toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Steidinger, B.S.; Crowther, T.W.; Liang, J.; Van Nuland, M.E.; Werner, G.D.A.; Reich, P.B.; Nabuurs, G.; de-Miguel, S.; Zhou, M.; Picard, N.; Herault, B.; Zhao, X.; Zhang, C.; Routh, D.; Peay, K.G.; Abegg, M.; Adou Yao, C.Y.; Alberti, G.; Almeyda Zambrano, A.; Alvarez-Davila, E.; Alvarez-Loayza, P.; Alves, L.F.; Ammer, C.; Antón-Fernández, C.; Araujo-Murakami, A.; Arroyo, L.; Avitabile, V.; Aymard, G.; Baker, T.; Bałazy, R.; Banki, O.; Barroso, J.; Bastian, M.; Bastin, J.-F.; Birigazzi, L.; Birnbaum, P.; Bitariho, R.; Boeckx, P.; Bongers, F.; Bouriaud, O.; Brancalion, P.H.S.; Brandl, S.; Brearley, F.Q.; Brienen, R.; Broadbent, E.; Bruelheide, H.; Bussotti, F.; Cazzolla Gatti, R.; Cesar, R.; Cesljar, G.; Chazdon, R.; Chen, H.Y.H.; Chisholm, C.; Cienciala, E.; Clark, C.J.; Clark, D.; Colletta, G.; Condit, R.; Coomes, D.; Cornejo Valverde, F.; Corral-Rivas, J.J.; Crim, P.; Cumming, J.; Dayanandan, S.; de Gasper, A.L.; Decuyper, M.; Derroire, G.; DeVries, B.; Djordjevic, I.; Iêda, A.; Dourdain, A.; Obiang, N.L.E.; Enquist, B.; Eyre, T.; Fandohan, A.B.; Fayle, T.M.; Feldpausch, T.R.; Finér, L.; Fischer, M.; Fletcher, C.; Fridman, J.; Frizzera, L.; Gamarra, J.G.P.; Gianelle, D.; Glick, H.B.; Harris, D.; Hector, A.; Hemp, A.; Hengeveld, G.; Herbohn, J.; Herold, M.; Hillers, A.; Honorio Coronado, E.N.; Huber, M.; Hui, C.; Cho, H.; Ibanez, T.; Jung, I.; Imai, N.; Jagodzinski, A.M.; Jaroszewicz, B.; Johannsen, V.; Joly, C.A.; Jucker, T.; Karminov, V.; Kartawinata, K.; Kearsley, E.; Kenfack, D.; Kennard, D.; Kepfer-Rojas, S.; Keppel, G.; Khan, M.L.; Killeen, T.; Kim, H.S.; Kitayama, K.; Köhl, M.; Korjus, H.; Kraxner, F.; Laarmann, D.; Lang, M.; Lewis, S.; Lu, H.; Lukina, N.; Maitner, B.; Malhi, Y.; Marcon, E.; Marimon, B.S.; Marimon-Junior, B.H.; Marshall, A.R.; Martin, E.; Martynenko, O.; Meave, J.A.; Melo-Cruz, O.; Mendoza, C.; Merow, C.; Monteagudo Mendoza, A.; Moreno, V.; Mukul, S.A.; Mundhenk, P.; Nava-Miranda, M.G.; Neill, D.; Neldner, V.; Nevenic, R.; Ngugi, M.; Niklaus, P.; Oleksyn, J.; Ontikov, P.; Ortiz-Malavasi, E.; Pan, Y.; Paquette, A.; Parada-Gutierrez, A.; Parfenova, E.; Park, M.; Parren, M.; Parthasarathy, N.; Peri, P.L.; Pfautsch, S.; Phillips, O.; Piedade, M.T.; Piotto, D.; Pitman, N.C.A.; Polo, I.; Poorter, L.; Poulsen, A.D.; Poulsen, J.R.; Pretzsch, H.; Ramirez Arevalo, F.; Restrepo-Correa, Z.; Rodeghiero, M.; Rolim, S.; Roopsind, A.; Rovero, F.; Rutishauser, E.; Saikia, P.; Saner, P.; Schall, P.; Schelhaas, M.-J.; Schepaschenko, D.; Scherer-Lorenzen, M.; Schmid, B.; Schöngart, J.; Searle, E.; Seben, V.; Serra-Diaz, J.M.; Salas-Eljatib, C.; Sheil, D.; Shvidenko, A.; Silva-Espejo, J.; Silveira, M.; Singh, J.; Sist, P.; Slik, F.; Sonké, B.; Souza, A.F.; Stereńczak, K.; Svenning, J.-C.; Svoboda, M.; Targhetta, N.; Tchebakova, N.; Steege, H.; Thomas, R.; Tikhonova, E.; Umunay, P.; Usoltsev, V.; Valladares, F.; van der Plas, F.; Van Do, T.; Vasquez Martinez, R.; Verbeeck, H.; Viana, H.; Vieira, S.; von Gadow, K.; Wang, H.-F.; Watson, J.; Westerlund, B.; Wiser, S.; Wittmann, F.; Wortel, V.; Zagt, R.; Zawila-Niedzwiecki, T.; Zhu, Z.-X.; Zo-Bi, I.C.; GFBI consortium url  doi
openurl 
  Title Climatic controls of decomposition drive the global biogeography of forest-tree symbioses Type Journal Article
  Year 2019 Publication Nature Abbreviated Journal Nature  
  Volume 569 Issue 7756 Pages 404-408  
  Keywords Fungi  
  Abstract The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools 1,2 , sequester carbon 3,4 and withstand the effects of climate change 5,6 . Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables—in particular, climatically controlled variation in the rate of decomposition—are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species 7 , constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers—which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)—are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.  
  Address Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway  
  Corporate Author Thesis  
  Publisher (down) Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00280836 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 872  
Permanent link to this record
 

 
Author Cantera, I.; Cilleros, K.; Valentini, A.; Cerdan, A.; Dejean, T.; Iribar, A.; Taberlet, P.; Vigouroux, R.; Brosse, S. pdf  url
doi  openurl
  Title Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 3085  
  Keywords  
  Abstract Environmental DNA (eDNA) metabarcoding is a promising tool to estimate aquatic biodiversity. It is based on the capture of DNA from a water sample. The sampled water volume, a crucial aspect for efficient species detection, has been empirically variable (ranging from few centiliters to tens of liters). This results in a high variability of sampling effort across studies, making comparisons difficult and raising uncertainties about the completeness of eDNA inventories. Our aim was to determine the sampling effort (filtered water volume) needed to get optimal inventories of fish assemblages in species-rich tropical streams and rivers using eDNA. Ten DNA replicates were collected in six Guianese sites (3 streams and 3 rivers), resulting in sampling efforts ranging from 17 to 340 liters of water. We show that sampling 34 liters of water detected more than 64% of the expected fish fauna and permitted to distinguish the fauna between sites and between ecosystem types (stream versus rivers). Above 68 liters, the number of detected species per site increased slightly, with a detection rate higher than 71%. Increasing sampling effort up to 340 liters provided little additional information, testifying that filtering 34 to 68 liters is sufficient to inventory most of the fauna in highly diverse tropical aquatic ecosystems. © 2019, The Author(s).  
  Address HYDRECO, Laboratoire Environnement de Petit Saut, B.P 823, Kourou Cedex, F-97388, French Guiana  
  Corporate Author Thesis  
  Publisher (down) Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 865  
Permanent link to this record
 

 
Author Fu, T.; Houel, E.; Amusant, N.; Touboul, D.; Genta-Jouve, G.; Della-Negra, S.; Fisher, G.L.; Brunelle, A.; Duplais, C. pdf  url
doi  openurl
  Title Biosynthetic investigation of γ-lactones in Sextonia rubra wood using in situ TOF-SIMS MS/MS imaging to localize and characterize biosynthetic intermediates Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 1928  
  Keywords  
  Abstract Molecular analysis by parallel tandem mass spectrometry (MS/MS) imaging contributes to the in situ characterization of biosynthetic intermediates which is crucial for deciphering the metabolic pathways in living organisms. We report the first use of TOF-SIMS MS/MS imaging for the cellular localization and characterization of biosynthetic intermediates of bioactive γ-lactones rubrynolide and rubrenolide in the Amazonian tree Sextonia rubra (Lauraceae). Five γ-lactones, including previously reported rubrynolide and rubrenolide, were isolated using a conventional approach and their structural characterization and localization at a lateral resolution of ~400 nm was later achieved using TOF-SIMS MS/MS imaging analysis. 2D/3D MS imaging at subcellular level reveals that putative biosynthetic γ-lactones intermediates are localized in the same cell types (ray parenchyma cells and oil cells) as rubrynolide and rubrenolide. Consequently, a revised metabolic pathway of rubrynolide was proposed, which involves the reaction between 2-hydroxysuccinic acid and 3-oxotetradecanoic acid, contrary to previous studies suggesting a single polyketide precursor. Our results provide insights into plant metabolite production in wood tissues and, overall, demonstrate that combining high spatial resolution TOF-SIMS imaging and MS/MS structural characterization offers new opportunities for studying molecular and cellular biochemistry in plants. © 2019, The Author(s).  
  Address Physical Electronics, Chanhassen, MN 55317, United States  
  Corporate Author Thesis  
  Publisher (down) Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 866  
Permanent link to this record
 

 
Author Rodrigues, A.M.S.; Eparvier, V.; Odonne, G.; Amusant, N.; Stien, D.; Houël, E. pdf  url
doi  openurl
  Title The antifungal potential of (Z)-ligustilide and the protective effect of eugenol demonstrated by a chemometric approach Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 8729  
  Keywords  
  Abstract Mankind is on the verge of a postantibiotic era. New concepts are needed in our battle to attenuate infectious diseases around the world and broad spectrum plant-inspired synergistic pharmaceutical preparations should find their place in the global fight against pathogenic microorganisms. To progress towards the discovery of potent antifungal agents against human pathologies, we embarked upon developing chemometric approach coupled with statistical design to unravel the origin of the anticandidal potential of a set of 66 essential oils (EOs). EOs were analyzed by GC-MS and tested against Candida albicans and C. parapsilosis (Minimal Inhibitory Concentration, MIC). An Orthogonal Partial Least Square (OPLS) analysis allowed us to identify six molecules presumably responsible for the anticandidal activity of the oils: (Z)-ligustilide, eugenol, eugenyl acetate, citral, thymol, and β-citronellol. These compounds were combined following a full factorial experimental design approach in order to optimize the anticandidal activity and selectivity index (SI = IC50(MRC5 cells)/MIC) through reconstituted mixtures. (Z)-Ligustilide and citral were the most active compounds, while (Z)-ligustilide and eugenol were the two main factors that most contributed to the increase of the SI. These two terpenes can, therefore, be used to construct bioinspired synergistic anticandidal mixtures. © 2019, The Author(s).  
  Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Cayenne, 97300, France  
  Corporate Author Thesis  
  Publisher (down) Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 876  
Permanent link to this record
 

 
Author Aubry-Kientz, M.; Rossi, V.; Cornu, G.; Wagner, F.; Herault, B. pdf  url
doi  openurl
  Title Temperature rising would slow down tropical forest dynamic in the Guiana Shield Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 10235  
  Keywords article; biomass; climate change; controlled study; diagnostic test accuracy study; driver; human; joint; mortality rate; precipitation; prediction; sensitivity analysis; simulation; statistics; tree growth; tropical rain forest; water stress  
  Abstract Increasing evidence shows that the functioning of the tropical forest biome is intimately related to the climate variability with some variables such as annual precipitation, temperature or seasonal water stress identified as key drivers of ecosystem dynamics. How tropical tree communities will respond to the future climate change is hard to predict primarily because several demographic processes act together to shape the forest ecosystem general behavior. To overcome this limitation, we used a joint individual-based model to simulate, over the next century, a tropical forest community experiencing the climate change expected in the Guiana Shield. The model is climate dependent: temperature, precipitation and water stress are used as predictors of the joint growth and mortality rates. We ran simulations for the next century using predictions of the IPCC 5AR, building three different climate scenarios (optimistic RCP2.6, intermediate, pessimistic RCP8.5) and a control (current climate). The basal area, above-ground fresh biomass, quadratic diameter, tree growth and mortality rates were then computed as summary statistics to characterize the resulting forest ecosystem. Whatever the scenario, all ecosystem process and structure variables exhibited decreasing values as compared to the control. A sensitivity analysis identified the temperature as the strongest climate driver of this behavior, highlighting a possible temperature-driven drop of 40% in average forest growth. This conclusion is alarming, as temperature rises have been consensually predicted by all climate scenarios of the IPCC 5AR. Our study highlights the potential slow-down danger that tropical forests will face in the Guiana Shield during the next century. © 2019, The Author(s).  
  Address Institut National Polytechnique Félix Houphouët-Boigny (INP-HB), Yamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher (down) Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 878  
Permanent link to this record
 

 
Author Vleminckx, J.; Schimann, H.; Decaëns, T.; Fichaux, M.; Vedel, V.; Jaouen, G.; Roy, M.; Lapied, E.; Engel, J.; Dourdain, A.; Petronelli, P.; Orivel, J.; Baraloto, C. pdf  doi
openurl 
  Title Coordinated community structure among trees, fungi and invertebrate groups in Amazonian rainforests Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 11337  
  Keywords  
  Abstract Little is known regarding how trophic interactions shape community assembly in tropical forests. Here we assess multi-taxonomic community assembly rules using a rare standardized coordinated inventory comprising exhaustive surveys of five highly-diverse taxonomic groups exerting key ecological functions: trees, fungi, earthworms, ants and spiders. We sampled 36 1.9-ha plots from four remote locations in French Guiana including precise soil measurements, and we tested whether species turnover was coordinated among groups across geographic and edaphic gradients. All species group pairs exhibited significant compositional associations that were independent from soil conditions. For some of the pairs, associations were also partly explained by soil properties, especially soil phosphorus availability. Our study provides evidence for coordinated turnover among taxonomic groups beyond simple relationships with environmental factors, thereby refining our understanding regarding the nature of interactions occurring among these ecologically important groups. © 2019, The Author(s).  
  Address CIRAD, UMR Ecologie des Forêts de Guyane, Campus agronomique, BP 316, Kourou Cedex, 97379, France  
  Corporate Author Thesis  
  Publisher (down) Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 879  
Permanent link to this record
 

 
Author Seibold, Sebastien ; Rammer, Werner ; Hothorn, Torsten ; Seidl, Rupert ; Ulyshen, Michael ; Lorz, Janina ; Cadotte, Marc ; Lindenmayer, David ; Adhikari, Yagya ; Aragón, Roxana ; Bae, Soyeon ; Baldrian, Petr ; Barimani Varandi, Hassan ; Barlow, Jos ; Bässler, Clauss ; Beauchêne, Jacques ; and all ................... doi  openurl
  Title The contribution of insects to global forest deadwood decomposition Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal  
  Volume 597 Issue 7874 Pages 77-81  
  Keywords  
  Abstract The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.  
  Address  
  Corporate Author Thesis  
  Publisher (down) NATURE PUBLISHING GROUP Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1046  
Permanent link to this record
 

 
Author Migliavacca, Mirco ; Musavi, Talie ; Mahecha, Miguel D. ; Nelson, Jacob A. ; Knauer, Jurgen ; Baldocchi, Dennis D. ; Perez-Priego, Oscar ; Christiansen, Rune ; Peters, Jonas ; Anderson, Karen ; Bahn, Michael ; Black, T. Andrew ; Blanken, Peter D. ; and all .................. doi  openurl
  Title The three major axes of terrestrial ecosystem function Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal  
  Volume 598 Issue 7881 Pages 468-472  
  Keywords  
  Abstract The leaf economics spectrum1,2 and the global spectrum of plant forms and functions3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species2. Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities4. However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability4,5. Here we derive a set of ecosystem functions6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range o  
  Address  
  Corporate Author Thesis  
  Publisher (down) Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1044  
Permanent link to this record
 

 
Author Duplais, Christophe ; Sarou-Kanian, Vincent ; Massiot, Dominique ; Hassan, Alia ; Perrone, Barbara ; Estevez, Yannick ; Wertz, John; Martineau, Estelle ; Farjon, Jonathan ; Giraudeau, Patrick, Moreau, Carrie S. doi  openurl
  Title Gut bacteria are essential for normal cutile development in herbivorous turtle ants Type Journal Article
  Year 2021 Publication Nature Communication Abbreviated Journal  
  Volume 12 Issue Pages 1-6  
  Keywords  
  Abstract Across the evolutionary history of insects, the shift from nitrogen-rich carnivore/omnivore diets to nitrogen-poor herbivorous diets was made possible through symbiosis with microbes. The herbivorous turtle ants Cephalotes possess a conserved gut microbiome which enriches the nutrient composition by recycling nitrogen-rich metabolic waste to increase the production of amino acids. This enrichment is assumed to benefit the host, but we do not know to what extent. To gain insights into nitrogen assimilation in the ant cuticle we use gut bacterial manipulation, 15N isotopic enrichment, isotope-ratio mass spectrometry, and 15N nuclear magnetic resonance spectroscopy to demonstrate that gut bacteria contribute to the formation of proteins, catecholamine cross-linkers, and chitin in the cuticle. This study identifies the cuticular components which are nitrogen-enriched by gut bacteria, highlighting the role of symbionts in insect evolution, and provides a framework for understanding the nitrogen flow from nutrients through bacteria into the insect cuticle.  
  Address  
  Corporate Author Thesis  
  Publisher (down) NATURE PUBLISHING GROUP Place of Publication Editor  
  Language Anglais Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1005  
Permanent link to this record
 

 
Author Agrawal, Anurag A. ; Boroczky, Katalin ; Haribal, Meena ; Hastings, Amy P. ; White, Ronald, A. ; Jiang, Ren-Wang ; Duplais, Christophe doi  openurl
  Title Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds Type Journal Article
  Year 2021 Publication PNAS Abbreviated Journal  
  Volume 118 Issue 16 Pages e2024463118  
  Keywords  
  Abstract For highly specialized insect herbivores, plant chemical defenses are often co-opted as cues for oviposition and sequestration. In such interactions, can plants evolve novel defenses, pushing herbivores to trade off benefits of specialization with costs of coping with toxins? We tested how variation in milkweed toxins (cardenolides) impacted monarch butterfly ( Danaus plexippus ) growth, sequestration, and oviposition when consuming tropical milkweed ( Asclepias curassavica ), one of two critical host plants worldwide. The most abundant leaf toxin, highly apolar and thiazolidine ring–containing voruscharin, accounted for 40% of leaf cardenolides, negatively predicted caterpillar growth, and was not sequestered. Using whole plants and purified voruscharin, we show that monarch caterpillars convert voruscharin to calotropin and calactin in vivo, imposing a burden on growth. As shown by in vitro experiments, this conversion is facilitated by temperature and alkaline pH. We next employed toxin-target site experiments with isolated cardenolides and the monarch’s neural Na + /K + -ATPase, revealing that voruscharin is highly inhibitory compared with several standards and sequestered cardenolides. The monarch’s typical >50-fold enhanced resistance to cardenolides compared with sensitive animals was absent for voruscharin, suggesting highly specific plant defense. Finally, oviposition was greatest on intermediate cardenolide plants, supporting the notion of a trade-off between benefits and costs of sequestration for this highly specialized herbivore. There is apparently ample opportunity for continued coevolution between monarchs and milkweeds, although the diffuse nature of the interaction, due to migration and interaction with multiple milkweeds, may limit the ability of monarchs to counteradapt.  
  Address  
  Corporate Author Thesis  
  Publisher (down) National Academy of Sciences Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1014  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: