toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lenoir, A.; Boulay, R.; Dejean, A.; Touchard, A.; Cuvillier-Hot, V. doi  openurl
  Title Phthalate pollution in an Amazonian rainforest Type Journal Article
  Year 2016 Publication Environmental Science and Pollution Research Abbreviated Journal  
  Volume 23 Issue 16 Pages 16865-16872  
  Keywords  
  Abstract Phthalates are ubiquitous contaminants and endocrine-disrupting chemicals that can become trapped in the cuticles of insects, including ants which were recognized as good bioindicators for such pollution. Because phthalates have been noted in developed countries and because they also have been found in the Arctic, a region isolated from direct anthropogenic influence, we hypothesized that they are widespread. So, we looked for their presence on the cuticle of ants gathered from isolated areas of the Amazonian rainforest and along an anthropogenic gradient of pollution (rainforest vs. road sides vs. cities in French Guiana). Phthalate pollution (mainly di(2-ethylhexyl) phthalate (DEHP)) was higher on ants gathered in cities and along road sides than on those collected in the pristine rainforest, indicating that it follows a human-mediated gradient of disturbance related to the use of plastics and many other products that contain phthalates in urban zones. Their presence varied with the ant species; the cuticle of Solenopsis saevissima traps higher amount of phthalates than that of compared species. However, the presence of phthalates in isolated areas of pristine rainforests suggests that they are associated both with atmospheric particles and in gaseous form and are transported over long distances by wind, resulting in a worldwide diffusion. These findings suggest that there is no such thing as a “pristine” zone.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-7499 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Lenoir2016 Serial 700  
Permanent link to this record
 

 
Author Alméras, T.; Gronvold, A.; van der Lee, A.; Clair, B.; Montero, C. url  doi
openurl 
  Title Contribution of cellulose to the moisture-dependent elastic behaviour of wood Type Journal Article
  Year 2017 Publication Composites Science and Technology Abbreviated Journal Composites Science and Technology  
  Volume 138 Issue Pages 151-160  
  Keywords Cellulose; Crystal strain; Micromechanics; Wood; X-ray diffraction  
  Abstract Wood has a hierarchical structure involving several levels of organisation. The stiffness of wood relies on its capacity to transfer mechanical stress to its stiffest element at the lowest scale, namely crystalline cellulose. This study aims at quantifying to what extend crystalline cellulose contributes to wood stiffness depending on its moisture content. The crystal strains of cellulose were measured using X-ray diffraction on wet and dry specimens of spruce, based on a previously published methodology. The comparison between crystal strain and macroscopic strain shows that, during elastic loading, cellulose strain is lower than macroscopic strain. The means ratio of crystal/macroscopic strain amounts 0.85 for dry specimens and 0.64 for wet specimens. This strain ratio cannot be explained just by the projection effect due to the difference in orientation between cellulose microfibrils and cell wall, but results from deformation mechanisms in series with cellulose. Analysis shows that this series contribution represents a non-negligible contribution to wood compliance and is strongly moisture-dependent. This contribution amounts 9% for dry specimens and 33% for wet specimens, corresponding to a 4-fold increase in compliance for the series contribution. The origin of these strains is ascribed to mechanisms involving bending or shear strain at different scales, due to the fact that reinforcing element are neither perfectly straight nor infinitely long. © 2016  
  Address CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, France  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 26 December 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 701  
Permanent link to this record
 

 
Author Liang, J.; Crowther, T.W.; Picard, N.; Wiser, S.; Zhou, M.; Alberti, G.; Schulze, E.-D.; McGuire, A.D.; Bozzato, F.; Pretzsch, H.; de-Miguel, S.; Paquette, A.; Herault, B.; Scherer-Lorenzen, M.; Barrett, C.B.; Glick, H.B.; Hengeveld, G.M.; Nabuurs, G.-J.; Pfautsch, S.; Viana, H.; Vibrans, A.C.; Ammer, C.; Schall, P.; Verbyla, D.; Tchebakova, N.; Fischer, M.; Watson, J.V.; Chen, H.Y.H.; Lei, X.; Schelhaas, M.-J.; Lu, H.; Gianelle, D.; Parfenova, E.I.; Salas, C.; Lee, E.; Lee, B.; Kim, H.S.; Bruelheide, H.; Coomes, D.A.; Piotto, D.; Sunderland, T.; Schmid, B.; Gourlet-Fleury, S.; Sonké, B.; Tavani, R.; Zhu, J.; Brandl, S.; Vayreda, J.; Kitahara, F.; Searle, E.B.; Neldner, V.J.; Ngugi, M.R.; Baraloto, C.; Frizzera, L.; Bałazy, R.; Oleksyn, J.; Zawiła-Niedźwiecki, T.; Bouriaud, O.; Bussotti, F.; Finér, L.; Jaroszewicz, B.; Jucker, T.; Valladares, F.; Jagodzinski, A.M.; Peri, P.L.; Gonmadje, C.; Marthy, W.; O’Brien, T.; Martin, E.H.; Marshall, A.R.; Rovero, F.; Bitariho, R.; Niklaus, P.A.; Alvarez-Loayza, P.; Chamuya, N.; Valencia, R.; Mortier, F.; Wortel, V.; Engone-Obiang, N.L.; Ferreira, L.V.; Odeke, D.E.; Vasquez, R.M.; Lewis, S.L.; Reich, P.B. url  doi
openurl 
  Title Positive biodiversity-productivity relationship predominant in global forests Type Journal Article
  Year 2016 Publication Science Abbreviated Journal  
  Volume 354 Issue 6309 Pages  
  Keywords  
  Abstract The relationship between biodiversity and ecosystem productivity has been explored in detail in herbaceous vegetation, but patterns in forests are far less well understood. Liang et al. have amassed a global forest data set from >770,000 sample plots in 44 countries. A positive and consistent relationship can be discerned between tree diversity and ecosystem productivity at landscape, country, and ecoregion scales. On average, a 10% loss in biodiversity leads to a 3% loss in productivity. This means that the economic value of maintaining biodiversity for the sake of global forest productivity is more than fivefold greater than global conservation costs.Science, this issue p. 196INTRODUCTIONThe biodiversity-productivity relationship (BPR; the effect of biodiversity on ecosystem productivity) is foundational to our understanding of the global extinction crisis and its impacts on the functioning of natural ecosystems. The BPR has been a prominent research topic within ecology in recent decades, but it is only recently that we have begun to develop a global perspective.RATIONALEForests are the most important global repositories of terrestrial biodiversity, but deforestation, forest degradation, climate change, and other factors are threatening approximately one half of tree species worldwide. Although there have been substantial efforts to strengthen the preservation and sustainable use of forest biodiversity throughout the globe, the consequences of this diversity loss pose a major uncertainty for ongoing international forest management and conservation efforts. The forest BPR represents a critical missing link for accurate valuation of global biodiversity and successful integration of biological conservation and socioeconomic development. Until now, there have been limited tree-based diversity experiments, and the forest BPR has only been explored within regional-scale observational studies. Thus, the strength and spatial variability of this relationship remains unexplored at a global scale.RESULTSWe explored the effect of tree species richness on tree volume productivity at the global scale using repeated forest inventories from 777,126 permanent sample plots in 44 countries containing more than 30 million trees from 8737 species spanning most of the global terrestrial biomes. Our findings reveal a consistent positive concave-down effect of biodiversity on forest productivity across the world, showing that a continued biodiversity loss would result in an accelerating decline in forest productivity worldwide.The BPR shows considerable geospatial variation across the world. The same percentage of biodiversity loss would lead to a greater relative (that is, percentage) productivity decline in the boreal forests of North America, Northeastern Europe, Central Siberia, East Asia, and scattered regions of South-central Africa and South-central Asia. In the Amazon, West and Southeastern Africa, Southern China, Myanmar, Nepal, and the Malay Archipelago, however, the same percentage of biodiversity loss would lead to greater absolute productivity decline.CONCLUSIONOur findings highlight the negative effect of biodiversity loss on forest productivity and the potential benefits from the transition of monocultures to mixed-species stands in forestry practices. The BPR we discover across forest ecosystems worldwide corresponds well with recent theoretical advances, as well as with experimental and observational studies on forest and nonforest ecosystems. On the basis of this relationship, the ongoing species loss in forest ecosystems worldwide could substantially reduce forest productivity and thereby forest carbon absorption rate to compromise the global forest carbon sink. We further estimate that the economic value of biodiversity in maintaining commercial forest productivity alone is $166 billion to $490 billion per year. Although representing only a small percentage of the total value of biodiversity, this value is two to six times as much as it would cost to effectively implement conservation globally. These results highlight the necessity to reassess biodiversity valuation and the potential benefits of integrating and promoting biological conservation in forest resource management and forestry practices worldwide.Global effect of tree species diversity on forest productivity.Ground-sourced data from 777,126 global forest biodiversity permanent sample plots (dark blue dots, left), which cover a substantial portion of the global forest extent (white), reveal a consistent positive and concave-down biodiversity-productivity relationship across forests worldwide (red line with pink bands representing 95% confidence interval, right).The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone—US$166 billion to 490 billion per year according to our estimation—is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 703  
Permanent link to this record
 

 
Author Marcon, E.; Puech, F. url  doi
openurl 
  Title A typology of distance-based measures of spatial concentration Type Journal Article
  Year 2017 Publication Regional Science and Urban Economics Abbreviated Journal Regional Science and Urban Economics  
  Volume 62 Issue Pages 56-67  
  Keywords Agglomeration; Aggregation; Economic geography; Point patterns; Spatial concentration  
  Abstract Over the last decade, distance-based methods have been introduced and then improved in the field of spatial economics to gauge the geographic concentration of activities. There is a growing literature on this theme including new tools, discussions on their specific properties and various applications. However, there is currently no typology of distance-based methods. This paper fills that gap. The proposed classification helps understand all the properties of distance-based methods and proves that they are variations on the same framework. © 2016 Elsevier B.V.  
  Address RITM, Univ. Paris-Sud, CREST, Université Paris-Saclay, Sceaux, France  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 January 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 704  
Permanent link to this record
 

 
Author Hudson, L.N.; Newbold, T.; Contu, S.; Hill, S.L.L.; Lysenko, I.; De Palma, A.; Phillips, H.R.P.; Alhusseini, T.I.; Bedford, F.E.; Bennett, D.J.; Booth, H.; Burton, V.J.; Chng, C.W.T.; Choimes, A.; Correia, D.L.P.; Day, J.; Echeverría-Londoño, S.; Emerson, S.R.; Gao, D.; Garon, M.; Harrison, M.L.K.; Ingram, D.J.; Jung, M.; Kemp, V.; Kirkpatrick, L.; Martin, C.D.; Pan, Y.; Pask-Hale, G.D.; Pynegar, E.L.; Robinson, A.N.; Sanchez-Ortiz, K.; Senior, R.A.; Simmons, B.I.; White, H.J.; Zhang, H.; Aben, J.; Abrahamczyk, S.; Adum, G.B.; Aguilar-Barquero, V.; Aizen, M.A.; Albertos, B.; Alcala, E.L.; del Mar Alguacil, M.; Alignier, A.; Ancrenaz, M.; Andersen, A.N.; Arbeláez-Cortés, E.; Armbrecht, I.; Arroyo-Rodríguez, V.; Aumann, T.; Axmacher, J.C.; Azhar, B.; Azpiroz, A.B.; Baeten, L.; Bakayoko, A.; Báldi, A.; Banks, J.E.; Baral, S.K.; Barlow, J.; Barratt, B.I.P.; Barrico, L.; Bartolommei, P.; Barton, D.M.; Basset, Y.; Batáry, P.; Bates, A.J.; Baur, B.; Bayne, E.M.; Beja, P.; Benedick, S.; Berg, Å.; Bernard, H.; Berry, N.J.; Bhatt, D.; Bicknell, J.E.; Bihn, J.H.; Blake, R.J.; Bobo, K.S.; Bóçon, R.; Boekhout, T.; Böhning-Gaese, K.; Bonham, K.J.; Borges, P.A.V.; Borges, S.H.; Boutin, C.; Bouyer, J.; Bragagnolo, C.; Brandt, J.S.; Brearley, F.Q.; Brito, I.; Bros, V.; Brunet, J.; Buczkowski, G.; Buddle, C.M.; Bugter, R.; Buscardo, E.; Buse, J.; Cabra-García, J.; Cáceres, N.C.; Cagle, N.L.; Calviño-Cancela, M.; Cameron, S.A.; Cancello, E.M.; Caparrós, R.; Cardoso, P.; Carpenter, D.; Carrijo, T.F.; Carvalho, A.L.; Cassano, C.R.; Castro, H.; Castro-Luna, A.A.; Rolando, C.B.; Cerezo, A.; Chapman, K.A.; Chauvat, M.; Christensen, M.; Clarke, F.M.; Cleary, D.F.R.; Colombo, G.; Connop, S.P.; Craig, M.D.; Cruz-López, L.; Cunningham, S.A.; D'Aniello, B.; D'Cruze, N.; da Silva, P.G.; Dallimer, M.; Danquah, E.; Darvill, B.; Dauber, J.; Davis, A.L.V.; Dawson, J.; de Sassi, C.; de Thoisy, B.; Deheuvels, O.; Dejean, A.; Devineau, J.-L.; Diekötter, T.; Dolia, J.V.; Domínguez, E.; Dominguez-Haydar, Y.; Dorn, S.; Draper, I.; Dreber, N.; Dumont, B.; Dures, S.G.; Dynesius, M.; Edenius, L.; Eggleton, P.; Eigenbrod, F.; Elek, Z.; Entling, M.H.; Esler, K.J.; de Lima, R.F.; Faruk, A.; Farwig, N.; Fayle, T.M.; Felicioli, A.; Felton, A.M.; Fensham, R.J.; Fernandez, I.C.; Ferreira, C.C.; Ficetola, G.F.; Fiera, C.; Filgueiras, B.K.C.; Fırıncıoğlu, H.K.; Flaspohler, D.; Floren, A.; Fonte, S.J.; Fournier, A.; Fowler, R.E.; Franzén, M.; Fraser, L.H.; Fredriksson, G.M.; Freire, G.B., Jr.; Frizzo, T.L.M.; Fukuda, D.; Furlani, D.; Gaigher, R.; Ganzhorn, J.U.; García, K.P.; Garcia-R, J.C.; Garden, J.G.; Garilleti, R.; Ge, B.-M.; Gendreau-Berthiaume, B.; Gerard, P.J.; Gheler-Costa, C.; Gilbert, B.; Giordani, P.; Giordano, S.; Golodets, C.; Gomes, L.G.L.; Gould, R.K.; Goulson, D.; Gove, A.D.; Granjon, L.; Grass, I.; Gray, C.L.; Grogan, J.; Gu, W.; Guardiola, M.; Gunawardene, N.R.; Gutierrez, A.G.; Gutiérrez-Lamus, D.L.; Haarmeyer, D.H.; Hanley, M.E.; Hanson, T.; Hashim, N.R.; Hassan, S.N.; Hatfield, R.G.; Hawes, J.E.; Hayward, M.W.; Hébert, C.; Helden, A.J.; Henden, J.-A.; Henschel, P.; Hernández, L.; Herrera, J.P.; Herrmann, F.; Herzog, F.; Higuera-Diaz, D.; Hilje, B.; Höfer, H.; Hoffmann, A.; Horgan, F.G.; Hornung, E.; Horváth, R.; Hylander, K.; Isaacs-Cubides, P.; Ishida, H.; Ishitani, M.; Jacobs, C.T.; Jaramillo, V.J.; Jauker, B.; Hernández, F.J.; Johnson, M.F.; Jolli, V.; Jonsell, M.; Juliani, S.N.; Jung, T.S.; Kapoor, V.; Kappes, H.; Kati, V.; Katovai, E.; Kellner, K.; Kessler, M.; Kirby, K.R.; Kittle, A.M.; Knight, M.E.; Knop, E.; Kohler, F.; Koivula, M.; Kolb, A.; Kone, M.; Kőrösi, Á.; Krauss, J.; Kumar, A.; Kumar, R.; Kurz, D.J.; Kutt, A.S.; Lachat, T.; Lantschner, V.; Lara, F.; Lasky, J.R.; Latta, S.C.; Laurance, W.F.; Lavelle, P.; Le Féon, V.; LeBuhn, G.; Légaré, J.-P.; Lehouck, V.; Lencinas, M.V.; Lentini, P.E.; Letcher, S.G.; Li, Q.; Litchwark, S.A.; Littlewood, N.A.; Liu, Y.; Lo-Man-Hung, N.; López-Quintero, C.A.; Louhaichi, M.; Lövei, G.L.; Lucas-Borja, M.E.; Luja, V.H.; Luskin, M.S.; MacSwiney G, M.C.; Maeto, K.; Magura, T.; Mallari, N.A.; Malone, L.A.; Malonza, P.K.; Malumbres-Olarte, J.; Mandujano, S.; Måren, I.E.; Marin-Spiotta, E.; Marsh, C.J.; Marshall, E.J.P.; Martínez, E.; Martínez Pastur, G.; Moreno Mateos, D.; Mayfield, M.M.; Mazimpaka, V.; McCarthy, J.L.; McCarthy, K.P.; McFrederick, Q.S.; McNamara, S.; Medina, N.G.; Medina, R.; Mena, J.L.; Mico, E.; Mikusinski, G.; Milder, J.C.; Miller, J.R.; Miranda-Esquivel, D.R.; Moir, M.L.; Morales, C.L.; Muchane, M.N.; Muchane, M.; Mudri-Stojnic, S.; Munira, A.N.; Muoñz-Alonso, A.; Munyekenye, B.F.; Naidoo, R.; Naithani, A.; Nakagawa, M.; Nakamura, A.; Nakashima, Y.; Naoe, S.; Nates-Parra, G.; Navarrete Gutierrez, D.A.; Navarro-Iriarte, L.; Ndang'ang'a, P.K.; Neuschulz, E.L.; Ngai, J.T.; Nicolas, V.; Nilsson, S.G.; Noreika, N.; Norfolk, O.; Noriega, J.A.; Norton, D.A.; Nöske, N.M.; Nowakowski, A.J.; Numa, C.; O'Dea, N.; O'Farrell, P.J.; Oduro, W.; Oertli, S.; Ofori-Boateng, C.; Oke, C.O.; Oostra, V.; Osgathorpe, L.M.; Otavo, S.E.; Page, N.V.; Paritsis, J.; Parra-H, A.; Parry, L.; Pe'er, G.; Pearman, P.B.; Pelegrin, N.; Pélissier, R.; Peres, C.A.; Peri, P.L.; Persson, A.S.; Petanidou, T.; Peters, M.K.; Pethiyagoda, R.S.; Phalan, B.; Philips, T.K.; Pillsbury, F.C.; Pincheira-Ulbrich, J.; Pineda, E.; Pino, J.; Pizarro-Araya, J.; Plumptre, A.J.; Poggio, S.L.; Politi, N.; Pons, P.; Poveda, K.; Power, E.F.; Presley, S.J.; Proença, V.; Quaranta, M.; Quintero, C.; Rader, R.; Ramesh, B.R.; Ramirez-Pinilla, M.P.; Ranganathan, J.; Rasmussen, C.; Redpath-Downing, N.A.; Reid, J.L.; Reis, Y.T.; Rey Benayas, J.M.; Rey-Velasco, J.C.; Reynolds, C.; Ribeiro, D.B.; Richards, M.H.; Richardson, B.A.; Richardson, M.J.; Ríos, R.M.; Robinson, R.; Robles, C.A.; Römbke, J.; Romero-Duque, L.P.; Rös, M.; Rosselli, L.; Rossiter, S.J.; Roth, D.S.; Roulston, T.H.; Rousseau, L.; Rubio, A.V.; Ruel, J.-C.; Sadler, J.P.; Sáfián, S.; Saldaña-Vázquez, R.A.; Sam, K.; Samnegård, U.; Santana, J.; Santos, X.; Savage, J.; Schellhorn, N.A.; Schilthuizen, M.; Schmiedel, U.; Schmitt, C.B.; Schon, N.L.; Schüepp, C.; Schumann, K.; Schweiger, O.; Scott, D.M.; Scott, K.A.; Sedlock, J.L.; Seefeldt, S.S.; Shahabuddin, G.; Shannon, G.; Sheil, D.; Sheldon, F.H.; Shochat, E.; Siebert, S.J.; Silva, F.A.B.; Simonetti, J.A.; Slade, E.M.; Smith, J.; Smith-Pardo, A.H.; Sodhi, N.S.; Somarriba, E.J.; Sosa, R.A.; Soto Quiroga, G.; St-Laurent, M.-H.; Starzomski, B.M.; Stefanescu, C.; Steffan-Dewenter, I.; Stouffer, P.C.; Stout, J.C.; Strauch, A.M.; Struebig, M.J.; Su, Z.; Suarez-Rubio, M.; Sugiura, S.; Summerville, K.S.; Sung, Y.-H.; Sutrisno, H.; Svenning, J.-C.; Teder, T.; Threlfall, C.G.; Tiitsaar, A.; Todd, J.H.; Tonietto, R.K.; Torre, I.; Tóthmérész, B.; Tscharntke, T.; Turner, E.C.; Tylianakis, J.M.; Uehara-Prado, M.; Urbina-Cardona, N.; Vallan, D.; Vanbergen, A.J.; Vasconcelos, H.L.; Vassilev, K.; Verboven, H.A.F.; Verdasca, M.J.; Verdú, J.R.; Vergara, C.H.; Vergara, P.M.; Verhulst, J.; Virgilio, M.; Vu, L.V.; Waite, E.M.; Walker, T.R.; Wang, H.-F.; Wang, Y.; Watling, J.I.; Weller, B.; Wells, K.; Westphal, C.; Wiafe, E.D.; Williams, C.D.; Willig, M.R.; Woinarski, J.C.Z.; Wolf, J.H.D.; Wolters, V.; Woodcock, B.A.; Wu, J.; Wunderle, J.M., Jr.; Yamaura, Y.; Yoshikura, S.; Yu, D.W.; Zaitsev, A.S.; Zeidler, J.; Zou, F.; Collen, B.; Ewers, R.M.; Mace, G.M.; Purves, D.W.; Scharlemann, J.P.W.; Purvis, A. pdf  url
doi  openurl
  Title The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project Type Journal Article
  Year 2017 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution  
  Volume 7 Issue 1 Pages 145-188  
  Keywords data sharing; global biodiversity modeling; global change; habitat destruction; land use  
  Abstract The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity. © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.  
  Address Computational Ecology and Environmental Science, Microsoft Research, Cambridge, United Kingdom  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 January 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 705  
Permanent link to this record
 

 
Author De Souza, F.C.; Dexter, K.G.; Phillips, O.L.; Brienen, R.J.W.; Chave, J.; Galbraith, D.R.; Gonzalez, G.L.; Mendoza, A.M.; Toby Pennington, R.; Poorter, L.; Alexiades, M.; Álvarez-Dávila, E.; Andrade, A.; Aragão, L.E.O.C.; Araujo-Murakami, A.; Arets, E.J.M.M.; Aymard C., G.A.; Baraloto, C.; Barroso, J.G.; Bonal, D.; Boot, R.G.A.; Camargo, J.L.C.; Comiskey, J.A.; Valverde, F.C.; De Camargo, P.B.; Di Fiore, A.; Elias, F.; Erwin, T.L.; Feldpausch, T.R.; Ferreira, L.; Fyllas, N.M.; Gloor, E.; Herault, B.; Herrera, R.; Higuchi, N.; Coronado, E.N.H.; Killeen, T.J.; Laurance, W.F.; Laurance, S.; Lloyd, J.; Lovejoy, T.E.; Malhi, Y.; Maracahipes, L.; Marimon, B.S.; Marimon-Junior, B.H.; Mendoza, C.; Morandi, P.; Neill, D.A.; Vargas, P.N.; Oliveira, E.A.; Lenza, E.; Palacios, W.A.; Peñuela-Mora, M.C.; Pipoly, J.J., III; Pitman, N.C.A.; Prieto, A.; Quesada, C.A.; Ramirez-Angulo, H.; Rudas, A.; Ruokolainen, K.; Salomão, R.P.; Silveira, M.; Stropp, J.; Steege, H.T.; Thomas-Caesar, R.; Van Der Hout, P.; Van Der Heijden, G.M.F.; Van Der Meer, P.J.; Vasquez, R.V.; Vieira, S.A.; Vilanova, E.; Vos, V.A.; Wang, O.; Young, K.R.; Zagt, R.J.; Baker, T.R. url  doi
openurl 
  Title Evolutionary heritage influences amazon tree ecology Type Journal Article
  Year 2016 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proceedings of the Royal Society B: Biological Sciences  
  Volume 283 Issue 20161587 Pages  
  Keywords Convergent evolution; Divergent selection; Phylogenetic signal; Trait; Tropical tree  
  Abstract Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant lifehistory strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.  
  Address Department of Geography and the Environment, University of Texas at Austin, Austin, TX, United States  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 January 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 706  
Permanent link to this record
 

 
Author Amusant, N.; Beauchene, J.; Digeon, A.; Chaix, G. url  doi
openurl 
  Title Essential oil yield in rosewood (Aniba rosaeodora Ducke): Initial application of rapid prediction by near infrared spectroscopy based on wood spectra Type Journal Article
  Year 2016 Publication Journal of Near Infrared Spectroscopy Abbreviated Journal Journal of Near Infrared Spectroscopy  
  Volume 24 Issue 6 Pages 507-515  
  Keywords Aniba rosaeodora; Calibration; Essential oil yield; Nir; Pls; Rosewood  
  Abstract Rosewood (Aniba rosaeodora) essential oil is a valuable ingredient that has long been used in the perfume and cosmetic industries. The main rosewood timber quality parameters are its essential oil yield and quality. A hydrodistillation method has been developed for yield determination, but it is time consuming. Here we tested the applicability of near infrared (NIR) spectroscopy for determining essential oil yield directly from wood powder. Essential oil from 139 wood powders was extracted via hydrodistillation. The measurements were based on the ratio between the extracted essential oil mass and the oven-dried wood mass and were correlated with the wood powder NIR spectra. The calibration model statistical findings demonstrated that NIR could be a fast and feasible alternative method for selecting trees with a high essential oil yield potential. NIR-based predictions obtained in an independent validation set indicated a high correlation (r2e = 0.92) with laboratory essential oil yield measurements. This NIR model could help wood managers in selecting trees with a high essential oil yield potential and in developing sustainable rosewood management strategies. © IM Publications LLP 2016. All rights reserved.  
  Address ESALQ-USP, Piracicaba, Brazil  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 17 January 2017 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 707  
Permanent link to this record
 

 
Author Lehours, A.-C.; Jeune, A.-H.L.; Aguer, J.-P.; Céréghino, R.; Corbara, B.; Kéraval, B.; Leroy, C.; Perrière, F.; Jeanthon, C.; Carrias, J.-F. doi  openurl
  Title Unexpectedly high bacteriochlorophyll a concentrations in neotropical tank bromeliads Type Journal Article
  Year 2016 Publication Environmental Microbiology Reports Abbreviated Journal Environmental Microbiology Reports  
  Volume 8 Issue 5 Pages 689-698  
  Keywords  
  Abstract The contribution of bacteriochlorophyll a (BChl a) to photosynthetically driven electron transport is generally low in aquatic and terrestrial systems. Here, we provide evidence that anoxygenic bacterial phototrophy is widespread and substantial in water retained by tank bromeliads of a primary rainforest in French Guiana. An analysis of the water extracted from 104 randomly selected tank bromeliads using infrared fluorimetry suggested the overall presence of abundant anoxygenic phototrophic bacterial populations. We found that purple bacteria dominated these populations responsible for unusually high BChl a/chlorophyll a ratios (>50%). Our data suggest that BChl a-based phototrophy in tank bromeliads can have significant effects on the ecology of tank-bromeliad ecosystems and on the carbon and energy fluxes in Neotropical forests.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-2229 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 709  
Permanent link to this record
 

 
Author Malé, P.-J.G.; Leroy, C.; Humblot, P.; Dejean, A.; Quilichini, A.; Orivel, J. doi  openurl
  Title Limited gene dispersal and spatial genetic structure as stabilizing factors in an ant-plant mutualism Type Journal Article
  Year 2016 Publication Journal of Evolutionary Biology Abbreviated Journal J. Evol. Biol.  
  Volume 29 Issue 12 Pages 2519-2529  
  Keywords gene flow; local adaptation; metapopulation; myrmecophyte; population genetics  
  Abstract Comparative studies of the population genetics of closely associated species are necessary to properly understand the evolution of these relationships because gene flow between populations affects the partners' evolutionary potential at the local scale. As a consequence (at least for antagonistic interactions), asymmetries in the strength of the genetic structures of the partner populations can result in one partner having a co-evolutionary advantage. Here, we assess the population genetic structure of partners engaged in a species-specific and obligatory mutualism: the Neotropical ant-plant, Hirtella physophora, and its ant associate, Allomerus decemarticulatus. Although the ant cannot complete its life cycle elsewhere than on H. physophora and the plant cannot live for long without the protection provided by A. decemarticulatus, these species also have antagonistic interactions: the ants have been shown to benefit from castrating their host plant and the plant is able to retaliate against too virulent ant colonies. We found similar short dispersal distances for both partners, resulting in the local transmission of the association and, thus, inbred populations in which too virulent castrating ants face the risk of local extinction due to the absence of H. physophora offspring. On the other hand, we show that the plant populations probably experienced greater gene flow than did the ant populations, thus enhancing the evolutionary potential of the plants. We conclude that such levels of spatial structure in the partners' populations can increase the stability of the mutualistic relationship. Indeed, the local transmission of the association enables partial alignments of the partners' interests, and population connectivity allows the plant retaliation mechanisms to be locally adapted to the castration behaviour of their symbionts.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-9101 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 710  
Permanent link to this record
 

 
Author Talaga, S.; Leroy, C.; Céréghino, R.; Dejean, A. doi  openurl
  Title Convergent evolution of intraguild predation in phytotelm-inhabiting mosquitoes Type Journal Article
  Year 2016 Publication Evolutionary Ecology Abbreviated Journal Evol. Ecol.  
  Volume 30 Issue 6 Pages 1133-1147  
  Keywords  
  Abstract Intraguild predation (IGP) is a type of biological interaction involving the killing and consuming of competing species that exploit similar and often limited resources. This phenomenon is widespread among a great variety of taxonomic groups and has already been reported for mosquito (Diptera: Culicidae) larvae. Moreover, the larvae of certain mosquito species of the tribe Sabethini have evolved modified mouthparts ending in rigid apical structures signaling their capacity to be effective intraguild predators. We assumed that IGP confers a selective advantage under severe competitive conditions by both providing an immediate energetic gain and reducing potential competition. Because potential competition is likely to increase with decreasing habitat size, we hypothesized that the proportion of species with modified mouthparts would increase in smaller aquatic habitats. We tested this hypothesis by examining the mosquito species naturally associated with phytotelmata of decreasing sizes in French Guiana. We show that the degree of specialization in mosquito-phytotelm associations is high, suggesting a long coevolutive process. Indeed, short-term interaction experiments confirmed that species with modified mouthparts are able to prey upon similarly-sized intraguild prey and are, thus, effective intraguild predators. In addition, these species are larger and associated with smaller phytotelmata than those with typical mouthparts. Moreover, below a certain threshold of phytotelm size, only species with modified mouthparts were present. These results show that IGP confers a selective advantage under severe competitive conditions and results from the coadaptation of mosquito species to their specific phytotelm habitat. The presence of functionally analogous structures in different mosquito genera also implies that IGP has emerged from convergent evolution in small phytotelmata.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1573-8477 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Talaga2016 Serial 711  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: