., Artaxo, P., Brandão, C., Carswell, F.E., Ciccioli, P., da Costa, A.L., Culf, A.D., Waterloo, M.J., Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: the LBA-EUSTACH experiments (2002) J. Geophys. Res., 107, p. 8066; Andreae, M.O., Acevedo, O.C., Araùjo, A., Artaxo, P., Barbosa, C.G.G., Barbosa, H.M.J., Brito, J., Yáñez-Serrano, A.M., The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols (2015) Atmos. Chem. Phys., 15, pp. 10723-10776; Araújo, A.C., Nobre, A.D., Kruijt, B., Elbers, J.A., Dallarosa, R., Stefani, P., Von Randow, C., Kabat, P., Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site (2002) J. Geophys. Res., 107, p. 8090; Asner, G.P., Anderson, C.B., Martin, R.E., Tupayachi, R., Knapp, D.E., Sinca, F., Landscape biogeochemistry reflected in shifting distributions of chemical traits in the Amazon forest canopy (2015) Nat. Geosci., 8, pp. 567-573; Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C.B., Sinca, F., Vaughn, N.R., Llactayo, W., Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation (2017) Science, 355 (80), pp. 385-389; Avissar, R., Werth, D., Global hydroclimatological teleconnections resulting from tropical deforestation (2005) J. Hydrometeorol., 6, pp. 134-145; Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., Houghton, R.A., Tropical forests are a net carbon source based on aboveground measurements of gain and loss (2017) Science, 358 (80), pp. 230-234; Belelli Marchesini, L., Bombelli, A., Chiti, T., Consalvo, C., Forgione, A., Grieco, E., Mazzenga, F., Valentini, R., Ankasa flux tower: a new research facility for the study of the carbon cycle in a primary tropical forest in Africa (2008) Proceedings of the Open Science Conference on Africa and Carbon Cycle: The CarboAfrica Project; Beringer, J., Hutley, L.B., McHugh, I., Arndt, S.K., Campbell, D., Cleugh, H.A., Cleverly, J., Wardlaw, T., An introduction to the Australian and New Zealand flux tower network – OzFlux (2016) Biogeosciences, 13, pp. 5895-5916; Bonal, D., Bosc, A., Ponton, S., Goret, J.-Y.J.Y., Burban, B.T., Gross, P., Bonnefond, J.M.J.-M., Granier, A., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Chang. Biol., 14, pp. 1917-1933; Borma, L.S., da Rocha, H.R., Cabral, O.M., von Randow, C., Collicchio, E., Kurzatkowski, D., Brugger, P.J., Artaxo, P., Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia (2009) J. Geophys. Res. Biogeosci., 114; Bradford, M.G., Metcalfe, D.J., Ford, A., Liddell, M.J., McKeown, A., Floristics, stand structure and aboveground biomass of a 25-ha rainforest plot in the Wet Tropics of Australia (2014) J. Trop. For. Sci., pp. 543-553; Braga, N., da, S., Vitória, A.P., Souza, G.M., Barros, C.F., Freitas, L., Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees (2016) Biotropica, 48, pp. 453-464; Carswell, F.E., Costa, A.L., Palheta, M., Malhi, Y., Meir, P., Costa, J.D.P.R., Ruivo, M.D.L., Grace, J., Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest (2002) J. Geophys. Res. D Atmos., p. 107; Chambers, J.Q., Tribuzy, E.S., Toledo, L.C., Crispim, B.F., Higuchi, N., dos Santos, J., Araújo, A.C., Trumbore, S.E., Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency (2004) Ecol. Appl., 14, pp. 72-88; Chambers, J., Davies, S., Koven, C., Kueppers, L., Leung, R., McDowell, N., Norby, R., Rogers, A., Next Generation Ecosystem Experiment (NGEE) Tropics. US DOE NGEE Trop. white paper. (2014); Chiti, T., Certini, G., Grieco, E., Valentini, R., The role of soil in storing carbon in tropical rainforests: the case of Ankasa Park, Ghana (2010) Plant Soil, 331, pp. 453-461; Cleveland, C.C., Wieder, W.R., Reed, S.C., Townsend, A.R., Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere (2010) Ecology, 91, pp. 2313-2323; Cleveland, C.C., Townsend, A.R., Taylor, P., Alvarez-Clare, S., Bustamante, M.M.C., Chuyong, G., Dobrowski, S.Z., Wieder, W.R., Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis (2011) Ecol. Lett.; Cusack, D.F., Chou, W.W., Yang, W.H., Harmon, M.E., Silver, W.L., Controls on long-term root and leaf litter decomposition in neotropical forests (2009) Glob. Chang. Biol., 15, pp. 1339-1355; da Rocha, H.R., Manzi, A.O., Cabral, O.M., Miller, S.D., Goulden, M.L., Saleska, S.R., Coupe, N.R., Maia, J.F., Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil (2009) J. Geophys. Res. Biogeosci., 114. , G00B12; Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T.A., Page, S.E., Bocko, Y.E., Ifo, S.A., Age, extent and carbon storage of the central Congo Basin peatland complex (2017) Nature, 542, pp. 86-89; de Araújo, A.C., Dolman, A.J., Waterloo, M.J., Gash, J.H.C., Kruijt, B., Zanchi, F.B., de Lange, J.M.E., Backer, J., The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia (2010) Agric. For. Meteorol., 150, pp. 226-237; Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C., Wisniewski, J., Carbon pools and flux of global forest ecosystems (1994) Science, 263 (80), pp. 185-190; Fisher, R.A., Williams, M., Do Vale, R.L., Da Costa, A.L., Meir, P., Evidence from Amazonian forests is consistent with isohydric control of leaf water potential (2006) Plant Cell Environ., 29, pp. 151-165; Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Snyder, P.K., Global consequences of land use (2005) Science, 309, pp. 570-574; Fu, Z., Dong, J., Zhou, Y., Stoy, P.C., Niu, S., Long term trend and interannual variability of land carbon uptake—the attribution and processes (2017) Environ. Res. Lett., 12, p. 14018; Fuentes, J.D., Chamecki, M., dos Santos, R.M.N., Von Randow, C., Stoy, P.C., Katul, G., Fitzjarrald, D., Yañez-Serrano, A.M., Linking meteorology, turbulence, and air chemistry in the amazon rain forest (2016) Bull. Am. Meteorol. Soc., 97, pp. 2329-2342; Gerken, T., Chamecki, M., Fuentes, J.D., Air-parcel residence times within forest canopies (2017) Boundary-Layer Meteorol., 165, pp. 29-54; Giardina, F., Konings, A.G., Kennedy, D., Alemohammad, S.H., Oliveira, R.S., Uriarte, M., Gentine, P., Tall Amazonian forests are less sensitive to precipitation variability (2018) Nat. Geosci., 11, pp. 405-409; Gibson, L., Lee, T.M., Koh, L.P., Brook, B.W., Gardner, T.A., Barlow, J., Peres, C.A., Sodhi, N.S., Primary forests are irreplaceable for sustaining tropical biodiversity (2011) Nature, 478, pp. 378-381; Goulden, M.L., Miller, S.D., Da Rocha, H.R., Nocturnal cold air drainage and pooling in a tropical forest (2006) J. Geophys. Res. Atmos., p. 111; Grace, J., Lloyd, J., Mcintyre, J., Miranda, A., Meir, P., Miranda, H., Moncrieff, J., Gash, J., Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia (1995) Glob. Chang. Biol., 1, pp. 1-12; Grace, J., Malhi, Y., Lloyd, J., McIntyre, J., Miranda, A.C., Meir, P., Miranda, H.S., The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest (1996) Glob. Chang. Biol., 2, pp. 209-217; Grace, J., Nagy, L., Forsberg, B.R., Artaxo, P., The Amazon carbon balance: an evaluation of methods and results (2016) Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin., pp. 79-100. , Springer Berlin Heidelberg; Hall, C.A.S., Tian, H., Qi, Y., Pontius, G., Cornell, J., Modelling spatial and temporal patterns of tropical land use change (1995) J. Biogeogr., 22, pp. 753-757; Hayek, M.N., Wehr, R., Longo, M., Hutyra, L.R., Wiedemann, K., Munger, J.W., Bonal, D., Wofsy, S.C., A novel correction for biases in forest eddy covariance carbon balance (2018) Agric. For. Meteorol., 250-251, pp. 90-101; Hirano, T., Segah, H., Harada, T., Limin, S., June, T., Hirata, R., Osaki, M., Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia (2007) Glob. Chang. Biol., 13, pp. 412-425; Hirano, T., Jauhiainen, J., Inoue, T., Takahashi, H., Controls on the carbon balance of tropical peatlands (2008) Ecosystems, 12, pp. 873-887; Hirano, T., Segah, H., Kusin, K., Limin, S., Takahashi, H., Osaki, M., Effects of disturbances on the carbon balance of tropical peat swamp forests (2012) Glob. Change Biol., 18, pp. 3410-3422; Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W., Myneni, R., Amazon rainforests green‐up with sunlight in dry season (2006) Geophys. Res. Lett., 33. , L06405; Huete, A.R., Restrepo-Coupe, N., Ratana, P., Didan, K., Saleska, S.R., Ichii, K., Panuthai, S., Gamo, M., Multiple site tower flux and remote sensing comparisons of tropical forest dynamics in Monsoon Asia (2008) Agric. For. Meteorol., 148, pp. 748-760; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J. Geophys. Res. Biogeosci., 112; Hutyra, L.R., Munger, J.W., Hammond-Pyle, E., Saleska, S.R., Restrepo-Coupe, N., Daube, B.C., de Camargo, P.B., Wofsy, S.C., Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome (2008) Agric. For. Meteorol., 148, pp. 1266-1279; Inoue, Y., Ichie, T., Kenzo, T., Yoneyama, A., Kumagai, T., Nakashizuka, T., Effects of rainfall exclusion on leaf gas exchange traits and osmotic adjustment in mature canpopy trees of Dryobalanops aromatica (Sipterocarpaceae) in a Malaysian tropical rain forest (2016) J. Trop. Pediatr., pp. 1-11; Jocher, G., Ottosson Löfvenius, M., De Simon, G., Hörnlund, T., Linder, S., Lundmark, T., Marshall, J., Peichl, M., Apparent winter CO2 uptake by a boreal forest due to decoupling (2017) Agric. For. Meteorol., 232, pp. 23-34; Kiew, F., Hirata, R., Hirano, T., Wong, G.X., Aeries, E.B., Musin, K.K., Waili, J.W., Melling, L., CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia (2018) Agric. For. Meteorol., 248, pp. 494-501; Kim, D.-H., Sexton, J.O., Townshend, J.R., Accelerated deforestation in the humid tropics from the 1990s to the 2000s (2015) Geophys. Res. Lett., 42, pp. 3495-3501; Klein, T., The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours (2014) Funct. Ecol., 28, pp. 1313-1320; Konings, A.G., Gentine, P., Global variations in ecosystem‐scale isohydricity (2016) Glob. Change Biol.; Körner, C., Leaf diffusive conductances in the major vegetation types of the globe (1995) Ecophysiology of Photosynthesis, pp. 463-490. , Springer; Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T., Tsutsumi, D., Nik, A.R., CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia (2008) Agric. For. Meteorol., 148, pp. 439-452; Kosugi, Y., Takanashi, S., Tani, M., Ohkubo, S., Matsuo, N., Itoh, M., Noguchi, S., Nik, A.R., Effect of inter-annual climate variability on evapotranspiration and canopy CO2 exchange of a tropical rainforest in Peninsular Malaysia (2012) J. For. Res., 17, pp. 227-240; Kruijt, B., Elbers, J.A., Von Randow, C., Araujo, A.C., Oliveira, P.J., Culf, A., Manzi, A.O., Moors, E.J., The robustness of eddy correlation fluxes for Amazon rain forest conditions (2004) Ecol. Appl., 14, pp. 101-113; Kumagai, T., Porporato, A., Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? (2012) Plant Cell Environ., 35, pp. 61-71; Kutsch, W.L., Herbst, M., Vanselow, R., Hummelshøj, P., Jensen, N.O., Kappen, L., Stomatal acclimation influences water and carbon fluxes of a beech canopy in northern Germany (2001) Basic Appl. Ecol., 2, pp. 265-281; Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A.G., Stoy, P.C., Wohlfahrt, G., Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation (2010) Glob. Chang. Biol., 16, pp. 187-208; Levine, N.M., Zhang, K., Longo, M., Baccini, A., Phillips, O.L., Lewis, S.L., Alvarez-Dávila, E., Moorcroft, P.R., Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change (2016) Proc. Natl. Acad. Sci., 113, pp. 793-797; Lewis, S.L., Brando, P.M., Phillips, O.L., van der Heijden, G.M.F., Nepstad, D., The 2010 amazon drought (2011) Science, 331 (80), p. 554; Loescher, H.W., Oberbauer, S.F., Gholz, H.L., Clark, D.B., Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest (2003) Glob. Chang. Biol., 9, p. 396; Lopes, A.P., Nelson, B.W., Wu, J., Graça, P.M.L., de, A., Tavares, J.V., Prohaska, N., Saleska, S.R., Leaf flush drives dry season green-up of the Central Amazon (2016) Remote Sens. Environ., 182, pp. 90-98; Malhi, Y., Nobre, A.D., Grace, J., Kruijt, B., Pereira, M.G.P., Culf, A., Scott, S., Carbon dioxide transfer over a Central Amazonian rain forest (1998) J. Geophys. Res., 103, pp. 31593-31612; Marchin, R.M., Broadhead, A.A., Bostic, L.E., Dunn, R.R., Hoffmann, W.A., Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming (2016) Plant Cell Environ., 39, pp. 2221-2234; Martens, C.S., Shay, T.J., Mendlovitz, H.P., Matross, D.M., Saleska, S.R., Wofsy, S.C., Stephen Woodward, W., Crill, P.M., Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night‐time CO2 net ecosystem exchange derived from radon and eddy covariance methods (2004) Glob. Chang. Biol., 10, pp. 618-629; Martinez-Vilalta, J., Poyatos, R., Aguade, D., Retana, J., Mencuccini, M., A new look at water transport regulation in plants (2014) New Phytol., 204, pp. 105-115; Matheny, A.M., Mirfenderesgi, G., Bohrer, G., Trait-based representation of hydrological functional properties of plants in weather and ecosystem models (2017) Plant Divers., 39, pp. 1-12; Meir, P., Grace, J., Miranda, A.C., Leaf respiration in two tropical rainforests: constraints on physiology by phosphorus, nitrogen and temperature (2001) Funct. Ecol., 15, pp. 378-387; Miller, S.D., Goulden, M.L., Menton, M.C., da Rocha, H.R., de Freitas, H.C., Silva, E., Figueira, A.M., de Sousa, C.A.D., Biometric and micrometeorological measurements of tropical forest carbon balance (2004) Ecol. Appl., 14, pp. 114-126; Mitchard, E.T.A., The tropical forest carbon cycle and climate change (2018) Nature, 559, pp. 527-534; Navarro, M.N.V., Jourdan, C., Sileye, T., Braconnier, S., Mialet-Serra, I., Saint-Andre, L., Dauzat, J., Roupsard, O., Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation (2008) Tree Physiol., 28, pp. 1661-1674; Nepstad, D.C., Moutinho, P., Dias‐Filho, M.B., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Schwalbe, K., The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest (2002) J. Geophys. Res., 107. , 8085; Norby, R.J., De Kauwe, M.G., Domingues, T.F., Duursma, R.A., Ellsworth, D.S., Goll, D.S., Lapola, D.M., Zaehle, S., Model – data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments (2015) New Phytol., pp. 17-28; Novick, K., Oren, R., Stoy, P.C., Juang, J.Y., Siqueira, M., Katul, G., The relationship between reference canopy conductance and simplified hydraulic architecture (2009) Adv. Water Resour., 32, pp. 809-819; Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Phillips, R.P., The increasing importance of atmospheric demand for ecosystem water and carbon fluxes (2016) Nat. Clim. Change, 6, pp. 1023-1027; Oberbauer, S.F., Loescher, H.W., Clark, D.B., Effects of climate factors on daytime carbon exchange from an old growth forest in Costa rica (2000) Selbyana, pp. 66-73; Oren, R., Sperry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., Schäfer, K.V.R., Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit (1999) Plant Cell Environ., 22, pp. 1515-1526; Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Hayes, D., A large and persistent carbon sink in the world's forests (2011) Science, 333 (80). , 988 LP-993; Paoli, G.D., Curran, L.M., Slik, J.W.F., Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo (2008) Oecologia, 155, pp. 287-299; Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Yakir, D., Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation (2006) Biogeosciences, 3, pp. 571-583; Pau, S., Detto, M., Kim, Y., Still, C.J., Tropical forest temperature thresholds for gross primary productivity (2018) Ecosphere, 9; Pavlick, R., Drewry, D.T., Bohn, K., Reu, B., Kleidon, A., The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs (2013) Biogeosciences, 10, pp. 4137-4177; Phillips, O.L., Malhi, Y., Higuchi, N., Laurance, W.F., Núñez, P.V., Vásquez, R.M., Laurance, S.G., Grace, J., Changes in the carbon balance of tropical forests: Evidence from long-term plots (1998) Science, 282 (80). , 439 LP-442; Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Torres-Lezama, A., Drought sensitivity of the Amazon Rainforest (2009) Science, 323 (80), pp. 1344-1347; Powell, T.L., Wheeler, J.K., de Oliveira, A.A.R., da Costa, A.C.L., Saleska, S.R., Meir, P., Moorcroft, P.R., Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees (2017) Glob. Change Biol.; Raich, J.W., Russell, A.E., Vitousek, P.M., Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai'i (1997) Ecology, 78, pp. 707-721; Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Valentini, R., On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm (2005) Glob. Change Biol., 11, pp. 1424-1439; Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., Saleska, S.R., What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network (2013) Agric. For. Meteorol.; Rice, W.R., Analyzing tables of statistical tests (1989) Evolution (N. Y.), 43, pp. 223-225; Richardson, A.D., Braswell, B.H., Hollinger, D.Y., Jenkins, J.P., Ollinger, S.V., Near-surface remote sensing of spatial and temporal variation in canopy phenology (2009) Ecol. Appl., 19, pp. 1417-1428; Roderick, M.L., Farquhar, G.D., The cause of decreased Pan evaporation over the past 50 years (2002) Science, 298 (80), pp. 1410-1411; Roupsard, O., Bonnefond, J.-M., Irvine, M., Berbigier, P., Nouvellon, Y., Dauzat, J., Taga, S., Bouillet, J.-P., Partitioning energy and evapo-transpiration above and below a tropical palm canopy (2006) Agric. For. Meteorol., 139, pp. 252-268; Saleska, S.R., Miller, S.D., Matross, D.M., Goulden, M., Wofsy, S., da Rocha, H.R., de Camargo, P.B., Silva, H., Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses (2003) Science, 302 (80), pp. 1554-1557; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318 (80), p. 612; Saleska, S., Da Rocha, H., Kruijt, B., Nobre, A., Ecosystem carbon fluxes and Amazonian forest metabolism (2009) Amazonia Glob. Change, pp. 389-407; Saleska, S.R., Wu, J., Guan, K., Araujo, A.C., Huete, A., Nobre, A.D., Restrepo-Coupe, N., Dry-season greening of Amazon forests (2016) Nature, 531, pp. E4-E5; Salinas, N., Malhi, Y., Meir, P., Silman, M., Roman Cuesta, R., Huaman, J., Salinas, D., Farfan, F., The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests (2011) New Phytol., 189, pp. 967-977; Santana, R.A., Dias-Júnior, C.Q., da Silva, J.T., Fuentes, J.D., do Vale, R.S., Alves, E.G., dos Santos, R.M.N., Manzi, A.O., Air turbulence characteristics at multiple sites in and above the Amazon rainforest canopy (2018) Agric. For. Meteorol., 260-261, pp. 41-54; Santos, D.M., Acevedo, O.C., Chamecki, M., Fuentes, J.D., Gerken, T., Stoy, P.C., Temporal scales of the nocturnal flow within and above a forest canopy in Amazonia (2016) Boundary-Layer Meteorol., pp. 1-26; Siddiq, Z., Chen, Y.-J., Zhang, Y.-J., Zhang, J.-L., Cao, K.-F., More sensitive response of crown conductance to VPD and larger water consumption in tropical evergreen than in deciduous broadleaf timber trees (2017) Agric. For. Meteorol., 247, pp. 399-407; Sulman, B.N., Roman, D.T., Yi, K., Wang, L., Phillips, R.P., Novick, K.A., High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil (2016) Geophys. Res. Lett., 43, pp. 9686-9695; Swann, A.L.S., Hoffman, F.M., Koven, C.D., Randerson, J.T., Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity (2016) Proc. Natl. Acad. Sci. U. S. A., 113, pp. 10019-10024; Taylor, K.E., Stouffer, R.J., Meehl, G.A., An overview of CMIP5 and the experiment design (2012) Bull. Am. Meteorol. Soc.; Taylor, P.G., Cleveland, C.C., Wieder, W.R., Sullivan, B.W., Doughty, C.E., Dobrowski, S.Z., Townsend, A.R., Temperature and rainfall interact to control carbon cycling in tropical forests (2017) Ecol. Lett., 20, pp. 779-788; Thomas, C.K., Martin, J.G., Law, B.E., Davis, K., Toward biologically meaningful net carbon exchange estimates for tall, dense canopies: multi-level eddy covariance observations and canopy coupling regimes in a mature Douglas-fir forest in Oregon (2013) Agric. For. Meteorol., 173, pp. 14-27; Tóta, J., Fitzjarrald, D.R., da Silva Dias, M.A.F., Amazon rainforest exchange of carbon and subcanopy air flow: manaus LBA Site—a complex terrain condition (2012) Transfus. Apher. Sci., , 165067; Tyukavina, A., Baccini, A., Hansen, M.C., Potapov, P.V., Stehman, S.V., Houghton, R.A., Krylov, A.M., Goetz, S.J., Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012 (2015) Environ. Res. Lett., 10, p. 74002; van Marle, M.J.E., Field, R.D., van der Werf, G.R., Estrada de Wagt, I.A., Houghton, R.A., Rizzo, L.V., Artaxo, P., Tsigaridis, K., Fire and deforestation dynamics in Amazonia (1973-2014) (2017) Glob. Biogeochem. Cycles, 31, pp. 24-38; Wieder, W.R., Cleveland, C.C., Townsend, A.R., Controls over leaf litter decomposition in wet tropical forests (2009) Ecology, 90, pp. 3333-3341; Wolf, S., Eugster, W., Majorek, S., Buchmann, N., Afforestation of tropical pasture only marginally affects ecosystem-scale evapotranspiration (2011) Ecosystems, 14, pp. 1264-1275; Wolf, S., Eugster, W., Potvin, C., Buchmann, N., Strong seasonal variations in net ecosystem CO2 exchange of a tropical pasture and afforestation in Panama (2011) Agric. For. Meteorol., 151, pp. 1139-1151; Wolf, S., Eugster, W., Potvin, C., Turner, B.L., Buchmann, N., Carbon sequestration potential of tropical pasture compared with afforestation in Panama (2011) Glob. Change Biol., 17, pp. 2763-2780; Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs (2004) Clim. Change, 62, pp. 189-216; Wu, J., Guan, K., Hayek, M., Restrepo-Coupe, N., Wiedemann, K.T., Xu, X., Wehr, R., Saleska, S.R., Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales (2017) Glob. Change Biol., 23, pp. 1240-1257; Xiao, J., Liu, S., Stoy, P.C., Preface: impacts of extreme climate events and disturbances on carbon dynamics (2016) Biogeosciences, 13, pp. 3665-3675 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (down) 831  
Permanent link to this record
 

 
Author Maréchaux, I.; Bonal, D.; Bartlett, M.K.; Burban, B.; Coste, S.; Courtois, E.A.; Dulormne, M.; Goret, J.-Y.; Mira, E.; Mirabel, A.; Sack, L.; Stahl, C.; Chave, J. url  doi
openurl 
  Title Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest Type Journal Article
  Year 2018 Publication Functional Ecology Abbreviated Journal Funct Ecol  
  Volume 32 Issue 10 Pages 2285-2297  
  Keywords drought tolerance; hydraulic conductance; sap flow; sapflux density; tropical trees; turgor loss point; water potential; wilting point  
  Abstract Water availability is a key determinant of forest ecosystem function and tree species distributions. While droughts are increasing in frequency in many ecosystems, including in the tropics, plant responses to water supply vary with species and drought intensity and are therefore difficult to model. Based on physiological first principles, we hypothesized that trees with a lower turgor loss point (pi-tlp), that is, a more negative leaf water potential at wilting, would maintain water transport for longer into a dry season. We measured sapflux density of 22 mature trees of 10 species during a dry season in an Amazonian rainforest, quantified sapflux decline as soil water content decreased and tested its relationship to tree pi-tlp, size and leaf predawn and midday water potentials measured after the onset of the dry season. The measured trees varied strongly in the response of water use to the seasonal drought, with sapflux at the end of the dry season ranging from 37 to 117% (on average 83 +/- 5 %) of that at the beginning of the dry season. The decline of water transport as soil dried was correlated with tree pi-tlp (Spearman's rho > 0.63), but not with tree size or predawn and midday water potentials. Thus, trees with more drought-tolerant leaves better maintained water transport during the seasonal drought. Our study provides an explicit correlation between a trait, measurable at the leaf level, and whole-plant performance under drying conditions. Physiological traits such as pi-tlp can be used to assess and model higher scale processes in response to drying conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley/Blackwell (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/1365-2435.13188 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (down) 830  
Permanent link to this record
 

 
Author Céréghino, R.; Pillar, V.D.; Srivastava, D.S.; de Omena, P.M.; MacDonald, A.A.M.; Barberis, I.M.; Corbara, B.; Guzman, L.M.; Leroy, C.; Ospina Bautista, F.; Romero, G.Q.; Trzcinski, M.K.; Kratina, P.; Debastiani, V.J.; Gonçalves, A.Z.; Marino, N.A.C.; Farjalla, V.F.; Richardson, B.A.; Richardson, M.J.; Dézerald, O.; Gilbert, B.; Petermann, J.; Talaga, S.; Piccoli, G.C.O.; Jocqué, M.; Montero, G. url  doi
openurl 
  Title Constraints on the functional trait space of aquatic invertebrates in bromeliads Type Journal Article
  Year 2018 Publication Functional Ecology Abbreviated Journal  
  Volume 32 Issue 10 Pages 2435-2447  
  Keywords aquatic invertebrates; ecological strategies; functional diversity; functional trait space; niche hypervolume  
  Abstract Functional traits are commonly used in predictive models that link environmental drivers and community structure to ecosystem functioning. A prerequisite is to identify robust sets of continuous axes of trait variation, and to understand the ecological and evolutionary constraints that result in the functional trait space occupied by interacting species. Despite their diversity and role in ecosystem functioning, little is known of the constraints on the functional trait space of invertebrate biotas of entire biogeographic regions. We examined the ecological strategies and constraints underlying the realized trait space of aquatic invertebrates, using data on 12 functional traits of 852 taxa collected in tank bromeliads from Mexico to Argentina. Principal Component Analysis was used to reduce trait dimensionality to significant axes of trait variation, and the proportion of potential trait space that is actually occupied by all taxa was compared to null model expectations. Permutational Analyses of Variance were used to test whether trait combinations were clade-dependent. The major axes of trait variation represented life-history strategies optimizing resource use and antipredator adaptations. There was evidence for trophic, habitat, defence and life-history niche axes. Bromeliad invertebrates only occupied 16%–23% of the potential space within these dimensions, due to greater concentrations than predicted under uniform or normal distributions. Thus, despite high taxonomic diversity, invertebrates only utilized a small number of successful ecological strategies. Empty areas in trait space represented gaps between major phyla that arose from biological innovations, and trait combinations that are unviable in the bromeliad ecosystem. Only a few phylogenetically distant genera were neighbouring in trait space. Trait combinations aggregated taxa by family and then by order, suggesting that niche conservatism was a widespread mechanism in the diversification of ecological strategies. A plain language summary is available for this article. © 2018 The Authors. Functional Ecology © 2018 British Ecological Society  
  Address Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Zavalla, Argentina  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 22 October 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (down) 829  
Permanent link to this record
 

 
Author Dézerald, O.; Srivastava, D.S.; Céréghino, R.; Carrias, J.-F.; Corbara, B.; Farjalla, V.F.; Leroy, C.; Marino, N.A.C.; Piccoli, G.C.O.; Richardson, B.A.; Richardson, M.J.; Romero, G.Q.; González, A.L. url  doi
openurl 
  Title Functional traits and environmental conditions predict community isotopic niches and energy pathways across spatial scales Type Journal Article
  Year 2018 Publication Functional Ecology Abbreviated Journal  
  Volume 32 Issue 10 Pages 2423-2434  
  Keywords energy pathways; environmental heterogeneity; food webs; functional biogeography; functional diversity; isotopic niche; metacommunity; trophic structure  
  Abstract Despite ongoing research in food web ecology and functional biogeography, the links between food web structure, functional traits and environmental conditions across spatial scales remain poorly understood. Trophic niches, defined as the amount of energy and elemental space occupied by species and food webs, may help bridge this divide. Here, we ask how the functional traits of species, the environmental conditions of habitats and the spatial scale of analysis jointly determine the characteristics of trophic niches. We used isotopic niches as a proxy of trophic niches, and conducted analyses at spatial scales ranging from local food webs and metacommunities to geographically distant sites. We sampled aquatic macroinvertebrates from 104 tank bromeliads distributed across five sites from Central to South America and compiled the macroinvertebrates’ functional traits and stable isotope values (δ15N and δ13C). We assessed how isotopic niches within each bromeliad were influenced by the functional trait composition of their associated invertebrates and environmental conditions (i.e., habitat size, canopy cover [CC] and detrital concentration [DC]). We then evaluated whether the diet of dominant predators and, consequently, energy pathways within food webs reflected functional and environmental changes among bromeliads across sites. At last, we determined the extent to which the isotopic niches of macroinvertebrates within each bromeliad contributed to the metacommunity isotopic niches within each site and compared these metacommunity-level niches over biogeographic scales. At the bromeliad level, isotopic niches increased with the functional richness of species in the food web and the DC in the bromeliad. The diet of top predators tracked shifts in prey biomass along gradients of CC and DC. Bromeliads that grew under heterogeneous CC displayed less trophic redundancy and therefore combined to form larger metacommunity isotopic niches. At last, the size of metacommunity niches depended on within-site heterogeneity in CC. Our results suggest that the trophic niches occupied by food webs can predictably scale from local food webs to metacommunities to biogeographic regions. This scaling process is determined by both the functional traits of species and heterogeneity in environmental conditions. A plain language summary is available for this article. © 2018 The Authors. Functional Ecology © 2018 British Ecological Society  
  Address Luquillo LTER, Institute for Tropical Ecosystem Studies, College of Natural Sciences, University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 22 October 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (down) 828  
Permanent link to this record
 

 
Author Craine, J.M.; Elmore, A.J.; Wang, L.; Aranibar, J.; Bauters, M.; Boeckx, P.; Crowley, B.E.; Dawes, M.A.; Delzon, S.; Fajardo, A.; Fang, Y.; Fujiyoshi, L.; Gray, A.; Guerrieri, R.; Gundale, M.J.; Hawke, D.J.; Hietz, P.; Jonard, M.; Kearsley, E.; Kenzo, T.; Makarov, M.; Marañón-Jiménez, S.; McGlynn, T.P.; McNeil, B.E.; Mosher, S.G.; Nelson, D.M.; Peri, P.L.; Roggy, J.C.; Sanders-DeMott, R.; Song, M.; Szpak, P.; Templer, P.H.; Van der Colff, D.; Werner, C.; Xu, X.; Yang, Y.; Yu, G.; Zmudczyńska-Skarbek, K. url  doi
openurl 
  Title Isotopic evidence for oligotrophication of terrestrial ecosystems Type Journal Article
  Year 2018 Publication Nature Ecology & Evolution Abbreviated Journal  
  Volume 2 Issue 11 Pages 1735-1744  
  Keywords  
  Abstract Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios (delta15N) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and foliar delta15N declined by 0.6–1.6 per thousand. Examining patterns across different climate spaces, foliar delta15N declined across the entire range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized terrestrial ecosystems, including declines in delta15N of tree rings and leaves from herbarium samples over the past 75–150 years. These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-334x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Craine2018 Serial (down) 827  
Permanent link to this record
 

 
Author Gibson, J.C.; Larabee, F.J.; Touchard, A.; Orivel, J.; Suarez, A.V. url  doi
openurl 
  Title Mandible strike kinematics of the trap-jaw ant genus Anochetus Mayr (Hymenoptera: Formicidae) Type Journal Article
  Year 2018 Publication Journal of Zoology Abbreviated Journal  
  Volume 306 Issue 2 Pages 119-128  
  Keywords catapult mechanism; comparative biomechanics; Formicidae; functional morphology; kinematics; mandible strike; power amplification  
  Abstract High-speed power-amplification mechanisms are common throughout the animal kingdom. In ants, power-amplified trap-jaw mandibles have evolved independently at least four times, including once in the subfamily Ponerinae which contains the sister genera Odontomachus and Anochetus. In Odontomachus, mandible strikes have been relatively well described and can occur in <0.15 ms and reach speeds of over 60 m s−1. In contrast, the kinematics of mandible strikes have not been examined in Anochetus, whose species are smaller and morphologically distinct from Odontomachus. In this study, we describe the mandible strike kinematics of four species of Anochetus representative of the morphological, phylogenetic, and size diversity present within the genus. We also compare their strikes to two representative species of Odontomachus. We found that two species, Anochetus targionii and Anochetus paripungens, have mandible strikes that overall closely resemble those found in Odontomachus, reaching a mean maximum rotational velocity and acceleration of around 3.7 × 104 rad s−1 and 8.5 × 108 rad s−2, respectively. This performance is consistent with predictions based on body size scaling relationships described for Odontomachus. In contrast, Anochetus horridus and Anochetus emarginatus have slower strikes relative to the other species of Anochetus and Odontomachus, reaching mean maximum rotational velocity and acceleration of around 1.3 × 104 rad s−1 and 2 × 108 rad s−2, respectively. This variation in strike performance among species of Anochetus likely reflects differences in evolutionary history, physiology, and natural history among species. © 2018 The Zoological Society of London  
  Address Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 15 October 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (down) 826  
Permanent link to this record
 

 
Author Corbara, B.; Servigne, P.; Dejean, A.; Carpenter, J.M.; Orivel, J. url  doi
openurl 
  Title A mimetic nesting association between a timid social wasp and an aggressive arboreal ant Type Journal Article
  Year 2018 Publication Comptes Rendus Biologies Abbreviated Journal  
  Volume 341 Issue 3 Pages 182-188  
  Keywords Ant-wasp interactions; ; ; Mimicry; Nest site selection; Relations guêpes-fourmis; ; ; Mimétisme; Sélection du site de nidification  
  Abstract In French Guiana, the arboreal nests of the swarm-founding social wasp Protopolybia emortualis (Polistinae) are generally found near those of the arboreal dolichoderine ant Dolichoderus bidens. These wasp nests are typically protected by an envelope, which in turn is covered by an additional carton ‘shelter’ with structure resembling the D. bidens nests. A few wasps constantly guard their nest to keep D. bidens workers from approaching. When alarmed by a strong disturbance, the ants invade the host tree foliage whereas the wasps retreat into their nest. Notably, there is no chemical convergence in the cuticular profiles of the wasps and ants sharing a tree. The aggressiveness of D. bidens likely protects the wasps from army ant raids, but the ants do not benefit from the presence of the wasps; therefore, this relationship corresponds to a kind of commensalism. Résumé En Guyane française, les nids de la guêpe Protopolybia emortualis (Polistinae) se trouvent généralement à proximité de ceux de la fourmi arboricole Dolichoderus bidens (Dolichoderinae). Ces nids de guêpes sont typiquement protégés par une enveloppe de carton, elle-même recouverte d’une autre enveloppe formant un abri qui ressemble aux nids de carton de D. bidens. Quelques guêpes gardent leur nid en permanence afin de tenir à distance les ouvrières D. bidens. Alarmées par une forte perturbation, les fourmis envahissent tout le feuillage de leur arbre support alors que les guêpes se réfugient dans leur nid. Il n’y a pas de convergence chimique entre les profils cuticulaires des guêpes et ceux des fourmis associées. Il est très probable que les P. emortualis bénéficient d’une protection contre les fourmis légionnaires grâce à l’agressivité des D. bidens, mais il n’y a pas réciprocité, de sorte que cette relation correspond à une forme de commensalisme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0691 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial (down) 825  
Permanent link to this record
 

 
Author Dejean, A.; Orivel, J.; Leponce, M.; Compin, A.; Delabie, J.H.C.; Azémar, F.; Corbara, B. doi  openurl
  Title Ant–plant relationships in the canopy of an Amazonian rainforest: the presence of an ant mosaic Type Journal Article
  Year 2018 Publication Biological Journal of the Linnean Society Abbreviated Journal  
  Volume 125 Issue 2 Pages 344-354  
  Keywords  
  Abstract Using different techniques to access the canopy of an Amazonian rainforest, we inspected 157 tree crowns for arboreal ants. Diversity statistics showed that our study sample was not representative of the tree and ant populations due to their high diversity in Amazonian rainforests, but permitted us to note that a representative part of territorially dominant arboreal ant species (TDAAs) was inventoried. Mapping of TDAA territories and use of a null model showed the presence of an ant mosaic in the upper canopy, but this was not the case in the sub-canopy. Among the TDAAs, carton-nesting Azteca dominated (52.98% of the trees) whereas ant-garden ants (Camponotus femoratus and Crematogaster levior), common in pioneer formations, were secondarily abundant (21.64% of the trees), and the remaining 25.37% of trees sheltered one of 11 other TDAAs. The distribution of the trees forming the upper canopy influences the structure of the ant mosaic, which is related to the attractiveness of some tree taxa for certain arboreal ant species and represents a case of diffuse coevolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-4066 ISBN Medium  
  Area Expedition Conference  
  Notes 10.1093/biolinnean/bly125 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (down) 824  
Permanent link to this record
 

 
Author Hénaut, Y.; Corbara, B.; Azémar, F.; Céréghino, R.; Dézerald, O.; Dejean, A. url  doi
openurl 
  Title An arboreal spider protects its offspring by diving into the water of tank bromeliads Type Journal Article
  Year 2018 Publication Comptes Rendus Biologies Abbreviated Journal  
  Volume 341 Issue 3 Pages 196-199  
  Keywords Water used in protective behavior; Egg sacs; ; ; Cocons; Eau utilisée dans un comportement protecteur  
  Abstract Cupiennius salei (Ctenidae) individuals frequently live in association with tank bromeliads, including Aechmea bracteata, in Quintana Roo (Mexico). Whereas C. salei females without egg sacs hunt over their entire host plant, females carrying egg sacs settle above the A. bracteata reservoirs they have partially sealed with silk. There they avoid predators that use sight to detect their prey, as is known for many bird species. Furthermore, if a danger is more acute, these females dive with their egg sacs into the bromeliad reservoir. An experiment showed that this is not the case for males or females without egg sacs. In addition to the likely abundance of prey found therein, the potential of diving into the tank to protect offspring may explain the close association of this spider with bromeliads. These results show that, although arboreal, C. salei evolved a protective behavior using the water of tank bromeliads to protect offspring. Résumé L’araignée Cupiennius salei (Ctenidae) vit souvent en association avec la broméliacée à réservoir Aechmea bracteata. Dans le Quintana Roo (Mexique), les femelles qui transportent un cocon s’installent au-dessus d’un réservoir d’A. bracteata qu’elles obstruent partiellement de voiles de soie pour se camoufler des prédateurs. En présence de vibrations importantes et répétées, ces femelles plongent avec leur cocon dans l’eau du réservoir. Notre étude montre que les autres adultes (mâles et femelles sans cocon) n’utilisent pas les réservoirs d’eau. Ainsi, en plus de l’abondance de proies, la possibilité de pouvoir plonger pour protéger la descendance pourrait expliquer l’association entre cette espèce d’araignée et les broméliacées. Nos expériences montrent que les femelles porteuses d’un cocon manifestent une stratégie de protection vis-à-vis des cocons et d’elles-mêmes en s’immergeant durant 30, voire 90minutes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0691 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial (down) 823  
Permanent link to this record
 

 
Author Schmidt, M.; Dejean, A. doi  openurl
  Title A dolichoderine ant that constructs traps to ambush prey collectively: convergent evolution with a myrmicine genus Type Journal Article
  Year 2018 Publication Biological Journal of the Linnean Society Abbreviated Journal  
  Volume 124 Issue 1 Pages 41-46  
  Keywords  
  Abstract Azteca brevis Forel, a dolichoderine ant species, builds along the branches of its host plant galleries that bear numerous holes slightly wider than a worker’s head. We noted that the workers hide, mandibles open, beneath different holes, waiting for arthropod prey to walk by or alight. They seize the extremities of these arthropods and pull backwards, immobilizing the prey, which is then spreadeagled and later carved up or pulled into a gallery before being carved up. The total duration of the capture ranges from a few minutes to several hours. This ambush group hunting permits the capture of insects of a wide range of sizes, with the largest being 48.71 times heavier than the workers, something that we compared with other cases of group hunting by ants and trap use by other arthropods. A convergence with myrmicine ants of the genus Allomerus is shown. Thus, this study also shows that the genus Azteca presents the largest panel of group hunting strategies by ants and that there is polyethism related to polymorphism, as hunting workers are larger than their nestmates. We concluded that these gallery-shaped traps correspond to the notion of ‘extended phenotype’.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-4066 ISBN Medium  
  Area Expedition Conference  
  Notes 10.1093/biolinnean/bly028 Approved no  
  Call Number EcoFoG @ webmaster @ Serial (down) 822  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: