toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Niamké, F.B.; Amusant, N.; Kadio, A.A.; Thevenon, M.-F.; Nourissier, S.; Adima, A.A.; Jay-Allemand, C.; Chaix, G. url  openurl
  Title Rapid prediction of phenolic compounds as chemical markers for the natural durability of teak (Tectona grandis Linn f.) heartwood by near infrared spectroscopy Type Journal Article
  Year 2014 Publication Journal of Near Infrared Spectroscopy Abbreviated Journal J. Near Infrared Spectrosc.  
  Volume 22 Issue 1 Pages 35-43  
  Keywords Heartwood; Hplc; Natural durability; NIR spectroscopy; Phenolic; Prediction; Quinone; Tectona grandis  
  Abstract Near infrared (NIR) spectroscopy provides rapid and non-destructive analysis of wood properties and composition. In this study, we aimed to use NIR measurement for the prediction of teak phenolic compounds, which are chemical markers for natural durability of wood. Twenty-seven teak trees from two geographical zones (Malaysia and Ivory Coast) were used. On ground heartwood samples, the content of total phenolics and individual quinones (tectoquinone, 2-(hydroxymethyl)anthraquinone, 2-anthraquinone carboxylic acid, 1,4-naphthoquinoneand 4c,5c-dihydroxy-epiisocatalponol) were determined using high performance liquid chromatography (HPLC). Partial least squares (PLS) regression with NIR spectra on the same samples and phenolic data was used to build NIR models for phenolic contents. The PLS models for the total predicted phenolics and three quinone contents (tectoquinone, 2-(hydroxymethyl) anthraquinone, and 4¢,5¢-dihydroxy-epiisocatalponol) showed a good ratio of performance to deviation (RPD ≥ 2.5), strong coefficients of determination (r2 ≥ 0.8) and the prediction errors were consistent with the reference method. These results demonstrate that NIR spectroscopy can be reliable for the evaluation of total phenolics and individual quinones in teak heartwood wood meal. NIR spectroscopy is a promising technique for rapidly providing information on the quinone contents in teak wood and indirectly for knowing its natural durability. This finding leads to a precise, non-destructive tool for teak wood quality evaluation. © IM Publications LLP 2014.  
  Address CIRAD-UMR AGAP, Department of Forest Science, ESALQ / University of São Paulo, Avenue Pàdua Dias 11, CEP 13418-900, Piracicaba-SP, Brazil  
  Corporate Author Thesis  
  Publisher (down) N I R Publications Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17516552 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 20 May 2014; Source: Scopus; Language of Original Document: English; Correspondence Address: Niamké, F.B.; LAPISEN, Groupe de Recherche en Chimie des Eaux et des Substances Naturelles, Institut National Polytechnique Houphouët Boigny, BP 1313, Yamoussoukro, Cote d'Ivoire Approved no  
  Call Number EcoFoG @ webmaster @ Serial 542  
Permanent link to this record
 

 
Author Marti, G.; Eparvier, V.; Litaudon, M.; Grellier, P.; Gueritte, F. openurl 
  Title A New Xanthone from the Bark Extract of Rheedia acuminata and Antiplasmodial Activity of Its Major Compounds Type Journal Article
  Year 2010 Publication Molecules Abbreviated Journal Molecules  
  Volume 15 Issue 10 Pages 7106-7114  
  Keywords Rheedia acuminata, Clusiaceae; xanthones; antiplasmodial activity; cytotoxicity  
  Abstract Bioassay-guided fractionation of the ethyl acetate bark extract of Rheedia acuminata led to the isolation of the new compound 1,5,6-trihydroxy-3-methoxy-7-geranyl-xanthone (1), together with four known compounds 2-5. These compounds were tested in vitro for their antiplasmodial activity on a chloroquine-resistant strain of Plasmodium falciparum (FcB1) and for their cytotoxicity against the human diploid embryonic lung cell line MRC-5.  
  Address [Eparvier, Veronique] CNRS, UPS2561, F-97300 Cayenne, France, Email: guillaume.marti@icsn.cnrs-gif.fr  
  Corporate Author Thesis  
  Publisher (down) MDPI AG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-3049 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283587400030 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 282  
Permanent link to this record
 

 
Author Aguilos, M.; Stahl, C.; Burban, B.; Hérault, B.; Courtois, E.; Coste, S.; Wagner, F.; Ziegler, C.; Takagi, K.; Bonal, D. pdf  url
doi  openurl
  Title Interannual and seasonal variations in ecosystem transpiration and water use efficiency in a tropical rainforest Type Journal Article
  Year 2018 Publication Forests Abbreviated Journal Forests  
  Volume 10 Issue 1 Pages  
  Keywords Drought; Evapotranspiration; Radiation; Tropical rainforest; Water use efficiency; Atmospheric radiation; Carbon dioxide; Climate change; Drought; Efficiency; Evapotranspiration; Forestry; Heat radiation; Radiation effects; Soil moisture; Tropics; Water supply; Climate condition; Drought conditions; Interannual variability; Mechanistic models; Seasonal variation; Tropical ecosystems; Tropical rain forest; Water use efficiency; Ecosystems  
  Abstract Warmer and drier climates over Amazonia have been predicted for the next century with expected changes in regional water and carbon cycles. We examined the impact of interannual and seasonal variations in climate conditions on ecosystem-level evapotranspiration (ET) and water use efficiency (WUE) to determine key climatic drivers and anticipate the response of these ecosystems to climate change. We used daily climate and eddyflux data recorded at the Guyaflux site in French Guiana from 2004 to 2014. ET and WUE exhibited weak interannual variability. The main climatic driver of ET and WUE was global radiation (Rg), but relative extractable water (REW) and soil temperature (Ts) did also contribute. At the seasonal scale, ET and WUE showed a modal pattern driven by Rg, with maximum values for ET in July and August and for WUE at the beginning of the year. By removing radiation effects during water depleted periods, we showed that soil water stress strongly reduced ET. In contrast, drought conditions enhanced radiation-normalized WUE in almost all the years, suggesting that the lack of soil water had a more severe effect on ecosystem evapotranspiration than on photosynthesis. Our results are of major concern for tropical ecosystem modeling because they suggest that under future climate conditions, tropical forest ecosystems will be able to simultaneously adjust CO2 and H2O fluxes. Yet, for tropical forests under future conditions, the direction of change in WUE at the ecosystem scale is hard to predict, since the impact of radiation on WUE is counterbalanced by adjustments to soil water limitations. Developing mechanistic models that fully integrate the processes associated with CO2 and H2O flux control should help researchers understand and simulate future functional adjustments in these ecosystems.  
  Address Hokkaido University, Sapporo, 060-0808, Japan  
  Corporate Author Thesis  
  Publisher (down) Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19994907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019; Correspondence Address: Bonal, D.; Université de Lorraine, AgroParisTech, INRA, UMR SilvaFrance; email: damien.bonal@inra.fr; References: Von Randow, C., Zeri, M., Restrepo-Coupe, N., Muza, M.N., de Gonçalves, L.G.G., Costa, M.H., Araujo, A.C., Saleska, S.R., Interannual variability of carbon and water fluxes in Amazonian forest, Cerrado and pasture sites, as simulated by terrestrial biosphere models (2013) Agric. For. Meteorol, 182-183, pp. 145-155; Duffy, P.B., Brando, P., Asner, G.P., Field, C.B., Projections of future meteorological drought and wet periods in the Amazon (2015) Proc. Natl. Acad. Sci. USA, 112, pp. 13172-13177; Cox, P.M., Betts, R.A., Collins, M., Harris, P.P., Huntingford, C., Jones, C.D., Amazonian forest dieback under climate-carbon cycle projections for the 21st century (2004) Theor. Appl. Climatol, 78, pp. 137-156; Poulter, B., Hattermann, F., Hawkins, E., Zaehle, S., Sitch, S., Restrepo-Coupe, N., Heyder, U., Cramer, W., Robust dynamics of Amazon dieback to climate change with perturbed ecosystem model parameters (2010) Glob. Chang. Biol, 16, pp. 2476-2495; Saleska, S.R., Didan, K., Huete, A.R., Da Rocha, H.R., Amazon forests green-up during 2005 drought (2007) Science, 318, p. 612; Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., Malhi, Y., Quesada, C.A., Drought sensitivity of the amazon rainforest (2009) Science, 323, pp. 1344-1347; Bonal, D., Burban, B., Stahl, C., Wagner, F., Hérault, B., The response of tropical rainforests to drought-Lessons from recent research and future prospects (2016) Ann. For. Sci, 73, pp. 27-44; Wang, K.C., Dickinson, R.E., A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability (2012) Rev. Geophys, p. 50; Fisher, R.A., Williams, M., da Costa, A.L., Malhi, Y., da Costa, R.F., Almeida, S., Meir, P., The response of an Eastern Amazonian rain forest to drought stress: Results and modelling analyses from a throughfall exclusion experiment (2007) Glob. Chang. Biol, 13, pp. 2361-2378; Costa, M.H., Biajoli, M.C., Sanches, L., Malhado, A.C.M., Hutyra, L.R., Da Rocha, H.R., Aguiar, R.G., De Araújo, A.C., Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: Are the wet and seasonally dry rain forests any different? (2010) J. Geophys. Res. Biogeosci, 115, pp. 1-9; Carswell, F.E., Costa, A.L., Palheta, M., Malhi, Y., Meir, P., Costa, J.D.P.R., Ruivo, M.D.L., Clement, R.J., Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest (2002) J. Geophys. Res. D Atmos, 107, p. 8076; Hasler, N., Avissar, R., What controls evapotranspiration in the Amazon basin? (2007) J. Hydrometeorol, 8, pp. 380-395; Da Rocha, H.R., Manzi, A.O., Cabral, O.M., Miller, S.D., Goulden, M.L., Saleska, S.R., Coupe, N.R., Artaxo, R., Patterns of water and heat flux across a biome gradient from tropical forest to savanna in brazil (2009) J. Geophys. Res. Biogeosci, p. 114; Kim, Y., Knox, R.G., Longo, M., Medvigy, D., Hutyra, L.R., Pyle, E.H., Wofsy, S.C., Moorcroft, P.R., Seasonal carbon dynamics and water fluxes in an Amazon rainforest (2012) Glob. Chang. Biol, 18, pp. 1322-1334; Maeda, E.E., Ma, X., Wagner, F.H., Kim, H., Oki, T., Eamus, D., Huete, A., Evapotranspiration seasonality across the Amazon Basin (2017) Earth Syst. Dyn, 8, pp. 439-454; Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., Carbon isotope discrimination and photosynthesis (1989) Ann. Rev. Plant Physiol, 40, pp. 503-537; Hutyra, L.R., Munger, J.W., Saleska, S.R., Gottlieb, E., Daube, B.C., Dunn, A.L., Amaral, D.F., Wofsy, S.C., Seasonal controls on the exchange of carbon and water in an Amazonian rain forest (2007) J. Geophys. Res. Biogeosci; Negrón Juárez, R.I., Hodnett, M.G., Fu, R., Gouden, M.L., von Randow, C., Control of dry season evapotranspiration over the Amazonian forest as inferred from observation at a Southern Amazon forest site (2007) J. Clim, 20, pp. 2827-2839; Fisher, J.B., Malhi, Y., Bonal, D., Da Rocha, H.R., De Araújo, A.C., Gamo, M., Goulden, M.L., Kondo, H., The land-atmosphere water flux in the tropics (2009) Glob. Chang. Biol; Christoffersen, B.O., Restrepo-Coupe, N., Arain, M.A., Baker, I.T., Cestaro, B.P., Ciais, P., Fisher, J.B., Gulden, L., Mechanisms of water supply and vegetation demand govern the seasonality and magnitude of evapotranspiration in Amazonia and Cerrado (2014) Agric. For. Meteorol, 191, pp. 33-50; Da Costa, A.C.L., Rowland, L., Oliveira, R.S., Oliveira, A.A.R., Binks, O.J., Salmon, Y., Vasconcelos, S.S., Poyatos, R., Stand dynamics modulate water cycling and mortality risk in droughted tropical forest (2018) Glob. Chang. Biol; Huang, M., Piao, S., Sun, Y., Ciais, P., Cheng, L., Mao, J., Poulter, B., Wang, Y., Change in terrestrial ecosystem water-use efficiency over the last three decades (2015) Glob. Chang. Biol; Brienen, R.J.W., Wanek, W., Hietz, P., Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species (2011) Trees, 25, pp. 103-113; Yu, G., Song, X., Wang, Q., Liu, Y., Guan, D., Yan, J., Sun, X., Wen, X., Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables (2008) New Phytol, 177, pp. 927-937; Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana? Agric (2018) For. Meteorol, pp. 253-254; Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B.T., Gross, P., Bonnefond, J.M., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Chang. Biol; Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J.B., Foken, T., Kowalski, A.S., Bernhofer, C., Estimates of the annual net carbon and water exchange of forests: The Euroflux methodology (2000) Adv. Ecol. Res, 30, pp. 113-175; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agric. For. Meteorol, 151, pp. 1202-1213; Kuglitsch, F.G., Reichstein, M., Beer, C., Carrara, A., Ceulemans, R., Granier, A., Janssens, I.A., Loustau, D., Characterisation of ecosystem water-use efficiency of european forests from eddy covariance measurements (2008) Biogeosci. Discuss, 5, pp. 4481-4519; Dekker, S.C., Groenendijk, M., Booth, B.B.B., Huntingford, C., Cox, P.M., Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations (2016) Earth Syst. Dyn, 7, pp. 525-533; Yang, Y., Guan, H., Batelaan, O., McVicar, T.R., Long, D., Piao, S., Liang, W., Simmons, C.T., Contrasting responses of water use efficiency to drought across global terrestrial ecosystems (2016) Sci. Rep, 6, p. 23284; Granier, A., Bréda, N., Biron, P., Villette, S., A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands (1999) Ecol. Model, 116, pp. 269-283; Kume, T., Takizawa, H., Yoshifuji, N., Tanaka, K., Tantasirin, C., Tanaka, N., Suzuki, M., Impact of soil drought on sap flow and water status of evergreen trees in a tropical monsoon forest in northern Thailand (2007) For. Ecol. Manag, 238, pp. 220-230; Xiao, J., Sun, G., Chen, J., Chen, H., Chen, S., Dong, G., Gao, S., Han, S., Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China (2013) Agric. For. Meteorol; Boese, S., Jung, M., Carvalhais, N., Reichstein, M., The importance of radiation for semi-empirical water-use efficiency models (2017) Biogeosciences, 14, pp. 3015-3026; Bonal, D., Ponton, S., Le Thiec, D., Richard, B., Ningre, N., Hérault, B., Ogée, J., Sabatier, D., Leaf functional response to increasing atmospheric CO2 concentrations over the last century in two northern Amazonian tree species: An historical δ13C and δ18O approach using herbarium samples (2011) Plant Cell Environ, 34, pp. 1332-1344; Wagner, F., Rossi, V., Stahl, C., Bonal, D., Hérault, B., Water availability is the main climate driver of neotropical tree growth (2012) PLoS ONE, 7; Van der Molen, M.K., Dolman, A.J., Ciais, P., Eglin, T., Gobron, N., Law, B.E., Meir, P., Reichstein, M., Drought and ecosystem carbon cycling (2011) Agric. For. Meteorol, 151, pp. 765-773; Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Hogg, E.H., A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests (2010) For. Ecol. Manag, 259, pp. 660-684; Da Rocha, H.R., Goulden, M.L., Miller, S.D., Menton, M.C., Pinto, L.D., De Freitas, H.C., Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia (2004) Ecol. Appl, 14, pp. 22-32; Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Evans, R., FLUXNET: A New tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities (2001) Bull. Am. Meteorol. Soc, 82, pp. 2415-2434; Stahl, C., Hérault, B., Rossi, V., Burban, B., Bréchet, C., Bonal, D., Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? (2013) Oecologia, 173, pp. 1191-1201; Nepstad, D.C., De Carvalho, C.R., Davidson, E.A., Jipp, P.H., Lefebvre, P.A., Negreiros, G.H., Da Silva, E.D., Vieira, S., The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures (1994) Nature; Lee, J.-E., Boyce, K., Impact of the hydraulic capacity of plants on water and carbon fluxes in tropical South America (2010) J. Geophys. Res; Xiao, X., Zhang, Q., Saleska, S., Hutyra, L., De Camargo, P., Wofsy, S., Frolking, S., Moore, B., Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest (2005) Remote Sens. Environ, 94, pp. 105-122; Wagner, F.H., Hérault, B., Bonal, D., Stahl, C., Anderson, L.O., Baker, T.R., Becker, G.S., Botosso, P.C., Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests (2016) Biogeosciences, 13, pp. 2537-2562; Stahl, C., Burban, B., Wagner, F., Goret, J.-Y., Bompy, F., Bonal, D., Influence of Seasonal Variations in Soil Water Availability on Gas Exchange of Tropical Canopy Trees (2013) Biotropica, 45, pp. 155-164; Maréchaux, I., Bonal, D., Bartlett, M.K., Burban, B., Coste, S., Courtois, E.A., Dulormne, M., Mirabel, A., Dry-season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest (2018) Funct. Ecol, 32, pp. 2285-2297; Chaves, M.M., Maroco, J.P., Pereira, J.S., Understanding plant responses to drought-from genes to the whole plant (2003) Funct. Plant Biol, 30, pp. 239-264 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 856  
Permanent link to this record
 

 
Author Lehnebach, R.; Bossu, J.; Va, S.; Morel, H.; Amusant, N.; Nicolini, E.; Beauchene, J. pdf  url
doi  openurl
  Title Wood density variations of legume trees in French Guiana along the shade tolerance continuum: Heartwood effects on radial patterns and gradients Type Journal Article
  Year 2019 Publication Forests Abbreviated Journal Forests  
  Volume 10 Issue 2 Pages  
  Keywords French Guiana; Growth-mortality rate; Heartwood; Heartwood extractives; Legumes; Sapwood; Shade tolerance; Tropical tree species; Wood density variations  
  Abstract Increasing or decreasing wood density (WD) from pith to bark is commonly observed in tropical tree species. The different types of WD radial variations, long been considered to depict the diversity of growth and mechanical strategies among forest guilds (heliophilic vs. shade-tolerant), were never analyzed in the light of heartwood (HW) formation. Yet, the additional mass of chemical extractives associated to HW formation increases WD and might affect both WD radial gradient (i.e., the slope of the relation between WD and radial distance) and pattern (i.e., linear or nonlinear variation). We studied 16 legumes species from French Guiana representing a wide diversity of growth strategies and positions on the shade-tolerance continuum. Using WD measurements and available HW extractives content values, we computed WD corrected by the extractive content and analyzed the effect of HW on WD radial gradients and patterns. We also related WD variations to demographic variables, such as sapling growth and mortality rates. Regardless of the position along the shade-tolerance continuum, correcting WD gradients reveals only increasing gradients. We determined three types of corrected WD patterns: (1) the upward curvilinear pattern is a specific feature of heliophilic species, whereas (2) the linear and (3) the downward curvilinear patterns are observed in both mid- and late-successional species. In addition, we found that saplings growth and mortality rates are better correlated with the corrected WD at stem center than with the uncorrected value: taking into account the effect of HW extractives on WD radial variations provides unbiased interpretation of biomass accumulation and tree mechanical strategies. Rather than a specific feature of heliophilic species, the increasing WD gradient is a shared strategy regardless of the shade tolerance habit. Finally, our study stresses to consider the occurrence of HW when using WD.  
  Address Ecology of Guianan Forests (EcoFoG), AgroParisTech, French Agricultural Research and International Cooperation Organization (CIRAD), French National Centre for Scientific Research (CNRS), French National Institute for Agricultural Research (INRA), Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher (down) Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19994907 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019; Correspondence Address: Lehnebach, R.; Laboratory of Botany and Modeling of Plant Architecture and Vegetation (AMAP), French Agricultural Research and International Cooperation Organization (CIRAD)France; email: romain.lehnebach@cirad.fr; Funding details: Agence Nationale de la Recherche, ANR; Funding details: Federación Española de Enfermedades Raras, FEDER; Funding text 1: The authors thank Grégoire Vincent, Jean-François Molino, and Daniel Sabatier for providing demographical data.). The French Agricultural Research Centre for International Development (CIRAD) funded Romain Lehnebach PhD scholarship. This research project was also funded by the European Regional Development Fund (FEDER, no 31703) and benefits from an 'Investissements d'Avenir' grant managed by the French National Research Agency (CEBA, ref. ANR-10-LABX-25-01).; References: Kollmann, F.F.P., Côté, W.A., (1984) Principles of Wood Science and Technology: I Solid Wood, , Springer: Berlin, Germany; Muller-Landau, H.C., Interspecific and inter-site variation in wood specific gravity of tropical trees (2004) Biotropica, 36, pp. 20-32; Van Gelder, H.A., Poorter, L., Sterck, F.J., Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community (2006) New Phyt, 171, pp. 367-378; Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum (2009) Ecol. Lett, 12, pp. 351-366; Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Condit, R., Díaz, S., Functional traits and the growth-mortality trade-off in tropical trees (2010) Ecology, 91, pp. 3664-3674; Niklas, K.J., Influence of tissue density-specific mechanical properties on the scaling of plant height (1993) Ann. Bot, 72, pp. 173-179; Niklas, K.J., Spatz, H.-C., Worldwide correlations of mechanical properties and green wood density (2010) Am. J. Bot, 97, pp. 1587-1594; Pratt, R.B., Jacobsen, A.L., Ewers, F.W., Davis, S.D., Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral (2007) New Phyt, 174, pp. 787-798; Lachenbruch, B., Moore, J., Evans, R., Radial Variation in Wood Structure and Function in Woody Plants, and Hypotheses for Its Occurrence (2011) In Size-and Age-Related Changes in Tree Structure and Function, 4, pp. 121-164. , Meinzer, F.C., Lachenbruch, B., Dawson, T.E., Eds.; Springer: Berlin, Germany; Hacke, U.G., Sperry, J.S., Pockman, W.T., Davis, S.D., McCulloh, K.A., Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure (2001) Oecologia, 126, pp. 457-461; Markesteijn, L., Poorter, L., Paz, H., Sack, L., Bongers, F., Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits (2011) Plant Cell Environ, 34, pp. 137-148; Rosner, S., Wood density as a proxy for vulnerability to cavitation: Size matters (2017) J. Plant Hydraul, 4, pp. 1-10; Zanne, A.E., Westoby, M., Falster, D.S., Ackerly, D.D., Loarie, S.R., Arnold, S.E.J., Coomes, D.A., Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity (2010) Am. J. Bot, 97, pp. 207-215; King, D.A., Davies, S.J., Tan, S., Noor, N.S.M., The role of wood density and stem support costs in the growth and mortality of tropical trees (2006) J. Ecol, 94, pp. 670-680; Poorter, L., Wright, S.J., Paz, H., Ackerly, D.D., Condit, R., Ibarra-Manríquez, G., Harms, K.E., Mazer, S.J., Are functional traits good predictors of demographic rates? Evidence from five neotropical forests (2008) Ecology, 89, pp. 1908-1920; Nascimento, H.E.M., Laurance, W.F., Condit, R., Laurance, S.G., D'Angelo, S., Andrade, A.C., Demographic and life-history correlates for Amazonian trees (2005) J. Veg. Sci, 16, pp. 625-634; Meinzer, F.C., Lachenbruch, B., Dawson, T.E., (2011) Size-and Age-Related Changes in Tree Structure and Function, , Springer: Dordrecht, The Netherlands; Wiemann, M., Williamson, G., Extreme radial changes in wood specific gravity in some tropical pioneers (1988) Wood Fiber Sci, 20, pp. 344-349; Rueda, R., Williamson, G.B., Radial and vertical wood specific gravity in Ochroma pyramidale (Cav. ex Lam.) Urb (Bombacaceae) (1992) Biotropica, 24, pp. 512-518; Williamson, G.B., Wiemann, M.C., Geaghan, J.P., Radial wood allocation in Schizolobium parahyba (2012) Am. J. Bot, 99, pp. 1010-1019; Bastin, J.-F., Fayolle, A., Tarelkin, Y., Van den Bulcke, J., de Haulleville, T., Mortier, F., Beeckman, H., Bogaert, J., Wood specific gravity variations and biomass of central African tree species: The simple choice of the outer wood (2015) PLoS ONE, 10; Longuetaud, F., Mothe, F., Santenoise, P., Diop, N., Dlouha, J., Fournier, M., Deleuze, C., Patterns of withinstem variations in wood specific gravity and water content for five temperate tree species (2017) Ann. For. Sci, 74, p. 64; Wiemann, M.C., Williamson, B., Testing a novel method to approximate wood specific gravity of trees (2012) For. Sci, 58, pp. 577-591; Wiemann, M.C., Williamson, G.B., Wood specific gravity gradients in tropical dry and montane rain forest trees (1989) Am. J. Bot, 76, pp. 924-928; Wiemann, M.C., Williamson, G.B., Radial gradients in the specific gravity of wood in some tropical and temperate trees (1989) For. Sci, 35, pp. 197-210; Parolin, P., Radial gradients in wood specific gravity in trees of central amazonian floodplains (2002) IAWA J, 23, pp. 449-457; Abe, H., Kuroda, K., Yamashita, K., Yazaki, K., Noshiro, S., Fujiwara, T., Radial variation of wood density of Quercus spp (Fagaceae) in Japan (2012) Mokuzai Gakkaishi, 58, pp. 329-338; Lei, H., Milota, M.R., Gartner, B.L., Between-and within-tree variation in the anatomy and specific gravity of wood in oregon White Oak (Quercus garryana Dougl.) (1996) IAWA J, 17, pp. 445-461; Woodcock, D., Shier, A., Wood specific gravity and its radial variations: The many ways to make a tree (2002) Trees, 16, pp. 437-443; Hérault, B., Beauchêne, J., Muller, F., Wagner, F., Baraloto, C., Blanc, L., Martin, J.-M., Modeling decay rates of dead wood in a neotropical forest (2010) Oecologia, 164, pp. 243-251; Thibaut, B., Baillères, H., Chanson, B., Fournier-Djimbi, M., Plantations d'arbres à croissance rapide et qualité des produits forestiers sous les tropiques (1997) Bois For. Trop, 252, pp. 49-54; Nock, C.A., Geihofer, D., Grabner, M., Baker, P.J., Bunyavejchewin, S., Hietz, P., Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand (2009) Ann. Bot, 104, pp. 297-306; Hietz, P., Valencia, R., Joseph Wright, S., Strong radial variation in wood density follows a uniform pattern in two neotropical rain forests (2013) Funct. Ecol, 27, pp. 684-692; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Radial variation in wood specific gravity of tropical tree species differing in growth-mortality strategies (2014) Am. J. Bot, 101, pp. 803-811; Plourde, B.T., Boukili, V.K., Chazdon, R.L., Radial changes in wood specific gravity of tropical trees: Interand intraspecific variation during secondary succession (2015) Funct. Ecol, 29, pp. 111-120; Hillis, W.E., Secondary Changes in Wood (1977) In The Structure, Biosynthesis, and Degradation of Wood, 11, pp. 247-309. , Loewus, F., Runeckles, V.C., Eds.; Plenum Press: New York, NY, USA; Hillis, W.E., (1987) Heartwood and Tree Exudates, , Springer-Verlag: Berlin, Germany; Yang, K.C., (1990) The Ageing Process of Sapwood Ray Parenchyma Cells in Four Woody Species, , Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada; Royer, M., Stien, D., Beauchêne, J., Herbette, G., McLean, J.P., Thibaut, A., Thibaut, B., Extractives of the tropical wood wallaba (Eperua falcata Aubl.) as natural anti-swelling agents (2010) Holzforschung, 64, pp. 211-215; Amusant, N., Moretti, C., Richard, B., Prost, E., Nuzillard, J.M., Thévenon, M.F., Chemical compounds from Eperua falcata and Eperua grandiflora heartwood and their biological activities against wood destroying fungus (Coriolus versicolor) (2006) Holz Roh Werkst, 65, pp. 23-28; Lehnebach, R., (2015) Variabilité Ontogénique du Profil Ligneux chez les Légumineuses de Guyane Française, , Ph.D. Thesis, Université de Montpellier, Montpellier, France; Sabatier, D., Prévost, M.F., Quelques données sur la composition floristique, et la diversite des peuplements forestiers de guyane francaise (1990) Bois For. Trop, 219, pp. 31-55; Ter Steege, H., Pitman, N.C.A., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F., Castellanos, H., Continental-scale patterns of canopy tree composition and function across Amazonia (2006) Nature, 443, pp. 444-447; Ter Steege, H., Vaessen, R.W., Cárdenas-López, D., Sabatier, D., Antonelli, A., de Oliveira, S.M., Pitman, N.C.A., Salomão, R.P., The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa (2016) Sci. Rep, 6, p. 29549; Woodcock, D.W., Shier, A.D., Does canopy position affect wood specific gravity in temperate forest trees? (2003) Ann. Bot, 91, pp. 529-537; Osazuwa-Peters, O.L., Wright, S.J., Zanne, A.E., Linking wood traits to vital rates in tropical rainforest trees: Insights from comparing sapling and adult wood (2017) Am. J. Bot, 104, pp. 1464-1473; Favrichon, V., Classification des espèces arborées en groupes fonctionnels en vue de la réalisation d'un modèle de dynamique de peuplement en forêt guyanaise (1994) Rev. Ecol. Terre Vie, 49, pp. 379-403; (2016) R: A Language and Environment for Statistical Computing, , R Foundation for Statistical Computing: Vienna, Austria; Taylor, A.M., Gartner, B.L., Morrell, J.J., Heartwood formation and natural durability-A review (2002) Wood Fiber Sci, 34, pp. 587-611; Molino, J.F., Sabatier, D., Tree diversity in tropical rain forests: A validation of the intermediate disturbance hypothesis (2001) Science, 294, pp. 1702-1704; Vincent, G., Molino, J.-F., Marescot, L., Barkaoui, K., Sabatier, D., Freycon, V., Roelens, J.B., The relative importance of dispersal limitation and habitat preference in shaping spatial distribution of saplings in a tropical moist forest: A case study along a combination of hydromorphic and canopy disturbance gradients (2011) Ann. For. Sci, 68, pp. 357-370; Pinheiro, J., Bates, D., (2000) Mixed-Effects Models in S and S-PLUS, , Springer-Verlag: New York, NY, USA; Hurvich, C.M., Tsai, C.-L., Bias of the corrected AIC criterion for underfitted regression and time series models (1991) Biometrika, 78, pp. 499-509; Mazerolle, M.J., AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c), , https://cran.r-project.org/package=AICcmodavg, R Package Version 2.1-0. 2016 (accessed on 1 December 2018); Harrel, F.E.J., Hmisc: Harrell Miscellaneous, , https://CRAN.R-project.org/package=Hmisc, R Package Version 3.14-3. 2016 (accessed on 1 December 2018); De Mendiburu, F., (2016) Agricolae: Statistical Procedures for Agricultural Research, , https://CRAN.R-project.org/package=agricolae, (accessed on 1 December 2018). R Package Version 1.2-4; Morel, H., Lehnebach, R., Cigna, J., Ruelle, J., Nicolini, E., Beauchêne, J., Basic wood density variations of Parkia velutina Benoist, a long-lived heliophilic Neotropical rainforest tree (2018) Bois For. Trop, 335, pp. 59-69; Bossu, J., (2015) Potentiel de Bagassa guianensis et Cordia alliodora pour la Plantation en Zone Tropicale: Description d'une Stratégie de Croissance Optimale Alliant Vitesse de Croissance et Qualité du Bois, , Ph.D. Thesis, Université de Guyane, Kourou, French Guiana; Oldeman, R.A.A., (1974) L'Architecture de la Forêt Guyanaise, , Office de la Recherche Scientifique et Technique Outre-Mer: Paris, France; Anten, N.P.R., Schieving, F., The role of wood mass density and mechanical constraints in the economy of tree architecture (2010) Am. Nat, 175, p. 11; Larjavaara, M., Muller-Landau, H.C., Rethinking the value of high wood density (2010) Funct. Ecol, 24, pp. 701-705; Lachenbruch, B., McCulloh, K.A., Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant (2014) New Phyt, 204, pp. 747-764; Chapotin, S.M., Razanameharizaka, J.H., Holbrook, N.M., A biomechanical perspective on the role of large stem volume and high water content in baobab trees (Adansonia spp.; Bombacaceae) (2006) Am. J. Bot, 93, pp. 1251-1264; Kuo, M.-L., Arganbright, D.G., Cellular distribution of extractives in redwood and incense cedar-Part II Microscopic observation of the location of cell wall and cell cavity extractives (1980) Holzforschung, 34, pp. 41-47; Olson, J.R., Carpenter, S.B., Specific gravity, fibre length, and extractive content of young Paulownia (1985) Wood Fiber Sci, 17, pp. 428-438; Stringer, J.W., Olson, J.R., Radial and vertical variations in stem properties of juvenile black locust (Robinia pseudoacacia) (1987) Wood Fiber Sci, 19, pp. 59-67; Gierlinger, N., Wimmer, R., Radial distribution of heartwood extractives and lignin in mature European larch (2004) Wood Fiber Sci, 36, pp. 387-394; Bossu, J., Beauchêne, J., Estevez, Y., Duplais, C., Clair, B., New insights on wood dimensional stability influenced by secondary metabolites: The case of a fast-growing tropical species Bagassa guianensis Aubl (2016) PLoS ONE, 11; Amusant, N., Beauchene, J., Fournier, M., Janin, G., Thevenon, M.-F., Decay resistance in Dicorynia guianensis Amsh.: Analysis of inter-tree and intra-tree variability and relations with wood colour (2004) Ann. For. Sci, 61, pp. 373-380; Hillis, W.E., Distribution, properties and formation of some wood extractives (1971) Wood Sci. Tech, 5, pp. 272-289; Taylor, A., Freitag, C., Cadot, E., Morrell, J., Potential of near infrared spectroscopy to assess hot-watersoluble extractive content and decay resistance of a tropical hardwood (2008) Holz Roh Werkst, 66, pp. 107-111; Amusant, N., Nigg, M., Thibaut, B., Beauchene, J., Diversity of decay resistance strategies of durable tropical woods species: Bocoa prouacensis Aublet, Vouacapoua americana Aublet, Inga alba (Sw.) Wild (2014) Int. Biodeterior. Biodegrad, 94, pp. 103-108; Falster, D.S., Westoby, M., Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession (2005) Oikos, 111, pp. 57-66; Panshin, A.J., de Zeeuw, C., (1980) Textbook of Wood Technology: Structure, Identification, Properties, and Uses of the Commercial Woods of the United States and Canada, , McGraw-Hill: New York, NY, USA; Hernández, R.E., Influence of accessory substances, wood density and interlocked grain on the compressive properties of hardwoods (2007) Wood Sci. Tech, 41, pp. 249-265; Gherardi Hein, P.R., Tarcísio Lima, J., Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood (2012) Maderas. Cienc. Tecnol, 14, pp. 267-274; Cave, I.D., Walker, J.C.F., Stiffness of wood in fast-grown plantation softwoods: Theinfluence of microfibril angle (1994) For. Prod. J, 44, pp. 43-48; Bossu, J., Lehnebach, R., Corn, S., Regazzi, A., Beauchêne, J., Clair, B., Interlocked grain and density patterns in Bagassa guianensis: Changes with ontogeny and mechanical consequences for trees (2018) Trees, 32, pp. 1643-1655; Hart, J., Johnson, K., Production of decay-resistant sapwood in response to injury (1970) Wood Sci. Tech, 4, pp. 267-272; Boddy, L., Microenvironmental Aspects of Xylem Defenses to Wood Decay Fungi (1992) Defense Mechanisms of Woody Plants Against Fungi, pp. 96-132. , Blanchette, R.A., Biggs, A.R., Eds.; Springer: Berlin, Germany; Roszaini, K., Hale, M.D., Salmiah, U., In-vitro decay resistance of 12 malaysian broadleaf hardwood trees as a function of wood density and extractives compounds (2016) J. Trop. For. Sci, 28, pp. 533-540; Stamm, A.J., Density of wood substance, adsorption by wood, and permeability of wood (1929) J. Phys. Chem, 33, pp. 398-414 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 858  
Permanent link to this record
 

 
Author Taureau, F.; Robin, M.; Proisy, C.; Fromard, F.; Imbert, D.; Debaine, F. pdf  url
doi  openurl
  Title Mapping the mangrove forest canopy using spectral unmixing of very high spatial resolution satellite images Type Journal Article
  Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sens.  
  Volume 11 Issue 3 Pages 367  
  Keywords Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Remote sensing; Image resolution; Photography; Photomapping; Pixels; Remote sensing; Satellites; Vegetation; Forest structure; Guadeloupe; Hemispherical photographs; Mangrove; Mayotte; New Caledonia; Forestry  
  Abstract Despite the lowtree diversity and scarcity of the understory vegetation, the high morphological plasticity of mangrove trees induces, at the stand level, a very large variability of forest structures that need to be mapped for assessing the functioning of such complex ecosystems. Fully constrained linear spectral unmixing (FCLSU) of very high spatial resolution (VHSR) multispectral images was tested to fine-scale map mangrove zonations in terms of horizontal variation of forest structure. The study was carried out on three Pleiades-1A satellite images covering French island territories located in the Atlantic, Indian, and Pacific Oceans, namely Guadeloupe, Mayotte, and New Caledonia archipelagos. In each image, FCLSU was trained from the delineation of areas exclusively related to four components including either pure vegetation, soil (ferns included), water, or shadows. It was then applied to the whole mangrove cover imaged for each island and yielded the respective contributions of those four components for each image pixel. On the forest stand scale, the results interestingly indicated a close correlation between FCLSU-derived vegetation fractions and canopy closure estimated from hemispherical photographs R 2 = 0.95) and a weak relation with the Normalized Difference Vegetation Index (R 2 = 0.29). Classification of these fractions also offered the opportunity to detect and map horizontal patterns of mangrove structure in a given site. K-means classifications of fraction indeed showed a global view of mangrove structure organization in the three sites, complementary to the outputs obtained from spectral data analysis. Our findings suggest that the pixel intensity decomposition applied to VHSR multispectral satellite images can be a simple but valuable approach for (i) mangrove canopy monitoring and (ii) mangrove forest structure analysis in the perspective of assessing mangrove dynamics and productivity. As with Lidar-based surveys, these potential new mapping capabilities deserve further physically based interpretation of sunlight scattering mechanisms within forest canopy. © 2019 by the authors.  
  Address UMR Ecologie des Forêts de Guyane (EcoFoG), INRA, CNRS, Cirad, AgroParisTech, Université des Antilles, Université de Guyane, Kourou, French Guiana, 97310, France  
  Corporate Author Thesis  
  Publisher (down) Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20724292 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 February 2019; Correspondence Address: Taureau, F.; Université de Nantes, UMR CNRS 6554 Littoral Environnement Télédétection Géomatique, Campus TertreFrance; email: florent.taureau@univ-nantes.fr; Funding details: Université de Nantes; Funding text 1: Funding: A part of this study was funded by the French Coastal Conservancy Institute. It was conducted as part of the PhD work of Florent Taureau supported by the University of Nantes.; References: Duke, N.C., Mangrove Coast (2014) Encyclopedia of Marine Geosciences, pp. 1-17. , Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Berlin, Germany; Feller, I.C., Lovelock, C.E., Berger, U., McKee, K.L., Joye, S.B., Ball, M.C., Biocomplexity in Mangrove Ecosystems (2010) Annu. Rev. Mar. Sci, 2, pp. 395-417; Krauss, K.W., Lovelock, C.E., McKee, K.L., López-Hoffman, L., Ewe, S.M., Sousa, W.P., Environmental drivers in mangrove establishment and early development: A review (2008) Aquat. Bot, 89, pp. 105-127; Chapman, V.J., (1976) Mangrove Vegetation, , Cramer: Vaduz, Liechtenstein; Friess, D.A., Lee, S.Y., Primavera, J.H., Turning the tide on mangrove loss (2016) Mar. Pollut. Bull, 109, pp. 673-675; Alongi, D.M., Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change (2008) Estuar. Coast. Shelf Sci, 76, pp. 1-13; Bouillon, S., Borges, A.V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N.C., Kristensen, E., Rivera-Monroy, V.H., Mangrove production and carbon sinks: A revision of global budget estimates: Global mangrove carbon budgets (2008) Glob. Biogeochem. Cycles, p. 22; Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M., Mangroves among the most carbon-rich forests in the tropics (2011) Nat. Geosci, 4, pp. 293-297; Duke, N.C., Nagelkerken, I., Agardy, T., Wells, S., van Bochove, J.-W., (2014) The Importance of Mangroves to People: A Call to Action, , United Nations Environment ProgrammeWorld Conservation Monitoring Centre: Cambridge, UK; De Lacerda, L.D., (2010) Mangrove Ecosystems: Function and Management, , Springer: Berlin, Germany; Lee, S.Y., Primavera, J.H., Dahdouh-Guebas, F., McKee, K., Bosire, J.O., Cannicci, S., Diele, K., Koedam, N., Cyril Marchand Ecological role and services of tropical mangrove ecosystems: a reassessment: Reassessment of mangrove ecosystem services (2014) Glob. Ecol. Biogeogr, 23, pp. 726-743; Spalding, M., Kainuma, M., Collins, L., (2010) World Atlas of Mangroves, , Routledge: Abingdon, UK; (2007) The World's Mangroves 1980-2005: A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005, , Food and Agriculture Organization of the United Nations: Rome, Italy; Ellison, J.C., Vulnerability assessment of mangroves to climate change and sea-level rise impacts (2015) Wetl. Ecol. Manag, 23, pp. 115-137; Ellison, J., Zouh, I., Vulnerability to Climate Change of Mangroves: Assessment from Cameroon, Central Africa (2012) Biology, 1, pp. 617-638; Gilman, E.L., Ellison, J., Duke, N.C., Field, C., Threats to mangroves from climate change and adaptation options: A review (2008) Aquat. Bot, 89, pp. 237-250; Li, S., Meng, X., Ge, Z., Zhang, L., Evaluation of the threat from sea-level rise to the mangrove ecosystems in Tieshangang Bay, Southern China (2015) Ocean Coast. Manag, 109, pp. 1-8; Alongi, D.M., Present state and future of the world's mangrove forests (2002) Environ. Conserv, 29, pp. 331-349; Panta, M., (2003) Analisys of Forest Canopy Density and Factors Affecting It Using RS and GIS Techniques-A Case Study from Chitwan District of Nepal, , International Institue for Geo-Information Science and Earth Observation: Hengelosestraat, The Netherlands; Birnbaum, P., Canopy surface topography in a French Guiana forest and the folded forest theory (2001) Plant Ecol, 153, pp. 293-300; Lowman, M.D., Schowalter, T., Franklin, J., (2012) Methods in Forest Canopy Research, , University of California Press: Berkeley, CA, USA; Parker, G.G., Structure and microclimate of forest canopies (1995) Forest Canopies: A Review of Research on a Biological Frontier, pp. 73-106. , Lowman, M., Nadkarni, N., Eds.; Academic Press: San Diego, CA, USA; Frazer, G.W., Trofymow, J.A., Lertzman, K.P., (1997) A Method for Estimating Canopy Openness, Effective Leaf Area Index, and Photosynthetically Active Photon Flux Density Using Hemispherical Photography and Computerized Image Analysis Techniques, , Canadian Forest Service, Pacific Forestry Centre: Victoria, BC, Canada; Smith, M.-L., Anderson, J., Fladeland, M., Forest canopy structural properties (2008) Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach, pp. 179-196. , Springer: Berlin, Germany; Green, E.P., Clark, C.D., Mumby, P.J., Edwards, A.J., Ellis, A.C., Remote sensing techniques for mangrove mapping (1998) Int. J. Remote Sens, 19, pp. 935-956; Sari, S.P., Rosalina, D., Mapping and Monitoring of Mangrove Density Changes on tin Mining Area (2016) Procedia Environ. Sci, 33, pp. 436-442; Yuvaraj, E., Dharanirajan, K., Saravanan, N., Karpoorasundarapandian, N., (2014) Evaluation of Vegetation Density of the Mangrove Forest in South Andaman Island Using Remote Sensing and GIS Techniques, pp. 19-25. , International Science Congress Association: India; Garcia-Haro, F.J., Gilabert, M.A., Melia, J., Linear spectral mixture modelling to estimate vegetation amount from optical spectral data (1996) Int. J. Remote Sens, 17, pp. 3373-3400; Braun, M., Martin, H., Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany) (2003) Proceedings of the SPIE 10th International Symposium on Remote Sensing, , Barcelona, Spain, 8-12 September; Drake, N.A., Mackin, S., Settle, J.J., Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery (1999) Remote Sens. Environ, 68, pp. 12-25; Guerschman, J.P., Scarth, P.F., McVicar, T.R., Renzullo, L.J., Malthus, T.J., Stewart, J.B., Rickards, J.E., Trevithick, R., Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data (2015) Remote Sens. Environ, 161, pp. 12-26; Stagakis, S., Vanikiotis, T., Sykioti, O., Estimating forest species abundance through linear unmixing of CHRIS/PROBA imagery (2016) ISPRS J. Photogramm. Remote Sens, 119, pp. 79-89; Liu, T., Yang, X., Mapping vegetation in an urban area with stratified classification and multiple endmember spectral mixture analysis (2013) Remote Sens. Environ, 133, pp. 251-264; Silvan-Cardenas, J.L., Wang, L., Fully Constrained Linear Spectral Unmixing: Analytic Solution Using Fuzzy Sets (2010) IEEE Trans. Geosci. Remote Sens, 48, pp. 3992-4002; Souza, C., Mapping forest degradation in the Eastern Amazon from SPOT 4 through spectral mixture models (2003) Remote Sens. Environ, 87, pp. 494-506; Ji, M., Feng, J., Subpixel measurement of mangrove canopy closure via spectral mixture analysis (2011) Front. Earth Sci, 5, pp. 130-137; Tiner, R.W., Lang, M.W., Klemas, V.V., (2015) Remote Sensing of Wetlands: Applications and Advances, , CRC Press: Boca Raton, FL, USA; Haase, D., Jänicke, C., Wellmann, T., Front and back yard green analysis with subpixel vegetation fractions from earth observation data in a city (2019) Landsc. Urban Plan, 182, pp. 44-54; Dronova, I., Object-Based Image Analysis inWetland Research: A Review (2015) Remote Sens, 7, pp. 6380-6413; Fei, S.X., Shan, C.H., Hua, G.Z., Remote Sensing of Mangrove Wetlands Identification (2011) Procedia Environ. Sci, 10, pp. 2287-2293; Heumann, B.W., Satellite remote sensing of mangrove forests: Recent advances and future opportunities (2011) Prog. Phys. Geogr, 35, pp. 87-108; Proisy, C., Couteron, P., Fromard, F., Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images (2007) Remote Sens. Environ, 109, pp. 379-392; Imbert, D., Labbé, P., Rousteau, A., Hurricane damage and forest structure in Guadeloupe, French West Indies (1996) J. Trop. Ecol, 12, pp. 663-680; Herteman, M., Fromard, F., Lambs, L., Effects of pretreated domestic wastewater supplies on leaf pigment content, photosynthesis rate and growth of mangrove trees: A field study from Mayotte Island, SW Indian Ocean (2011) Ecol. Eng, 37, pp. 1283-1291; Cremades, C., (2010) Cartographie des Habitats Naturels des Mangroves de Mayotte, , Direction de l'Agriculture et de la Forêt Service Environnement et Forêt: Mamoudzou, Mayotte; Jeanson, M., (2009) Morphodynamique du Littoral de Mayotte: des Processus au Réseau de Surveillance, , Université du Littoral Côte d'Opale: Dunkerque, France; Marchand, C., Dumas, P., (2007) Typologies et Biodiversité des Mangroves de Nouvelle-Calédonie, , IRD: Nouméa, Nouvelle-Calédonie; Glatthorn, J., Beckschäfer, P., Standardizing the Protocol for Hemispherical Photographs: Accuracy Assessment of Binarization Algorithms (2014) PLoS ONE, 9; Betbeder, J., Nabucet, J., Pottier, E., Baudry, J., Corgne, S., Hubert-Moy, L., Detection and Characterization of Hedgerows Using TerraSAR-X Imagery (2014) Remote Sens, 6, pp. 3752-3769; Betbeder, J., Hubert-Moy, L., Burel, F., Corgne, S., Baudry, J., Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar (2015) Ecol. Indic, 52, pp. 545-557; Betbeder, J., Rapinel, S., Corgne, S., Pottier, E., Hubert-Moy, L., TerraSAR-X dual-pol time-series for mapping of wetland vegetation (2015) ISPRS J. Photogramm. Remote Sens, 107, pp. 90-98; (2013), Reference Book, eCognition Developer 8.9'; Trimble: Sunnyvale, CA, USA; Lobell, D.B., Asner, G.P., Law, B.E., Treuhaft, R.N., View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS (2002) Int. J. Remote Sens, 23, pp. 2247-2262; Viennois, G., Proisy, C., Feret, J.B., Prosperi, J., Sidik, F., Suhardjono; Rahmania, R., Longépé, N., Gaspar, P., Multitemporal Analysis of High-Spatial-Resolution Optical Satellite Imagery for Mangrove Species Mapping in Bali, Indonesia (2016) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens, 9, pp. 3680-3686; Adler-Golden, S.M., Matthew, M.W., Bernstein, L.S., Levine, R.Y., Berk, A., Richtsmeier, S.C., Acharya, P.K., Hoke, M.L., Atmospheric Correction for Short-wave Spectral Imagery Based on MODTRAN4 (1999) Soc. Photo-Opt. Instrum. Eng, 3753, pp. 61-70; Adeline, K.R.M., Chen, M., Briottet, X., Pang, S.K., Paparoditis, N., Shadow detection in very high spatial resolution aerial images: A comparative study (2013) ISPRS J. Photogramm. Remote Sens, 80, pp. 21-38; Heinz, D.C., Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery (2001) IEEE Trans. Geosci. Remote Sens, 39, pp. 529-545; Caliński, T., Harabasz, J., A dendrite method for cluster analysis (1974) Commun. Stat, 3, pp. 1-27; Asner, G.P., Warner, A.S., Canopy shadow in IKONOS satellite observations of tropical forests and savannas (2003) Remote Sens. Environ, 87, pp. 521-533; Dennison, P.E., Halligan, K.Q., Roberts, D.A., A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper (2004) Remote Sens. Environ, 93, pp. 359-367; Kuusk, A., The Hot Spot Effect in Plant Canopy Reflectance (1991) Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology, pp. 139-159. , Myneni, R.B., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany; Barbier, N., Proisy, C., Véga, C., Sabatier, D., Couteron, P., Bidirectional texture function of high resolution optical images of tropical forest: An approach using LiDAR hillshade simulations (2011) Remote Sens. Environ, 115, pp. 167-179; Fromard, F., Vega, C., Proisy, C., Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana (2004) A case study based on remote sensing data analyses and field surveys. Mar. Geol, 208, pp. 265-280; Ozdemir, I., Linear transformation to minimize the effects of variability in understory to estimate percent tree canopy cover using RapidEye data (2014) GIS Remote Sens, 51, pp. 288-300; Proisy, C., Féret, J.B., Lauret, N., Gastellu-Etchegorry, J.P., Mangrove Forest Dynamics Using Very High Spatial Resolution Optical Remote Sensing A2-Baghdadi, Nicolas (2016) Land Surface Remote Sensing in Urban and Coastal Areas, pp. 269-295. , Zribi, M., Ed.; Elsevier: Amsterdam, The Netherlands Approved no  
  Call Number EcoFoG @ webmaster @ Serial 861  
Permanent link to this record
 

 
Author Ruiz-González, M.X.; Leroy, C.; Dejean, A.; Gryta, H.; Jargeat, P.; Carrión, A.D.A.; Orivel, J. pdf  url
doi  openurl
  Title Do host plant and associated ant species affect microbial communities in myrmecophytes? Type Journal Article
  Year 2019 Publication Insects Abbreviated Journal Insects  
  Volume 10 Issue 11 Pages 391  
  Keywords Allomerus decemarticulatus; Allomerus octoarticulatus; Azteca sp; Cf; Cordia nodosa; Depilis; Domatia; Hirtella physophora; Microbial diversity  
  Abstract Ant-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus spp.  
  Address Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Daxuedonglu 100, Nanning, Guangxi 530005, China  
  Corporate Author Thesis  
  Publisher (down) Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20754450 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 18 November 2019; Correspondence Address: Ruiz-González, M.X.; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Ecuador; email: marioxruizgonzalez@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 896  
Permanent link to this record
 

 
Author Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.; Dejean, A.; Bonnafé, E.; Treilhou, M. pdf  url
doi  openurl
  Title The peptide venom composition of the fierce stinging ant tetraponera aethiops (formicidae: Pseudomyrmecinae) Type Journal Article
  Year 2019 Publication Toxins Abbreviated Journal Toxins  
  Volume 11 Issue 12 Pages 732  
  Keywords Defensive venom; Dimeric peptides; Peptidome; Tetraponera aethiops  
  Abstract In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC-MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome.  
  Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher (down) Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20726651 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 902  
Permanent link to this record
 

 
Author Privet, K.; Vedel, V.; Fortunel, C.; Orivel, J.; Martinez, Q.; Cerdan, A.; Baraloto, C.; Pétillon, J. pdf  url
doi  openurl
  Title Relative effciency of pitfall trapping vs. nocturnal hand collecting in assessing soil-dwelling spider diversity along a structural gradient of neotropical habitats Type Journal Article
  Year 2020 Publication Diversity Abbreviated Journal Diversity  
  Volume 12 Issue 2 Pages 81  
  Keywords Araneae; Diversity indices; Functional diversity; Guiana shield; Sampling methods; Species richness; Turnover; Araneae  
  Abstract Assessing spider diversity remains a great challenge, especially in tropical habitats where dozens of species can locally co-occur. Pitfall trapping is one of the most widely used techniques to collect spiders, but it suffers from several biases, and its accuracy likely varies with habitat complexity. In this study, we compared the efficiency of passive pitfall trapping versus active nocturnal hand collecting (\"HC) to capture low understory-dwelling spider taxonomical (morpho-species) and functional (hunting guilds) diversity along a structural gradient of habitats in French Guiana. We focused on four habitats describing a structural gradient: garden to the orchard to the forest edge to the undisturbed forest. Overall, estimated morpho-species richness and composition did not vary consistently between habitats, but abundances of ground-hunting spiders decreased significantly with increasing habitat complexity. We found habitat-dependence differences in taxonomic diversity between sampling strategies: NHC revealed higher diversity in the orchard, whereas pitfalls resulted in higher diversity in the forest. Species turnover resulted in high dissimilarity in species composition between habitats using either method. This study shows how pitfall trapping is influenced by habitat structure, rendering this sampling method incomplete for complex, tropical environments. However, pitfall traps remain a valuable component of inventories because they sample distinct assemblage of spiders. © 2020 by the authors.  
  Address International Center for Tropical Botany, Department of Biological Sciences, Florida International University, 11200 S.W. 8th Street, Miami, FL 33199, United States  
  Corporate Author Thesis  
  Publisher (down) Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 14242818 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 March 2020; Correspondence Address: Privet, K.; CNRS, Ecobio (Ecosystèmes, biodiversité, évolution), Université de RennesFrance; email: kprivet@hotmail.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 923  
Permanent link to this record
 

 
Author Laybros, A.; Aubry-Kientz, M.; Féret, J.-B.; Bedeau, C.; Brunaux, O.; Derroire, G.; Vincent, G. doi  openurl
  Title Quantitative airborne inventories in dense tropical forest using imaging spectroscopy Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sens.  
  Volume 12 Issue 10 Pages 1577  
  Keywords Hyperspectral; LiDAR; Species diversity; Tropical forest; Cost effectiveness; Discriminant analysis; Infrared devices; Infrared radiation; Logistic regression; Remote sensing; Tropics; Classification accuracy; Classification performance; Linear discriminant analysis; Operational applications; Regularized discriminant analysis; Remote sensing technology; Short wave infrared bands; Visible and near infrared; Forestry  
  Abstract Tropical forests have exceptional floristic diversity, but their characterization remains incomplete, in part due to the resource intensity of in-situ assessments. Remote sensing technologies can provide valuable, cost-effective, large-scale insights. This study investigates the combined use of airborne LiDAR and imaging spectroscopy to map tree species at landscape scale in French Guiana. Binary classifiers were developed for each of 20 species using linear discriminant analysis (LDA), regularized discriminant analysis (RDA) and logistic regression (LR). Complementing visible and near infrared (VNIR) spectral bands with short wave infrared (SWIR) bands improved the mean average classification accuracy of the target species from 56.1% to 79.6%. Increasing the number of non-focal species decreased the success rate of target species identification. Classification performance was not significantly affected by impurity rates (confusion between assigned classes) in the non-focal class (up to 5% of bias), provided that an adequate criterion was used for adjusting threshold probability assignment. A limited number of crowns (30 crowns) in each species class was sufficient to retrieve correct labels effectively. Overall canopy area of target species was strongly correlated to their basal area over 118 ha at 1.5 ha resolution, indicating that operational application of the method is a realistic prospect (R2 = 0.75 for six major commercial tree species). © 2020 by the authors.  
  Address Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana, 97379, France  
  Corporate Author Thesis  
  Publisher (down) Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20724292 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 969  
Permanent link to this record
 

 
Author Aili, S.R.; Touchard, A.; Hayward, R.; Robinson, S.D.; Pineda, S.S.; Lalagüe, H.; Mrinalini; Vetter, I.; Undheim, E.A.B.; Kini, R.M.; Escoubas, P.; Padula, M.P.; Myers, G.S.A.; Nicholson, G.M. doi  openurl
  Title An integrated proteomic and transcriptomic analysis reveals the venom complexity of the bullet ant Paraponera clavata Type Journal Article
  Year 2020 Publication Toxins Abbreviated Journal Toxins  
  Volume 12 Issue 5 Pages  
  Keywords DRG neurons; Hyaluronidase; Neurotoxins; Paraponeritoxin; Phospholipases; Rp-Hplc; alpha latrotoxin; ant venom; arginine kinase; cathepsin; contig; defensin 2; hyaluronidase; icarapin; metalloproteinase; neurotoxin; novel toxin like protein; phospholipase; phospholipase A2; poneratoxin; proteome; serine proteinase; transcriptome; unclassified drug; amino acid sequence; ant; Article; liquid chromatography-mass spectrometry; neurotoxicity; nonhuman; Paraponera clavata; protein expression; proteomics; sequence database; tandem mass spectrometry; transcriptomics; venom gland  
  Abstract A critical hurdle in ant venom proteomic investigations is the lack of databases to comprehensively and specifically identify the sequence and function of venom proteins and peptides. To resolve this, we used venom gland transcriptomics to generate a sequence database that was used to assign the tandem mass spectrometry (MS) fragmentation spectra of venom peptides and proteins to specific transcripts. This was performed alongside a shotgun liquid chromatography-mass spectrometry (LC-MS/MS) analysis of the venom to confirm that these assigned transcripts were expressed as proteins. Through the combined transcriptomic and proteomic investigation of Paraponera clavata venom, we identified four times the number of proteins previously identified using 2D-PAGE alone. In addition to this, by mining the transcriptomic data, we identified several novel peptide sequences for future pharmacological investigations, some of which conform with inhibitor cysteine knot motifs. These types of peptides have the potential to be developed into pharmaceutical or bioinsecticide peptides. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.  
  Address Faculty of Science, University of Nice, Nice, 06000, France  
  Corporate Author Thesis  
  Publisher (down) Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20726651 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 972  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: