toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Touchard, A.; Aili, S.R.; Fox, E.G.P.; Escoubas, P.; Orivel, J.; Nicholson, G.M.; Dejean, A. pdf  url
openurl 
  Title The biochemical toxin arsenal from ant venoms Type Journal Article
  Year 2016 Publication (down) Toxins Abbreviated Journal Toxins  
  Volume 8 Issue 1 Pages 30  
  Keywords Alkaloids; Ant venom; Enzymes; Formic acid; Peptides; Toxins; Venom biochemistry  
  Abstract Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. © 2016 by the authors; licensee MDPI, Basel, Switzerland.  
  Address Laboratoire Écologie Fonctionnelle et Environnement, 118 Route de Narbonne, Toulouse, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 8 February 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 656  
Permanent link to this record
 

 
Author Barassé, V.; Touchard, A.; Téné, N.; Tindo, M.; Kenne, M.; Klopp, C.; Dejean, A.; Bonnafé, E.; Treilhou, M. pdf  url
doi  openurl
  Title The peptide venom composition of the fierce stinging ant tetraponera aethiops (formicidae: Pseudomyrmecinae) Type Journal Article
  Year 2019 Publication (down) Toxins Abbreviated Journal Toxins  
  Volume 11 Issue 12 Pages 732  
  Keywords Defensive venom; Dimeric peptides; Peptidome; Tetraponera aethiops  
  Abstract In the mutualisms involving certain pseudomyrmicine ants and different myrmecophytes (i.e., plants sheltering colonies of specialized “plant-ant” species in hollow structures), the ant venom contributes to the host plant biotic defenses by inducing the rapid paralysis of defoliating insects and causing intense pain to browsing mammals. Using integrated transcriptomic and proteomic approaches, we identified the venom peptidome of the plant-ant Tetraponera aethiops (Pseudomyrmecinae). The transcriptomic analysis of its venom glands revealed that 40% of the expressed contigs encoded only seven peptide precursors related to the ant venom peptides from the A-superfamily. Among the 12 peptide masses detected by liquid chromatography-mass spectrometry (LC-MS), nine mature peptide sequences were characterized and confirmed through proteomic analysis. These venom peptides, called pseudomyrmecitoxins (PSDTX), share amino acid sequence identities with myrmeciitoxins known for their dual offensive and defensive functions on both insects and mammals. Furthermore, we demonstrated through reduction/alkylation of the crude venom that four PSDTXs were homo- and heterodimeric. Thus, we provide the first insights into the defensive venom composition of the ant genus Tetraponera indicative of a streamlined peptidome.  
  Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, 97310, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20726651 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 902  
Permanent link to this record
 

 
Author Aili, S.R.; Touchard, A.; Hayward, R.; Robinson, S.D.; Pineda, S.S.; Lalagüe, H.; Mrinalini; Vetter, I.; Undheim, E.A.B.; Kini, R.M.; Escoubas, P.; Padula, M.P.; Myers, G.S.A.; Nicholson, G.M. doi  openurl
  Title An integrated proteomic and transcriptomic analysis reveals the venom complexity of the bullet ant Paraponera clavata Type Journal Article
  Year 2020 Publication (down) Toxins Abbreviated Journal Toxins  
  Volume 12 Issue 5 Pages  
  Keywords DRG neurons; Hyaluronidase; Neurotoxins; Paraponeritoxin; Phospholipases; Rp-Hplc; alpha latrotoxin; ant venom; arginine kinase; cathepsin; contig; defensin 2; hyaluronidase; icarapin; metalloproteinase; neurotoxin; novel toxin like protein; phospholipase; phospholipase A2; poneratoxin; proteome; serine proteinase; transcriptome; unclassified drug; amino acid sequence; ant; Article; liquid chromatography-mass spectrometry; neurotoxicity; nonhuman; Paraponera clavata; protein expression; proteomics; sequence database; tandem mass spectrometry; transcriptomics; venom gland  
  Abstract A critical hurdle in ant venom proteomic investigations is the lack of databases to comprehensively and specifically identify the sequence and function of venom proteins and peptides. To resolve this, we used venom gland transcriptomics to generate a sequence database that was used to assign the tandem mass spectrometry (MS) fragmentation spectra of venom peptides and proteins to specific transcripts. This was performed alongside a shotgun liquid chromatography-mass spectrometry (LC-MS/MS) analysis of the venom to confirm that these assigned transcripts were expressed as proteins. Through the combined transcriptomic and proteomic investigation of Paraponera clavata venom, we identified four times the number of proteins previously identified using 2D-PAGE alone. In addition to this, by mining the transcriptomic data, we identified several novel peptide sequences for future pharmacological investigations, some of which conform with inhibitor cysteine knot motifs. These types of peptides have the potential to be developed into pharmaceutical or bioinsecticide peptides. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.  
  Address Faculty of Science, University of Nice, Nice, 06000, France  
  Corporate Author Thesis  
  Publisher Mdpi Ag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20726651 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 972  
Permanent link to this record
 

 
Author Touchard, A.; Labrière, N.; Roux, O.; Petitclerc, F.; Orivel, J.; Escoubas, P.; Koh, J.M.S.; Nicholson, G.M.; Dejean, A. url  openurl
  Title Venom toxicity and composition in three Pseudomyrmex ant species having different nesting modes Type Journal Article
  Year 2014 Publication (down) Toxicon Abbreviated Journal Toxicon  
  Volume 88 Issue Pages 67-76  
  Keywords Ant venoms; Ants; Arboreal and ground-nesting ants; Evolution; Peptides; Pseudomyrmex; ant venom; acute toxicity; animal experiment; ant; article; biochemical composition; controlled study; disulfide bond; high performance liquid chromatography; lethality; matrix assisted laser desorption ionization time of flight mass spectrometry; molecular weight; myrmecophyte; nesting; nonhuman; predator prey interaction; priority journal; Pseudomyrmex gracilis; Pseudomyrmex penetrator; Pseudomyrmex termitarius; species diversity; toxin analysis  
  Abstract We aimed to determine whether the nesting habits of ants have influenced their venom toxicity and composition. We focused on the genus Pseudomyrmex (Pseudomyrmecinae) comprising terrestrial and arboreal species, and, among the latter, plant-ants that are obligate inhabitants of myrmecophytes (i.e., plants sheltering ants in hollow structures). Contrary to our hypothesis, the venom of the ground-dwelling species, Pseudomyrmex termitarius, was as efficacious in paralyzing prey as the venoms of the arboreal and the plant-ant species, Pseudomyrmexpenetrator and Pseudomyrmexgracilis. The lethal potency of P. termitarius venom was equipotent with that of P. gracilis whereas the venom of P. penetrator was less potent. The MALDI-TOF MS analysis of each HPLC fraction of the venoms showed that P. termitarius venom is composed of 87 linear peptides, while both P. gracilis and P. penetrator venoms (23 and 26 peptides, respectively) possess peptides with disulfide bonds. Furthermore, P. penetrator venom contains three hetero- and homodimeric peptides consisting of two short peptidic chains linked together by two interchain disulfide bonds. The large number of peptides in P. termitarius venom is likely related to the large diversity of potential prey plus the antibacterial peptides required for nesting in the ground. Whereas predation involves only the prey and predator, P. penetrator venom has evolved in an environment where trees, defoliating insects, browsing mammals and ants live in equilibrium, likely explaining the diversity of the peptide structures. © 2014 Elsevier Ltd. All rights reserved.  
  Address Laboratoire Écologie Fonctionnelle et Environnement, 118 Route de Narbonne, 31062 Toulouse, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18793150 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 30 July 2014; Coden: Toxia; Correspondence Address: Labrière, N.; CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), Campus Agronomique, BP 316, 97379 Kourou cedex, France Approved no  
  Call Number EcoFoG @ webmaster @ Serial 553  
Permanent link to this record
 

 
Author Aili, S.R.; Touchard, A.; Escoubas, P.; Padula, M.P.; Orivel, J.; Dejean, A.; Nicholson, G.M. url  openurl
  Title Diversity of peptide toxins from stinging ant venoms Type Journal Article
  Year 2014 Publication (down) Toxicon Abbreviated Journal Toxicon  
  Volume 92 Issue Pages 166-178  
  Keywords Ant venom; Chemotaxonomy; Disulfide linkage; Peptides; Venom biochemistry  
  Abstract Ants (Hymenoptera: Formicidae) represent a taxonomically diverse group of arthropods comprising nearly 13,000 extant species. Sixteen ant subfamilies have individuals that possess a stinger and use their venom for purposes such as a defence against predators, competitors and microbial pathogens, for predation, as well as for social communication. They exhibit a range of activities including antimicrobial, haemolytic, cytolytic, paralytic, insecticidal and pain-producing pharmacologies. While ant venoms are known to be rich in alkaloids and hydrocarbons, ant venoms rich in peptides are becoming more common, yet remain understudied. Recent advances in mass spectrometry techniques have begun to reveal the true complexity of ant venom peptide composition. In the few venoms explored thus far, most peptide toxins appear to occur as small polycationic linear toxins, with antibacterial properties and insecticidal activity. Unlike other venomous animals, a number of ant venoms also contain a range of homodimeric and heterodimeric peptides with one or two interchain disulfide bonds possessing pore-forming, allergenic and paralytic actions. However, ant venoms seem to have only a small number of monomeric disulfide-linked peptides. The present review details the structure and pharmacology of known ant venom peptide toxins and their potential as a source of novel bioinsecticides and therapeutic agents.  
  Address Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, 118 Route de NarbonneToulouse, France  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00410101 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 2 December 2014; Coden: Toxia; Correspondence Address: Nicholson, G.M.; Neurotoxin Research Group, School of Medical and Molecular Biosciences, University of Technology SydneyAustralia Approved no  
  Call Number EcoFoG @ webmaster @ Serial 568  
Permanent link to this record
 

 
Author Nixon, S.; Agwa, A.; Robinson, S.; Walker, A.; Touchard, A.; Schroeder, C.; Vetter, I.; Kotze, A.C.; Herzig, V.; King, G.F. doi  openurl
  Title Discovery and characterisation of novel peptides from Amazonian stinging ant venoms with antiparasitic activity Type Journal Article
  Year 2020 Publication (down) Toxicon Abbreviated Journal Toxicon  
  Volume 177 Issue 1 Pages S60  
  Keywords  
  Abstract  
  Address The Institute for Molecular Bioscience, The University of Queensland, Australia; CSIRO Agriculture and Food, Australia; CNRS, UMR Ecologie des forêts de Guyane, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18793150 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 973  
Permanent link to this record
 

 
Author Scotti-Saintagne, C.; Bodenes, C.; Barreneche, T.; Bertocchi, E.; Plomion, C.; Kremer, A. openurl 
  Title Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L Type Journal Article
  Year 2004 Publication (down) Theoretical and Applied Genetics Abbreviated Journal Theor. Appl. Genet.  
  Volume 109 Issue 8 Pages 1648-1659  
  Keywords  
  Abstract Genetic variation of bud burst and early growth components was estimated in a full-sib family of Quercus robur L. comprising 278 offspring. The full sibs were vegetatively propagated, and phenotypic assessments were made in three field tests. This two-generation pedigree was also used to construct a genetic linkage map (12 linkage groups, 128 markers) and locate quantitative trait loci (QTLs) controlling bud burst and growth components. In each field test, the date of bud burst extended over a period of 20 days from the earliest to the latest clone. Bud burst exhibited higher heritability (0.15-0.51) than growth components (0.04-0.23) and also higher correlations across field tests. Over the three tests there were 32 independent detected QTLs (Pless than or equal to5% at the chromosome level) controlling bud burst, which likely represent at least 12 unique genes or chromosomal regions controlling this trait. QTLs explained from 3% to 11% of the variance of the clonal means. The number of QTLs controlling height growth components was lower and varied between two and four. However the contribution of each QTL to the variance of the clonal mean was higher (from 4% to 19%). These results indicate that the genetic architecture of two important fitness-related traits are quite different. On the one hand, bud burst is controlled by several QTLs with rather low to moderate effects, but contributing to a high genetic (additive) variance. On the other hand, height growth depends on fewer QTLs with moderate to strong effects, resulting in lower heritabilities of the trait.  
  Address INRA, UMR Biodivers Genes & Ecosyst, F-33612 Cestas, France, Email: antoine.kremer@pierroton.inra.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-5752 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000225054800012 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 260  
Permanent link to this record
 

 
Author Siebicke, L.; Hunner, M.; Foken, T. url  openurl
  Title Aspects of CO 2 advection measurements Type Journal Article
  Year 2012 Publication (down) Theoretical and Applied Climatology Abbreviated Journal Theor. Appl. Climatol.  
  Volume 109 Issue 1-2 Pages 109-131  
  Keywords  
  Abstract Observations of vegetation-atmosphere exchange of carbon dioxide (CO 2) by the eddy covariance (EC) technique are limited by difficult conditions such as nighttime and heterogeneous terrain. Thus, advective flux components are included into the net ecosystem exchange (NEE) budget. However, advection measurements are experimentally challenging and do not always help to solve the night flux problem of the EC technique. This study investigates alternative methods for the observation of horizontal advection, in particular horizontal concentration gradients, as well as different approaches to coordinate rotation and vertical advection. Continuous high-frequency measurements of the horizontal CO 2 concentration field are employed and compared to the often used discontinuous sequential sampling. Significant differences were found in the case of 30-min mean concentration values between the conventional discontinuous sampling approach and the complete observation of the time series by continuous sampling. Estimates of vertical advection rely on accurate estimates of vertical wind velocity (W). Therefore, different approaches to the planar fit coordinate rotation have been investigated. Sector-wise rotation was able to eliminate directional dependencies of mean W. Furthermore, the effect of the data set length used for rotation (window length) was investigated and was found to have significant impact on estimates of vertical advection, with larger window lengths yielding about 50% larger vertical advection. A sequential planar fit with controlled window length is proposed to give reproducible results. The different approaches to the measurement and calculation of horizontal and vertical advection presented are applied to data obtained during the exchange processes in mountainous region experiment at the FLUXNET site Waldstein-Weidenbrunnen (DE-Bay). Estimates of NEE including advection are compared to NEE from turbulent and storage flux alone without advection. NEE including vertical advection with sector-wise planar fit rotation and controlled window length and including horizontal advection from continuous gradient measurements, which were comprehensively bias corrected by a new approach, did compare well with the expected night flux error, with meteorological drivers of the fluxes and with soil chamber measurements. Unrealistically large and noisy values of horizontal advection from the conventional discontinuous sampling approach, which lead to unrealistic values of NEE, could be eliminated by the alternative approaches presented. We therefore suggest the further testing of those approaches at other sites in order to improve the accuracy of advection measurements and, subsequently, estimates of NEE. © 2011 Springer-Verlag.  
  Address Wind Cert Services, TÜV SÜD Industrie Service GmbH, Ludwig-Eckert-Str. 10, 93049 Regensburg, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177798x (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 27 June 2012; Source: Scopus; doi: 10.1007/s00704-011-0552-3; Language of Original Document: English; Correspondence Address: Siebicke, L.; Department of Micrometeorology, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany; email: lukas.siebicke@uni-bayreuth.de Approved no  
  Call Number EcoFoG @ webmaster @ Serial 406  
Permanent link to this record
 

 
Author Dejean, A.; Ryder, S.; Bolton, B.; Compin, A.; Leponce, M.; Azémar, F.; Céréghino, R.; Orivel, J.; Corbara, B. url  openurl
  Title How territoriality and host-tree taxa determine the structure of ant mosaics Type Journal Article
  Year 2015 Publication (down) The Science of Nature Abbreviated Journal Sci Nat  
  Volume 102 Issue 33 Pages 1-9  
  Keywords Africa; Arboreal ants; Distribution; Host-tree selection; Rainforest canopies  
  Abstract Very large colonies of territorially dominant arboreal ants (TDAAs), whose territories are distributed in a mosaic pattern in the canopies of many tropical rainforests and tree crop plantations, have a generally positive impact on their host trees. We studied the canopy of an old Gabonese rainforest (ca 4.25 ha sampled, corresponding to 206 Blarge trees) at a stage just preceding forest maturity (the Caesalpinioideae dominated; the Burseraceae were abundant). The tree crowns sheltered colonies from 13 TDAAs plus a codominant species out of the 25 ant species recorded. By mapping the TDAAs' territories and using a null model cooccurrence analysis, we confirmed the existence of an ant mosaic. Thanks to a large sampling set and the use of the self-organizing map algorithm (SOM), we show that the distribution of the trees influences the structure of the ant mosaic, suggesting that each tree taxon attracts certain TDAA species rather than others. The SOMalso improved our knowledge of the TDAAs' ecological niches, showing that these ant species are ecologically distinct from each other based on their relationships with their supporting trees. Therefore, TDAAs should not systematically be placed in the same functional group even when they belong to the same genus.We conclude by reiterating that, in addition to the role played by TDAAs' territorial competition, host trees contribute to structuring ant mosaics through multiple factors, including host-plant selection by TDAAs, the age of the trees, the presence of extrafloral nectaries, and the taxa of the associated hemipterans. © Springer-Verlag Berlin Heidelberg 2015.  
  Address Université Clermont Auvergne, Université Blaise Pascal (LMGE), Clermont-Ferrand, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 October 2015 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 632  
Permanent link to this record
 

 
Author Dejean, A.; Azémar, F.; Libert, M.; Compin, A.; Herault, B.; Orivel, J.; Bouyer, T.; Corbara, B. doi  openurl
  Title Ant-lepidopteran associations along African forest edges Type Journal Article
  Year 2017 Publication (down) The Science of Nature Abbreviated Journal  
  Volume 104 Issue 1 Pages 7  
  Keywords  
  Abstract Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1904 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Dejean2016 Serial 717  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: