toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Houadria, M.; Salas-Lopez, A.; Orivel, J.; Blüthgen, N.; Menzel, F. doi  openurl
  Title Dietary and Temporal Niche Differentiation in Tropical Ants-Can They Explain Local Ant Coexistence? Type Journal Article
  Year 2015 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 47 Issue 2 Pages 208-217  
  Keywords Ants; Baiting; Dietary specialization; Functional traits; Niche breadth; Partitioning; Temporal distribution  
  Abstract How species with similar ecological requirements avoid competitive exclusion remains contentious, especially in the species-rich tropics. Niche differentiation has been proposed as a major mechanism for species coexistence. However, different niche dimensions must be studied simultaneously to assess their combined effects on diversity and composition of a community. In most terrestrial ecosystems, ants are among the most abundant and ubiquitous animals. Since they display direct, aggressive competition and often competitively displace subordinate species from resources, niche differentiation may be especially relevant among ants. We studied temporal and trophic niche differentiation in a ground ant community in a forest fragment in French Guiana. Different baits were presented during day and night to assess the temporal and dietary niches of the local species. They represented natural food resources such as sugars, carrion, excrements, seeds, and live prey. In addition, pitfalls provided a background measure of ant diversity. The communities attracted to the different baits significantly differed from each other, and even less attractive baits yielded additional species. We detected species specialized on living grasshoppers, sucrose, seeds, or dead insects. Community-level differences between day and night were larger than those between baits, and many species were temporally specialized. In contrast to commonness, foraging efficiency of species was correlated to food specialization. We conclude that many ant species occupy different temporal or dietary niches. However, for many generalized species, the dietary, and temporal niche differentiation brought forward through our sampling effort, cannot alone explain their coexistence.  
  Address Department of Biology, Technical University of DarmstadtDarmstadt, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 March 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 585  
Permanent link to this record
 

 
Author Dezerald, O.; Céréghino, R.; Corbara, B.; Dejean, A.; Leroy, C. url  openurl
  Title Temperature: Diet Interactions Affect Survival through Foraging Behavior in a Bromeliad-Dwelling Predator Type Journal Article
  Year 2015 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 47 Issue 5 Pages 569-578  
  Keywords Toxorhynchites haemorrhoidalis; Biocontrol agent; Development; French Guiana; Selective feeding behavior; Tank bromeliad  
  Abstract Temperature, food quantity and quality play important roles in insect growth and survival, influencing population dynamics as well as interactions with other community members. However, the interaction between temperature and diet and its ecological consequences have been poorly documented. Toxorhynchites are well-known biocontrol agents for container-inhabiting mosquito larvae. We found that Toxorhynchites haemorrhoidalis larvae (Diptera: Culicidae) inhabiting water-filled rosettes of tank bromeliads catch and eat prey of both aquatic (mosquito larvae) and terrestrial origin (ants), using distinct predatory methods. They carried out frontal attacks on ants, but ambushed mosquito larvae. In choice tests, T. haemorrhoidalis favored terrestrial prey. Temperature had a significant effect on predator development and survival through its interaction with diet, but did not alter the preference for ants. T. haemorrhoidalis larvae emerged quickly when fed only mosquito larvae, whereas all individuals died before pupation when fed only ants. We conclude that behavioral factors (i.e., attraction to ants that disturb the surface of the water) overtake physiological factors (i.e., the adverse outcome of elevated temperature and an ant-based diet) in determining a predator's response to temperature:diet interactions. Finally, because T. haemorrhoidalis larvae preferentially feed on terrestrial insects in tank bromeliads, mosquito larvae may indirectly benefit from predation release. © 2015 Association for Tropical Biology and Conservation Inc.  
  Address UMR AMAP (botAnique et Modelisation de l'Architecture des Plantes et des vegetations), IRD, Boulevard de la Lironde, TA A-51/PS2, Montpellier Cedex 5, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 17 September 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 624  
Permanent link to this record
 

 
Author Roy, M.; Schimann, H.; Braga-Neto, R.; Da Silva, R.A.E.; Duque, J.; Frame, D.; Wartchow, F.; Neves, M.A. url  openurl
  Title Diversity and Distribution of Ectomycorrhizal Fungi from Amazonian Lowland White-sand Forests in Brazil and French Guiana Type Journal Article
  Year 2016 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 48 Issue 1 Pages 90-100  
  Keywords campina; campinarana; Amanitaceae; Amanitaceae; Boletaceae; Boletaceae; Campina; Campinarana; Herbarium; Herbário; Russulaceae; Russulaceae  
  Abstract White-sand forests are thought to host many ectomycorrhizal fungi, as demonstrated by the numerous fruiting body collections made by Rolf Singer in the lower Rio Negro in the late 1970s. Despite recognition of the importance of ectomycorrhizal fungi in white-sand forests, there has not yet been a systematic examination of diversity and taxonomic composition across white-sand forests, or more widely across lowland Amazonian forests. In an effort to broaden our view of ectomycorrhizal fungal diversity and distribution on white-sand forests, we collected ectomycorrhizal fruiting bodies in 10 plots of white-sand forests in Brazil and French Guiana between 2012 and 2014. We collected 221 specimens and 62 morphospecies, from the 10 plots, confirming that all studied white-sand forests host ectomycorrhizal fungi. Additionally, we searched for taxa associated with white sands among specimens deposited in Brazilian herbaria. We report 1006 unique ectomycorrhizal specimen records in 18 Brazilian herbaria, of which 137 specimens and 64 species are reported from white-sand forests, mainly in the state of Amazonas, Brazil. Russulaceae and Amanitaceae were frequent in all habitats, and Cortinarius were more frequent on white sands. Our results highlight the high diversity and heterogeneity of ectomycorrhizal communities on white-sand forests, and the wide distribution of ectomycorrhizal fungi throughout Brazil, irrespective of soil type. © 2016 The Association for Tropical Biology and Conservation.  
  Address Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :2; Export Date: 12 February 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 658  
Permanent link to this record
 

 
Author Fine, P.V.A.; Baraloto, C. url  openurl
  Title Habitat Endemism in White-sand Forests: Insights into the Mechanisms of Lineage Diversification and Community Assembly of the Neotropical Flora Type Journal Article
  Year 2016 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 48 Issue 1 Pages 24-33  
  Keywords Amazon; Endemic; Functional traits; Habitat specialization; Niche conservatism; Speciation  
  Abstract White-sand forests represent natural laboratories of evolution over their long history throughout Amazonia and the Guiana Shield and pose significant physiological challenges to the plants and animals they host. The study of diversification in plant lineages comprising species endemic to white-sand forest can therefore give insights into processes of evolution and community assembly in tropical forests. In this article, we synthesize recent studies of white-sand forests to integrate patterns of plant species distribution with processes of lineage diversification and community assembly in the white-sand flora. We contrast lineages that have radiated uniquely in these habitats (e.g., Pagamea, Rubiaceae), with cosmopolitan lineages comprising specialists to white-sand forests and other habitats that may have arisen via ecological speciation across habitat gradients (e.g., Protium, Burseraceae). In both cases, similar suites of functional traits have evolved, including investment in dense, long-lived tissues that are well-defended structurally and chemically. White-sand endemics, therefore, play an important role in biodiversity conservation because they represent unique combinations of functional and phylogenetic diversity. Furthermore, white-sand endemics may respond differently than other tropical forest plant species to contemporary global changes because they comprise resilient functional types that may better withstand increased drought, temperature, and invasions of exotic pests in these regions. © 2016 The Association for Tropical Biology and Conservation.  
  Address Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :3; Export Date: 12 February 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 659  
Permanent link to this record
 

 
Author Guevara, J.E.; Damasco, G.; Baraloto, C.; Fine, P.V.A.; Peñuela, M.C.; Castilho, C.; Vincentini, A.; Cárdenas, D.; Wittmann, F.; Targhetta, N.; Phillips, O.; Stropp, J.; Amaral, I.; Maas, P.; Monteagudo, A.; Jimenez, E.M.; Thomas, R.; Brienen, R.; Duque, A.; Magnusson, W.; Ferreira, C.; Honorio, E.; de Almeida Matos, F.; Arevalo, F.R.; Engel, J.; Petronelli, P.; Vasquez, R.; ter Steege, H. url  openurl
  Title Low Phylogenetic Beta Diversity and Geographic Neo-endemism in Amazonian White-sand Forests Type Journal Article
  Year 2016 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 48 Issue 1 Pages 34-46  
  Keywords Amazon; Neo-endemism; Phylogenetic beta diversity; Recent diversification; White sands  
  Abstract Over the past three decades, many small-scale floristic studies of white-sand forests across the Amazon basin have been published. Nonetheless, a basin-wide description of both taxonomic and phylogenetic alpha and beta diversity at regional scales has never been achieved. We present a complete floristic analysis of white-sand forests across the Amazon basin including both taxonomic and phylogenetic diversity. We found strong regional differences in the signal of phylogenetic community structure with both overall and regional Net Relatedness Index and Nearest Taxon Index values found to be significantly positive leading to a pattern of phylogenetic clustering. Additionally, we found high taxonomic dissimilarity but low phylogenetic dissimilarity in pairwise community comparisons. These results suggest that recent diversification has played an important role in the assembly of white-sand forests causing geographic neo-endemism patterns at the regional scale. © 2016 The Association for Tropical Biology and Conservation.  
  Address Ecology and Biodiversity Group, Utrecht University, Utrecht, Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :3; Export Date: 12 February 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 660  
Permanent link to this record
 

 
Author Lamarre, G.P.A.; Amoretti, D.S.; Baraloto, C.; Bénéluz, F.; Mesones, I.; Fine, P.V.A. url  openurl
  Title Phylogenetic Overdispersion in Lepidoptera Communities of Amazonian White-sand Forests Type Journal Article
  Year 2016 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 48 Issue 1 Pages 101-109  
  Keywords varillales; Amazon basin; Bottom-up; Lepidoptera composition; Moth, Nymphalidae; Phylogenetic structure  
  Abstract In the Amazon basin and the Guiana Shield, white-sand (WS) forests are recognized as a low-resource habitat often composed by a distinct flora with many edaphic endemic plants. Small patches of nutrient-poor white-sand forests can pose a series of challenges to plants and animals. For plants, these challenges have been shown to function as strong filters that in turn drive taxonomic, functional and phylogenetic plant composition. However, very little is known about animal communities in WS forest and the effect that low-resource availability may have on higher trophic levels. Here, we investigate the diversity of both taxonomic and phylogenetic diversity of three Lepidoptera families' (Nymphalidae, Saturniidae, and Sphingidae) assemblages between low-resource (White-Sand Forest) and two adjacent high-resource habitats, terra firme clay and seasonally flooded forests. We found no clear effect of habitat type on taxonomic composition although butterfly and moth species abundance differed among the three contrasted habitats. The WS forest Lepidoptera community is significantly more phylogenetically overdispersed than expected by chance. We suggest that these low-resource habitats filter the number of plant lineages which, in turn, creates a bottom-up control structuring Lepidoptera phylogenetic structure. We recommend long-term sampling on Lepidoptera community both at larval and adult stages that may complement this study and test hypotheses linking herbivore phylogenetic structure to plant resource availability and trophic cascade theory. © 2016 The Association for Tropical Biology and Conservation.  
  Address Department of Biological Sciences, International Center for Tropical Botany, Florida International University, Miami, FL, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Cited By :1; Export Date: 12 February 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 661  
Permanent link to this record
 

 
Author Rutishauser, E.; Herault, B.; Petronelli, P.; Sist, P. doi  openurl
  Title Tree Height Reduction After Selective Logging in a Tropical Forest Type Journal Article
  Year 2016 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 48 Issue 3 Pages 285-289  
  Keywords carbon sequestration; forest management; logging; tropical forests; wood production  
  Abstract By harvesting scattered large trees, selective logging increases light availability and thereby stimulates growth and crown expansion at early-life stage among remnant trees. We assessed the effects of logging on total and merchantable bole (i.e., lowest branch at crown base) heights on 952 tropical canopy trees in French Guiana. We observed reductions in both total (mean, −2.3 m) and bole (mean, −2.0 m) heights more than a decade after selective logging. Depending on local logging intensity, height reductions resulted in 2–13 percent decreases in aboveground tree biomass and 3–17 percent decreases in bole volume. These results highlight the adverse effects of logging at both tree and stand levels. This decrease in height is a further threat to future provision of key environmental services, such as timber production and carbon sequestration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-7429 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 723  
Permanent link to this record
 

 
Author Orivel, J.; Klimes, P.; Novotny, V.; Leponce, M. url  doi
openurl 
  Title Resource use and food preferences in understory ant communities along a complete elevational gradient in Papua New Guinea Type Journal Article
  Year 2018 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 50 Issue 4 Pages 641-648  
  Keywords altitudinal gradient; food resources; Formicidae; Mt Wilhelm; nutritional ecology  
  Abstract Elevational gradients provide an interesting opportunity for studying the effect of climatic drivers over short distances on the various facets of biodiversity. It is globally assumed that the decrease in species richness with increasing elevation follows mainly the decrease in ecosystem productivity, but studies on functional diversity still remain limited. Here, we investigated how resource use and food preferences by both individual ant species and communities foraging in the understory vary with elevation along a complete elevational gradient (200 to 3200 m asl). Five bait types reflecting some of the main ecosystem processes in which ants are involved were tested: mutualism (sucrose and melezitose), predation (live termites), and detritivory (crushed insects and chicken feces). The observed monotonic decrease in both species richness and occurrences with elevation increase was accompanied by changes in some of the tested ecosystem processes. Such variations can be explained by resource availability and/or resource limitation: Predation and bird feces removal decreased with increasing elevation possibly reflecting a decline in species able to use these resources, while insect detritivory and nectarivory were most probably driven by resource limitation (or absence of limitation), as their relative use did not change along the gradient. Consequently, resource attractiveness (i.e., food preferences at the species level) appears as an important factor in driving community structuring in ants together with the abiotic environmental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd (10.1111) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3606 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1111/btp.12539 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 893  
Permanent link to this record
 

 
Author Verryckt, L.T.; Ellsworth, D.S.; Vicca, S.; Van Langenhove, L.; Peñuelas, J.; Ciais, P.; Posada, J.M.; Stahl, C.; Coste, S.; Courtois, E.A.; Obersteiner, M.; Chave, J.; Janssens, I.A. doi  openurl
  Title Can light-saturated photosynthesis in lowland tropical forests be estimated by one light level? Type Journal Article
  Year 2020 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 52 Issue 6 Pages 1183-1193  
  Keywords canopy architecture; interspecific variation; light intensity; lowland environment; parameter estimation; photon flux density; photosynthesis; saturation; tropical forest; French Guiana  
  Abstract Leaf-level net photosynthesis (An) estimates and associated photosynthetic parameters are crucial for accurately parameterizing photosynthesis models. For tropical forests, such data are poorly available and collected at variable light conditions. To avoid over- or underestimation of modeled photosynthesis, it is critical to know at which photosynthetic photon flux density (PPFD) photosynthesis becomes light-saturated. We studied the dependence of An on PPFD in two tropical forests in French Guiana. We estimated the light saturation range, including the lowest PPFD level at which Asat (An at light saturation) is reached, as well as the PPFD range at which Asat remained unaltered. The light saturation range was derived from photosynthetic light-response curves, and within-canopy and interspecific differences were studied. We observed wide light saturation ranges of An. Light saturation ranges differed among canopy heights, but a PPFD level of 1,000 µmol m−2 s−1 was common across all heights, except for pioneer trees species that did not reach light saturation below 2,000 µmol m−2 s−1. A light intensity of 1,000 µmol m−2 s−1 sufficed for measuring Asat of climax species at our study sites, independent of the species or the canopy height. Because of the wide light saturation ranges, results from studies measuring Asat at higher PPFD levels (for upper canopy leaves up to 1,600 µmol m−2 s−1) are comparable with studies measuring at 1,000 µmol m−2 s−1. © 2020 The Association for Tropical Biology and Conservation  
  Address UMR 5174, Laboratoire Evolution et Diversité Biologique, CNRS, Université Paul Sabatier, Toulouse, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 948  
Permanent link to this record
 

 
Author Verryckt, L.T.; Van Langenhove, L.; Ciais, P.; Courtois, E.A.; Vicca, S.; Peñuelas, J.; Stahl, C.; Coste, S.; Ellsworth, D.S.; Posada, J.M.; Obersteiner, M.; Chave, J.; Janssens, I.A. doi  openurl
  Title Coping with branch excision when measuring leaf net photosynthetic rates in a lowland tropical forest Type Journal Article
  Year 2020 Publication (up) Biotropica Abbreviated Journal Biotropica  
  Volume 52 Issue 4 Pages 608-615  
  Keywords branch cutting; canopy physiology; French Guiana; gas exchange; photosynthesis; rainforest; stomatal conductance; ecological modeling; environmental conditions; forest canopy; leaf; measurement method; photosynthesis; tree; tropical forest; Gruidae  
  Abstract Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions. © 2020 The Association for Tropical Biology and Conservation  
  Address UMR 5174 Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier, CNRS, Toulouse, France  
  Corporate Author Thesis  
  Publisher Blackwell Publishing Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00063606 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 960  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: