toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dejean, A.; Orivel, J.; Leponce, M.; Compin, A.; Delabie, J.H.C.; Azémar, F.; Corbara, B. doi  openurl
  Title Ant–plant relationships in the canopy of an Amazonian rainforest: the presence of an ant mosaic Type Journal Article
  Year 2018 Publication Biological Journal of the Linnean Society Abbreviated Journal  
  Volume 125 Issue 2 Pages 344-354  
  Keywords  
  Abstract Using different techniques to access the canopy of an Amazonian rainforest, we inspected 157 tree crowns for arboreal ants. Diversity statistics showed that our study sample was not representative of the tree and ant populations due to their high diversity in Amazonian rainforests, but permitted us to note that a representative part of territorially dominant arboreal ant species (TDAAs) was inventoried. Mapping of TDAA territories and use of a null model showed the presence of an ant mosaic in the upper canopy, but this was not the case in the sub-canopy. Among the TDAAs, carton-nesting Azteca dominated (52.98% of the trees) whereas ant-garden ants (Camponotus femoratus and Crematogaster levior), common in pioneer formations, were secondarily abundant (21.64% of the trees), and the remaining 25.37% of trees sheltered one of 11 other TDAAs. The distribution of the trees forming the upper canopy influences the structure of the ant mosaic, which is related to the attractiveness of some tree taxa for certain arboreal ant species and represents a case of diffuse coevolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-4066 ISBN Medium  
  Area Expedition Conference  
  Notes (up) 10.1093/biolinnean/bly125 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 824  
Permanent link to this record
 

 
Author De Deurwaerder, H.; Hervé-Fernández, P.; Stahl, C.; Burban, B.; Petronelli, P.; Hoffman, B.; Bonal, D.; Boeckx, P.; Verbeeck, H. doi  openurl
  Title Liana and tree below-ground water competition – evidence for water resource partitioning during the dry season Type Journal Article
  Year 2018 Publication Tree Physiology Abbreviated Journal  
  Volume 38 Issue 7 Pages 1071-1083  
  Keywords  
  Abstract To date, reasons for the increase in liana abundance and biomass in the Neotropics are still unclear. One proposed hypothesis suggests that lianas, in comparison with trees, are more adaptable to drought conditions. Moreover, previous studies have assumed that lianas have a deeper root system, which provides access to deeper soil layers, thereby making them less susceptible to drought stress. The dual stable water isotope approach (δ18O and δ2H) enables below-ground vegetation competition for water to be studied. Based on the occurrence of a natural gradient in soil water isotopic signatures, with enriched signatures in shallow soil relative to deep soil, the origin of vegetation water sources can be derived. Our study was performed on canopy trees and lianas reaching canopy level in tropical forests of French Guiana. Our results show liana xylem water isotopic signatures to be enriched in heavy isotopes in comparison with those from trees, indicating differences in water source depths and a more superficial root activity for lianas during the dry season. This enables them to efficiently capture dry season precipitation. Our study does not support the liana deep root water extraction hypothesis. Additionally, we provide new insights into water competition between tropical canopy lianas and trees. Results suggest that this competition is mitigated during the dry season due to water resource partitioning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0829-318x ISBN Medium  
  Area Expedition Conference  
  Notes (up) 10.1093/treephys/tpy002 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 848  
Permanent link to this record
 

 
Author Baraloto, C.; Ferreira, E.; Rockwell, C.; Walthier, F. pdf  url
openurl 
  Title Limitations and Applications of Parataxonomy for Community Forest Management in Southwestern Amazonia Type Journal Article
  Year 2007 Publication Ethnobotany Research & Applications Abbreviated Journal  
  Volume 5 Issue Pages 77-84  
  Keywords  
  Abstract We examined the limitations of parataxonomic inventories for developing management plans for woody plant resources in tropical rain forests of southwestern Amazonia. Using compilations of herbarium labels, forest personnel interviews and published species descriptions, we assessed the accuracy of common names as parataxonomic units (PUs). We identified 384 common names for 310 harvested woody plant species in the Brazilian state of Acre, of which only 50% were unique to a single taxonomic species. About 10% of common names referred to more than one species, more than half of which included multiple genera. For the 106 species from the Acre sample common to the MAP region including Madre de Dios, Peru and Pando, Bolivia, we identified 198 common names. Splitting was much more frequent in this sample, with more than 80% of species having more than one common name. When the Acre sample was expanded to 131 species from the Brazilian Amazon region, including the states of Amazonas and Para, we identified 740 common names, with nearly 90% of species being represented by more than one common name. Errors and inaccuracy of parataxonomy may contribute to market instability if product orders can not be homogenized within regional markets, and to unsustainable harvests if species are mistakenly lumped into single parataxonomic units. We discuss several programs currently being implemented by our collaborative team in the region to address this issue, including field guides based on digital photography, field courses, and workshops featuring discussions between regional inventory personnel and botanists.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) 2008; Limitations and Applications of Parataxonomy for Community Forest Management in Southwestern Amazonia Approved no  
  Call Number EcoFoG @ eric.marcon @ 14 Serial 214  
Permanent link to this record
 

 
Author Vedel, V.; Arthur, W. url  doi
openurl 
  Title Character changes during the early post-embryonic development of the centipede Strigamia maritima (Leach, 1817) (Chilopoda: Geophilomorpha) Type Journal Article
  Year 2009 Publication International Journal of Myriapodology Abbreviated Journal  
  Volume 2 Issue 1 Pages 53-61  
  Keywords MOULT DEVELOPMENT ARTHROPOD POST-EMBRYONIC STAGE MORPHOLOGICAL CHANGE MYRIAPOD CENTIPEDE EVO-DEVO  
  Abstract For many kinds of ecological, evolutionary and developmental study, it is important to be able to describe the life-history of the individuals of a particular species/population. In the case of myriapods and other arthropods, this involves separating the different life-history stages (or stadia or instars) that are separated by moults. However, it has recently been pointed out that in the earliest post-embryonic stages the cuticle is still quite flexible; this means that visible external developmental changes can occur between moults as well as during them. Here, we provide evidence for such inter-moult changes in the coastal geophilomorph centipede Strigamia maritima. The character states studied enable finer-scale resolution of early post-embryonic forms than was hitherto possible. Specifically, we describe five transitional forms during a period in which just two (Peripatoid and Foetus) have traditionally been recognized  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Character changes during the early post-embryonic development of the centipede Strigamia maritima (Leach, 1817) (Chilopoda: Geophilomorpha); doi:10.1163/187525409X462412 Approved no  
  Call Number EcoFoG @ eric.marcon @ 13 Serial 187  
Permanent link to this record
 

 
Author Lipshutz, B.H.; Taft, B.R.; Abela, A.R.; Ghorai, S.; Krasovskiy, A.; Duplais, C. pdf  url
openurl 
  Title Catalysis in the service of green chemistry: Nobel prize-winning palladium-catalysed cross-couplings, run in water at room temperature Type Journal Article
  Year 2012 Publication Platinum Metals Review Abbreviated Journal Platinum Met. Rev.  
  Volume 56 Issue 2 Pages 62-74  
  Keywords  
  Abstract Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes 'greener'; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a 'designer' surfactant enables these award-winning coupling reactions to be run in water at room temperature. © 2012 Johnson Matthey.  
  Address UMR-CNRS Ecofog, Institut Pasteur de la Guyane, 23 Avenue Pasteur, 97306 Cayenne, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00321400 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Cited By (since 1996): 1; Export Date: 15 May 2012; Source: Scopus; Coden: Ptmra; doi: 10.1595/147106712X629761; Language of Original Document: English; Correspondence Address: Lipshutz, B.H.; Department of Chemistry, University of California, Santa Barbara, CA 93106, United States; email: lipshutz@chem.ucsb.edu Approved no  
  Call Number EcoFoG @ webmaster @ Serial 400  
Permanent link to this record
 

 
Author Dejean, A.; Carpenter, J.M.; Corbara, B.; Wright, P.; Roux, O.; LaPierre, L.M. url  openurl
  Title The hunter becomes the hunted: When cleptobiotic insects are captured by their target ants Type Journal Article
  Year 2012 Publication Naturwissenschaften Abbreviated Journal  
  Volume 99 Issue 4 Pages 265-273  
  Keywords Ant predation; Cleptobiosis; Flies and Reduviidae; Myrmecophyte; Social wasps; Stingless bees  
  Abstract Here we show that trying to rob prey (cleptobiosis) from a highly specialized predatory ant species is risky. To capture prey, Allomerus decemarticulatus workers build gallery-shaped traps on the stems of their associated myrmecophyte, Hirtella physophora. We wondered whether the frequent presence of immobilized prey on the trap attracted flying cleptoparasites. Nine social wasp species nest in the H. physophora foliage; of the six species studied, only Angiopolybia pallens rob prey from Allomerus colonies. For those H. physophora not sheltering wasps, we noted cleptobiosis by stingless bees (Trigona), social wasps (A. pallens and five Agelaia species), assassin bugs (Reduviidae), and flies. A relationship between the size of the robbers and their rate of capture by ambushing Allomerus workers was established for social wasps; small wasps were easily captured, while the largest never were. Reduviids, which are slow to extract their rostrum from prey, were always captured, while Trigona and flies often escaped. The balance sheet for the ants was positive vis-à-vis the reduviids and four out of the six social wasp species. For the latter, wasps began by cutting up parts of the prey's abdomen and were captured (or abandoned the prey) before the entire abdomen was retrieved so that the total weight of the captured wasps exceeded that of the prey abdomens. For A. pallens, we show that the number of individuals captured during attempts at cleptobiosis increases with the size of the Allomerus' prey. © Springer-Verlag 2012.  
  Address Department of Biology, Lower Columbia College, 1600 Maple St., Longview, WA 98632, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Cited By (since 1996): 1; Export Date: 16 January 2013; Source: Scopus Approved no  
  Call Number EcoFoG @ webmaster @ Serial 458  
Permanent link to this record
 

 
Author Letort, V.; Heuret, P.; Zalamea, P.-C.; De Reffye, P.; Nicolini, E. url  openurl
  Title Analysing the effects of local environment on the source-sink balance of Cecropia sciadophylla: A methodological approach based on model inversion Type Journal Article
  Year 2012 Publication Annals of Forest Science Abbreviated Journal Ann. Forest Sci.  
  Volume 69 Issue 2 Pages 167-180  
  Keywords Cecropia; Functional-structural model; Model inversion; Morphology; Trophic competition  
  Abstract Context Functional-structural models (FSM) of tree growth have great potential in forestry, but their development, calibration and validation are hampered by the difficulty of collecting experimental data at organ scale for adult trees. Due to their simple architecture and morphological properties, “model plants” such as Cecropia sciadophylla are of great interest to validate new models and methodologies, since exhaustive descriptions of their plant structure and mass partitioning can be gathered. Aims Our objective was to develop a model-based approach to analysing the influence of environmental conditions on the dynamics of trophic competition within C. sciadophylla trees. Methods We defined an integrated environmental factor that includes meteorological medium-frequency variations and a relative index representing the local site conditions for each plant. This index is estimated based on model inversion of the GreenLab FSM using data from 11 trees for model calibration and 7 trees for model evaluation. Results The resulting model explained the dynamics of biomass allocation to different organs during the plant growth, according to the environmental pressure they experienced. Perspectives By linking the integrated environmental factor to a competition index, an extension of the model to the population level could be considered. © INRA and Springer Science+Business Media B.V. 2011.  
  Address UMR ECOFOG Campus Agronomique, INRA, BP 316, 97379 Kourou cedex, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 12864560 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Cited By (since 1996): 1; Export Date: 20 June 2012; Source: Scopus; Coden: Afosf; doi: 10.1007/s13595-011-0131-x; Language of Original Document: English; Correspondence Address: Letort, V.; Department of Applied Mathematics and Systems (MAS), Ecole Centrale Paris, Grande voie des Vignes, Chatenay-Malabry 92295, France; email: veronique.letort@centraliens.net Approved no  
  Call Number EcoFoG @ webmaster @ Serial 405  
Permanent link to this record
 

 
Author Vincent, G.; Weissenbacher, E.; Sabatier, D.; Blanc, L.; Proisy, C.; Couteron, P. url  openurl
  Title Detection des variations de structure de peuplements en foret dense tropicale humide par lidar aeroporte Type Journal Article
  Year 2010 Publication Revue Francaise de Photogrammetrie et de Teledetection Abbreviated Journal Rev. Fr. Photogramm. Teledetect.  
  Volume 191 Issue Pages 42-51  
  Keywords Above-ground biomass estimation; Canopy height model; Stem diameter distribution; Tropical moist forest; Above ground biomass; Above ground level; Airborne LiDAR; Basal area; Canopy Height Models; Carbon stocks; Characterisation; Classical fields; Coefficient of variation; Diameter distributions; Digital terrain model; Flooded areas; Forest ecology; Forest structure; Forest type; High spatial resolution; Individual tree; LIDAR data; Light detection and ranging; Local statistics; Long term; Management issues; Natural forests; Natural variation; Pearson correlation coefficients; Quadratic mean diameter; Soil characteristics; Soil cover; Spatial changes; Spatial resolution; Stem density; Stem diameter; Stem height; Strong correlation; Tree height; Tropical moist forest; Tropical rain forest; Vegetation structure; Vertical accuracy; Water regime; Discriminant analysis; Ecology; Optical radar; Remote sensing; Soils; Statistics; Stem cells; Temperature control; Tropics; Vegetation; Forestry; Biomass; Discriminant Analysis; Ecology; Forest Canopy; Forestry; Radar; Remote Sensing; Stems; Temperature Control; Tropical Atmospheres  
  Abstract Characterisation of forest structure is a major stake for forestry, species conservation, carbon stock estimates and many forest ecology and management issues. At large scale natural forest structure tends to vary according to climate and geomorphomology (Paget, 1999; Steege et al., 2006) while soil characteristics (and notably water regime) and syMgenetic stage add some finer scale variation (Oldeman, 1989; Sabatier et al., 1997). Forest structure characterisation traditionally relies on field-based collection of individual tree dimensions such as stem diameter and stem height sampled across tracks of forest (Hall et al., 1998). However, such field intensive methods are costly, and of low accuracy regarding measures of tree heights. Airborne light detection and ranging (LiDAR) technology provides horizontal and vertical Information at high spatial resolutions and vertical accuracies (Lim et al., 2003; Hyyppä et al., 2004). It has the potential for gathering vegetation structure data over large areas rapidly at moderate cost and hence is of particular relevance for poorly sampled, difficult to access and largely unexplored tropical rainforests. In this study we examined the ability of airborne LiDAR to detect spatial changes in the structure of dense tropical rain forest and we probed this remote sensing approach against local statistics derived from stem diameters (i.e. classical field data information) mapped across a large track of forest at a long term experimental site in French Guyana. The large variability in forest structure occurring at the experimental site is du to natural variation of the soil cover (and notably drainage properties) combined with various logging intensities applied 15 years before the LiDAR data were acquired. On this basis ten different forest types were identified at the site (figure 1 and 3). Various stem based statistics were computed for a series of meshes with cells ranging from 30 by 30 m plots to 250 by 250 m plots. These statistics included basal area, stem density, quadratic mean diameter, and diameter distribution percentiles. Similarly local statistics were extracted either from the Canopy Height Model (e.g. median height, mean height, standard height deviation, height coefficient of variation, height percentiles, frequency of hits below 5 m above ground level). Additionally a wetness index (Böhner et al., 2002) was computed at each node of a 5 by 5 m grid from the Digital Terrain Model also extracted from the LiDAR data set. We used both types of cell statistics to discriminate the various forest types. Comparison between the two approaches for a range of spatial resolution is available from in table 1. Results indicate that LiDAR based statistics are essentially as powerful as field based statistics to discriminate forest types at coarse scale. This reflects the very strong correlation between the CHM and the field based stem diameter data. For example (figure 5) the Pearson correlation coefficient between median height and quadratic mean diameter for cells of 125 by 125 m is 0.945 (n=0.72). When a finer resolution is required however as for the detection of seasonally flooded bottomland forest along thalwegs, then LiDAR technology proves more efficient than field based inventories as it combines information from the DTM and the CHM. The wetness index alone correctly retrieves about 2 thirds of the seasonally flooded areas. All in all, discriminant analysis performance of the LiDAR derived information approaches 80% when classifying forests cover at the finest scale of 5 by 5m into 10 different types and reaches 87% when a coarser classification Into 6 forest types is considered (figure 4).  
  Address IRD, UMR AMAP, Montpellier, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17689791 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Cited By (since 1996): 1; Export Date: 21 October 2011; Source: Scopus; Language of Original Document: French; Correspondence Address: Vincent, G.; IRD, UMR AMAP, Kourou – BP 701 (CIRAD) 97387 Kourou cedex -Guyane, France Approved no  
  Call Number EcoFoG @ webmaster @ Serial 351  
Permanent link to this record
 

 
Author Gourlet-Fleury, S.; Rossi, V.; Rejou-Mechain, M.; Freycon, V.; Fayolle, A.; Saint-André, L.; Cornu, G.; Gérard, J.; Sarrailh, J.-M.; Flores, O.; Baya, F.; Billand, A.; Fauvet, N.; Gally, M.; Henry, M.; Hubert, D.; Pasquier, A.; Picard, N. url  openurl
  Title Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests Type Journal Article
  Year 2011 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 99 Issue 4 Pages 981-990  
  Keywords Basal area; Central African Republic; Determinants of plant community diversity and structure; Life-history strategy; Soil fertility; Species sorting; Vital rates; Water reserve; Wood density; aboveground biomass; basal area; climate change; data set; database; diameter; forest ecosystem; forest inventory; life history trait; nutrient availability; physical property; plant community; resource availability; soil fertility; soil nutrient; soil texture; soil type; stem; tropical forest; wood; Central African Republic  
  Abstract 1.Regional above-ground biomass estimates for tropical moist forests remain highly inaccurate mostly because they are based on extrapolations from a few plots scattered across a limited range of soils and other environmental conditions. When such conditions impact biomass, the estimation is biased. The effect of soil types on biomass has especially yielded controversial results. 2.We investigated the relationship between above-ground biomass and soil type in undisturbed moist forests in the Central African Republic. We tested the effects of soil texture, as a surrogate for soil resources availability and physical constraints (soil depth and hydromorphy) on biomass. Forest inventory data were collected for trees ≥20cm stem diameter in 2754 0.5ha plots scattered over 4888km2. The plots contained 224 taxons, of which 209 were identified to species. Soil types were characterized from a 1:1000000 scale soil map. Species-specific values for wood density were extracted from the CIRAD's data base of wood technological properties. 3.We found that basal area and biomass differ in their responses to soil type, ranging from 17.8m2ha-1 (217.5tha-1) to 22.3m2ha-1 (273.3tha-1). While shallow and hydromorphic soils support forests with both low stem basal area and low biomass, forests on deep resource-poor soils are typically low in basal area but as high in biomass as forests on deep resource-rich soils. We demonstrated that the environmental filtering of slow growing dense-wooded species on resource-poor soils compensates for the low basal area, and we discuss whether this filtering effect is due to low fertility or to low water reserve. 4.Synthesis. We showed that soil physical conditions constrained the amount of biomass stored in tropical moist forests. Contrary to previous reports, our results suggest that biomass is similar on resource-poor and resource-rich soils. This finding highlights both the importance of taking into account soil characteristics and species wood density when trying to predict regional patterns of biomass. Our findings have implications for the evaluation of biomass stocks in tropical forests, in the context of the international negotiations on climate change. © 2011 The Authors. Journal of Ecology © 2011 British Ecological Society.  
  Address CIRAD, BP 4035, Libreville, Gabon  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220477 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Cited By (since 1996): 1; Export Date: 23 October 2011; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01829.x; Language of Original Document: English; Correspondence Address: Gourlet-Fleury, S.; Cirad, UR BandSEF, Biens et Services des Ecosystèmes Forestiers tropicaux, Campus International de Baillarguet, TA C-105/D, F-34398, Montpellier, France; email: sylvie.gourlet-fleury@cirad.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 361  
Permanent link to this record
 

 
Author Ferry, B.; Bontemps, J.-D.; Blanc, L.; Baraloto, C. url  openurl
  Title Is climate a stronger driver of tree growth than disturbance? A comment on Toledo et al. (2011) Type Journal Article
  Year 2012 Publication Journal of Ecology Abbreviated Journal J. Ecol.  
  Volume 100 Issue 5 Pages 1065-1068  
  Keywords Basal area change; Bolivia; Climate; Disturbance; Logging; Plant-climate interactions; Tree growth; Tropical forest  
  Abstract 1.A recent article published by Toledo (2011b) investigates the effects of spatial variations in climate and soil, and of logging disturbance, on tree and forest growth in Bolivia. It concludes that climate is the strongest driver of tree and forest growth and that climate change may therefore have large consequences for forest productivity and carbon sequestration. However, serious methodological and conceptual discrepancies have been found that challenge these conclusions. 2.Because of an errant coding of 'time after logging' in the regression analysis, and because floristic changes induced by logging could not be incorporated into the analysis, the effect of logging on the average diameter growth is likely to have been strongly underestimated. 3.Basal area growth was improperly calculated as basal area change, and it displayed surprisingly high values, even among unlogged plots. We hypothesize that either these plots may be actually located in secondary forests recovering from past logging, or measurement biases may have hampered the data set. 4.Regardless of climate-growth relationships established across these plots, any inference concerning the potential effects of climate change on forest growth would require a specific quantitative assessment. 5.Synthesis. It is critical to re-assess the relative weight of climate and logging disturbance as driving factors of tree and forest growth, and to find an explanation for the very high basal area increment reported among the unlogged plots. We provide specific recommendations for further analyses of this and similar data sets. © 2012 British Ecological Society.  
  Address INRA, UMR Ecologie des Forêts de Guyane, 97379 Kourou, French Guiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00220477 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Cited By (since 1996): 1; Export Date: 4 September 2012; Source: Scopus; Coden: Jecoa; doi: 10.1111/j.1365-2745.2011.01895.x; Language of Original Document: English; Correspondence Address: Ferry, B.; AgroParisTech, ENGREF-Nancy, UMR 1092, F-54000 Nancy, France; email: bruno.ferry@engref.agroparistech.fr Approved no  
  Call Number EcoFoG @ webmaster @ Serial 426  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: