toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lehnebach, R.; Beyer, R.; Letort, V.; Heuret, P. pdf  doi
openurl 
  Title The pipe model theory half a century on: a review Type Journal Article
  Year 2018 Publication (up) Annals of Botany Abbreviated Journal  
  Volume 121 Issue 5 Pages 773-795  
  Keywords  
  Abstract BackgroundMore than a half century ago, Shinozaki et al. (Shinozaki K, Yoda K, Hozumi K, Kira T. 1964a. A quantitative analysis of plant form – the pipe model theory. I. Basic analyses. Japanese Journal of Ecology B: 97–105) proposed an elegant conceptual framework, the pipe model theory (PMT), to interpret the observed linear relationship between the amount of stem tissue and corresponding supported leaves. The PMT brought a satisfactory answer to two vividly debated problems that were unresolved at the moment of its publication: (1) What determines tree form and which rules drive biomass allocation to the foliar versus stem compartments in plants? (2) How can foliar area or mass in an individual plant, in a stand or at even larger scales be estimated? Since its initial formulation, the PMT has been reinterpreted and used in applications, and has undoubtedly become an important milestone in the mathematical interpretation of plant form and functioning.ScopeThis article aims to review the PMT by going back to its initial formulation, stating its explicit and implicit properties and discussing them in the light of current biological knowledge and experimental evidence in order to identify the validity and range of applicability of the theory. We also discuss the use of the theory in tree biomechanics and hydraulics as well as in functional–structural plant modelling.ConclusionsScrutinizing the PMT in the light of modern biological knowledge revealed that most of its properties are not valid as a general rule. The hydraulic framework derived from the PMT has attracted much more attention than its mechanical counterpart and implies that only the conductive portion of a stem cross-section should be proportional to the supported foliage amount rather than the whole of it. The facts that this conductive portion is experimentally difficult to measure and varies with environmental conditions and tree ontogeny might cause the commonly reported non-linear relationships between foliage and stem metrics. Nevertheless, the PMT can still be considered as a portfolio of properties providing a unified framework to integrate and analyse functional–structural relationships.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0305-7364 ISBN Medium  
  Area Expedition Conference  
  Notes 10.1093/aob/mcx194 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 801  
Permanent link to this record
 

 
Author Lehnebach, R.; Beyer, R.; Letort, V.; Heuret, P. doi  openurl
  Title Corrigendum: The pipe model theory half a century on: A review (Annals of Botany DOI: 10.1093/aob/mcx194) Type Journal Article
  Year 2018 Publication (up) Annals of Botany Abbreviated Journal Annals of Botany  
  Volume 121 Issue 7 Pages 1427  
  Keywords  
  Abstract There was an error in the affiliations of Véronique Letort. The correct affiliation is Laboratory of Mathematics in Interaction with Computer Science (MICS), CentraleSupélec, France The online paper has been corrected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 July 2018 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 810  
Permanent link to this record
 

 
Author Scotti, I. openurl 
  Title Adaptive potential in forest tree populations: what is it, and how can we measure it? Type Journal Article
  Year 2010 Publication (up) Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue 8 Pages 801  
  Keywords  
  Abstract  
  Address INRA, Unite Mixte Rech Ecol Forets Guyane EcoFoG, F-97387 Kourou, France, Email: ivan.scotti@ecofog.gf  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283594400002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 21  
Permanent link to this record
 

 
Author Bremaud, I.; Minato, K.; Langbour, P.; Thibaut, B. openurl 
  Title Physico-chemical indicators of inter-specific variability in vibration damping of wood Type Journal Article
  Year 2010 Publication (up) Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue 7 Pages 707  
  Keywords damping coefficient; diversity of woods; extractives; physical properties; vibrational properties  
  Abstract The vibration damping coefficient (tan delta) of wood is an important property for acoustical uses, including musical instruments. Current difficulties in the availability of some of the preferred species call for diversification, but this comes up against the lack of systematic damping coefficient data. Keeping in mind the possible factors affecting tans, could we predict its variations between species, by using indicators that are either easily measured and/or readily available for many species? Vibrational properties, equilibrium moisture content and colorimetric parameters were assessed on 94 wood types belonging to 76 species. Experimental results were then related to data on chemical contents and physical properties from the CIRAD database. The “standard” relationship between tan delta and specific modulus of elasticity (E'/rho) explained only half of the variations. Deviations from this trend were correlated to extractives content, yet effects were not directly quantitative. Damping deviations were also correlated to colour and moisture-related properties, especially so with fibre saturation point. By taking into account a combination of moisture-related properties, colour – or extractives content, and the “standard” relationship between tans and E'/rho, we could propose simple predictive models which explain up to 89% of observed variations in tan delta between 48 species.  
  Address [Bremaud, Iris] Univ Montpellier 2, Lab Mecan & Genie Civil, CNRS, F-34095 Montpellier 5, France, Email: iris_bremaud@hotmail.com  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000283532000007 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 23  
Permanent link to this record
 

 
Author Coste, S.; Baraloto, C.; Leroy, C.; Marcon, E.; Renaud, A.; Richardson, A.D.; Roggy, J.C.; Schimann, H.; Uddling, J.; Herault, B. openurl 
  Title Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana Type Journal Article
  Year 2010 Publication (up) Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue 6 Pages 607  
  Keywords chlorophyll estimate; model calibration; homographic functions; neotropical trees  
  Abstract Chlorophyll meters such as the SPAD-502 offer a simple, inexpensive and rapid method to estimate foliar chlorophyll content. However, values provided by SPAD-502 are unitless and require empirical calibrations between SPAD units and extracted chlorophyll values. Leaves of 13 tree species from the tropical rain forest in French Guiana were sampled to select the most appropriate calibration model among the often-used linear, polynomial and exponential models, in addition to a novel homographic model that has a natural asymptote. The homographic model best accurately predicted total chlorophyll content (mu g cm(-2)) from SPAD units (R-2 = 0.89). Interspecific differences in the homographic model parameters explain less than 7% of the variation in chlorophyll content in our data set. The utility of the general homographic model for a variety of research and management applications clearly outweighs the slight loss of model accuracy due to the abandon of the species' effect.  
  Address [Herault, Bruno] Univ Antilles Guyane, Unite Mixte Rech Ecol Forets Guyane, Kourou, France, Email: bruno.herault@ecofog.gf  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282350300007 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 40  
Permanent link to this record
 

 
Author Jaouen, G.; Fournier, M.; Almeras, T. openurl 
  Title Thigmomorphogenesis versus light in biomechanical growth strategies of saplings of two tropical rain forest tree species Type Journal Article
  Year 2010 Publication (up) Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue 2 Pages 211  
  Keywords biomechanics; thigmomorphogenesis; height growth strategies; tropical rain forest; French Guiana  
  Abstract In the dense tropical rainforest understorey, saplings exhibit different growth strategies aiming at reaching light levels better fitting their ecology. Investing mainly in height growth, at the expense of their width, a lot are close to mechanical instability. Tachigali melinonii, a long living heliophilic tree species, is frequently observed to be extremely slender and supported by neighbours. Such observations suggest an active growth control through the perception of mechanical environment. Mechanical environment or light availability, which one is the most influent on growth and slenderness (H/D)? To test this question, we recorded growth of control and staked saplings of two species with contrasting habits and ecology: T. melinonii, and Dicorynia guianensis, along a natural light gradient. Dicorynia, the more stable, responded more clearly to the staking treatment, showing slenderness increase when light is available, whereas for Tachigali, only light availability governed growth. For Tachigali, growth allocation is mainly governed by light availability and ontogeny, whereas Dicorynia is probably similar to the average tree strategy, using the thigmomorphogenetic physiological process to control its stability.  
  Address [Jaouen, Gaelle; Almeras, Tancrede] Univ Antilles Guyane, INRA, CNRS,Cirad, Unite Mixte Rech Ecol Forets Guyane,AgroParisTech, Kourou 97379, French Guiana, Email: gaelle.jaouen@ecofog.gf  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276507100012 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 61  
Permanent link to this record
 

 
Author Baraloto, C.; Marcon, E.; Morneau, F.; Pavoine, S.; Roggy, J.C. openurl 
  Title Integrating functional diversity into tropical forest plantation designs to study ecosystem processes Type Journal Article
  Year 2010 Publication (up) Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 67 Issue 3 Pages 303  
  Keywords complementarity; ecosystem function; functional groups; leaf economics spectrum; nitrogen fixation; quadratic entropy  
  Abstract The elucidation of relationships between biodiversity and ecosystem processes has been limited by the definition of metrics of biodiversity and their integration into experimental design. Functional trait screening can strengthen the performance of these designs. We suggest the use of Rao's quadratic entropy to measure both functional diversity and phylogenetic diversity of species mixtures proposed for an experimental design, and demonstrate how they can provide complementary information. We also present an index assessing the statistical performance of these independent variables in different experimental designs. Measurement of independent variables as continuous vs. discrete variables reduces statistical performance, but improves the model by quantifying species differences masked by group assignments. To illustrate these advances, we present an example from a tropical forest tree community in which we screened 38 species for nine functional traits. The proposed TropiDEP design is based on the relative orthogonality of two multivariate trait axes defined using principal component analysis. We propose that independent variables describing functional diversity might be grouped to calculate independent variables describing suites of different traits with potentially different effects on particular ecosystem processes. In other systems these axes may differ from those reported here, yet the methods of analysis integrating functional and phylogenetic diversity into experimental design could be universal.  
  Address [Baraloto, Christopher; Roggy, Jean-Christophe] INRA, UMR Ecol Forets Guyane, Kourou, French Guiana, Email: chris.baraloto@ecofog.gf  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000276507800004 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 62  
Permanent link to this record
 

 
Author Roggy, J.C.; Nicolini, E.; Imbert, P.; Caraglio, Y.; Bosc, A.; Heuret, P. openurl 
  Title Links between tree structure and functional leaf traits in the tropical forest tree Dicorynia guianensis Amshoff (Caesalpiniaceae) Type Journal Article
  Year 2005 Publication (up) Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 62 Issue 6 Pages 553-564  
  Keywords Dicorynia guianensis; leaf structure; functional leaf traits; plasticity; tree structure  
  Abstract This study looked at the interactive effects of tree architectural stage of development (ASD) and light availability on different plant traits (growth parameters, leaf morpho-anatomy and photosynthetic capacities) in the tropical species Dicorynia guianensis. A qualitative architectural analysis was used to categorize tree individuals sampled along a natural light gradient. The results show that some traits could have an ASD-dependence at the whole plant and leaf level without control of light. The changes observed relate to vigour thresholds the plant has to reach to shift from one ASD to another (i.e., the number of nodes and the internodes length per Growth Unit). Light conditions do not modify these thresholds but may modify the time they are crossed. Tree height was found strongly modulated by light conditions; hence, at a similar height, individuals may belong to different ASD. At the functional level, a decrease in N-m, and A(maxm) was observed with increasing light availability, while N-a increased and A(maxa) remained unaffected. An ASD effect was also observed on Amaxa and LMA but not on Amaxm. These results demonstrated a weak ability of photosynthetic plasticity in response to light conditions, and that variations of leaf photosynthetic variables according to ASD can be explained by modifications in leaf nitrogen and LMA. Questions on the reliability of a height-based sampling strategy for evaluating the phenotypic plasticity of trees in relation to light conditions are raised.  
  Address INRA, Ecol Forets Guyane, ENGREF, UMR CIRAD, F-97387 Kourou, Guyane Francais, France, Email: roggy.j@cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000232084400009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 229  
Permanent link to this record
 

 
Author Gourlet-Fleury, S.; Blanc, L.; Picard, N.; Sist, P.; Dick, J.; Nasi, R.; Swaine, M.D.; Forni, E. openurl 
  Title Grouping species for predicting mixed tropical forest dynamics: looking for a strategy Type Journal Article
  Year 2005 Publication (up) Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 62 Issue 8 Pages 785-796  
  Keywords cross-comparisons; functional groups; modelling strategy; species classifications  
  Abstract The high species diversity of mixed tropical forests hinders the development of forest dynamic models. A solution commonly adopted is to cluster species in groups. There are various methods for grouping species that can be linked to three strategies (i) the ecological subjective strategy, (ii) the ecological data-driven strategy, and (iii) the dynamic process strategy. In the first two strategies a species will be assigned to a single group while in the latter strategy, a specific grouping is defined for each process of population dynamics ( typically based on recruitment, growth, mortality). Little congruency or convergence is observed in the literature between any two classifications of species. This may be explained by the independence between the sets of tree characters used to build species groups, or by the intra-specific variability of these characters. We therefore recommend the dynamic process strategy as the most convenient strategy for building groups of species.  
  Address Cirad Foret, F-34398 Montpellier, France, Email: sylvie.gourlet-fleury@cirad.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000233972500001 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 228  
Permanent link to this record
 

 
Author Coste, S.; Roggy, J.C.; Garraud, L.; Heuret, P.; Nicolini, E.; Dreyer, E. openurl 
  Title Does ontogeny modulate irradiance-elicited plasticity of leaf traits in saplings of rain-forest tree species? A test with Dicorynia guianensis and Tachigali melinonii (Fabaceae, Caesalpinioideae) Type Journal Article
  Year 2009 Publication (up) Annals of Forest Science Abbreviated Journal Ann. For. Sci.  
  Volume 66 Issue 7 Pages 701-709  
  Keywords plant architecture; phenotypic plasticity; photosynthetic capacity; leaf structure; tropical rain forest  
  Abstract Irradiance elicits a large plasticity in leaf traits, but little is known about the modulation of this plasticity by ontogeny. Interactive effects of relative irradiance and ontogeny were assessed on leaf traits for two tropical rainforest tree species: Dicorynia guianensis Amshoff and Tachigali melinonii (Harms) Barneby (Fabaceae, Caesalpinioideae). Eleven morphological and physiological leaf traits, relative to photosynthetic performance, were measured on saplings at three different architectural development stages (ASD 1, 2 and 3) and used to derive composite traits like photosynthetic N-use efficiency. Measurements were made along a natural irradiance gradient. The effect of ASD was very visible and differed between the two species. For Dicorynia guianensis, only leaf mass-per-area (LMA) significantly increased with ASDs whereas for Tachigali melinonii, almost all traits were affected by ASD: LMA, leaf N content and photosynthetic capacity increased from ASD 1 to ASD 3. Photosynthetic N-use-efficiency was not affected by ASD in any species. Leaf traits were severely modulated by irradiance, whereas the degree of plasticity was very similar among ASDs. Only few interactions were detected between irradiance and ASD, for leaf thickness, carbon content, and the ratio Chl/N in T. melinonii and for photosynthetic capacity in D. guianensis. We conclude that ontogenic development and irradiance-elicited plasticity modulated leaf traits, with almost no interaction, i.e., the degree of irradiance-elicited plasticity was stable across development stages and independent of ontogeny in these two species, at least in the early stages of development assessed here.  
  Address [Dreyer, Erwin] INRA, UMR Ecol & Ecophysiol Forestieres 1137, F-54280 Champenoux, France, Email: dreyer@nancy.inra.fr  
  Corporate Author Thesis  
  Publisher EDP SCIENCES S A Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-4560 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000270906600009 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 100  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: