toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sebbenn, A.M.; Blanc-Jolivet, C.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; García-Dávila, C.; Tysklind, N.; Troispoux, V.; Delcamp, A.; Degen, B. url  doi
openurl 
  Title Nuclear and plastidial SNP and INDEL markers for genetic tracking studies of Jacaranda copaia Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 11 Issue 3 Pages 341-343  
  Keywords DNA fingerprints; Geographical origin; Jacaranda copaia; MassARRAY; MiSeq; RADSeq; Tropical timber  
  Abstract Nuclear and plastidial single nucleotide polymorphism (SNP) and INDEL markers were developed using restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing for population genetics and timber tracking purposes in the Neotropical timber species Jacaranda copaia. We used 407 nuclear SNPs, 29 chloroplast, and 31 mitochondrial loci to genotype 92 individuals from Brazil, Bolivia, French Guiana, and Peru. Based on high amplification rates and genetic differentiation among populations, 113 nuclear SNPs, 11 chloroplast, and 4 mitochondrial loci were selected, and their use validated for genetic tracking of timber origin.  
  Address BIOGECO, INRA, Univ. Bordeaux, Cestas, 33610, France  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 907  
Permanent link to this record
 

 
Author Chaves, C.L.; Blanc-Jolivet, C.; Sebbenn, A.M.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; Garcia-Davila, C.; Tysklind, N.; Troispoux, V.; Massot, M.; Degen, B. url  doi
openurl 
  Title Nuclear and chloroplastic SNP markers for genetic studies of timber origin for Hymenaea trees Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 11 Issue 3 Pages 329-331  
  Keywords DNA fingerprints; Geographical origin; MiSeq; RADSeq  
  Abstract We developed nuclear and chloroplastic single nucleotide polymorphism (SNP) and INDEL (insertion/deletion) markers using restriction associated DNA sequencing (RADSeq) and low coverage MiSeq genome sequencing to set up a genetic tracking method of the geographical origin of Hymenaea sp. From two initial sets of 358 and 32 loci used to genotype at least 94 individuals, a final set of 75 nSNPs, 50 cpSNPs and 6 INDELs identifying significant population structure was developed. © 2018, Springer Nature B.V.  
  Address Departamento de Fitotecnia, Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista, Ilha Solteira, SP, Brazil  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 908  
Permanent link to this record
 

 
Author Tysklind, N.; Blanc-Jolivet, C.; Mader, M.; Meyer-Sand, B.R.V.; Paredes-Villanueva, K.; Honorio Coronado, E.N.; García-Dávila, C.R.; Sebbenn, A.M.; Caron, H.; Troispoux, V.; Guichoux, E.; Degen, B. url  doi
openurl 
  Title Development of nuclear and plastid SNP and INDEL markers for population genetic studies and timber traceability of Carapa species Type Journal Article
  Year 2019 Publication Conservation Genetics Resources Abbreviated Journal Conserv. Gen. Res.  
  Volume 11 Issue 3 Pages 337-339  
  Keywords Carapa guianensis; Carapa surinamensis; DNA-fingerprints; Geographical origin; MassARRAY; MiSeq; RADSeq; Tropical timber  
  Abstract Low coverage MiSeq genome sequencing and restriction associated DNA sequencing (RADseq) were used to identify nuclear and plastid SNP and INDEL genetic markers in Carapa guianensis. 261 genetic markers including 237 nuclear SNPs, 22 plastid SNPs, and 2 plastid INDELs are described based on 96 genotyped individuals from French Guiana, Brazil, Peru, and Bolivia. The best 117 SNPs for identifying population structure and performing individual assignment are assembled into four multiplexes for MassARRAY genotyping.  
  Address BIOGECO, INRA, University Bordeaux, Cestas, 33610, France  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 18777252 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 909  
Permanent link to this record
 

 
Author Piponiot, C.; Rutishauser, E.; Derroire, G.; Putz, F.E.; Sist, P.; West, T.A.P.; Descroix, L.; Guedes, M.C.; Coronado, E.N.H.; Kanashiro, M.; Mazzei, L.; d’Oliveira, M.V.N.; Peña-Claros, M.; Rodney, K.; Ruschel, A.R.; Souza, C.R. de; Vidal, E.; Wortel, V.; Hérault, B. pdf  doi
openurl 
  Title Optimal strategies for ecosystem services provision in Amazonian production forests Type Journal Article
  Year 2019 Publication Environmental Research Letters Abbreviated Journal  
  Volume 14 Issue 12 Pages 124090  
  Keywords  
  Abstract Although tropical forests harbour most of the terrestrial carbon and biological diversity on Earth they continue to be deforested or degraded at high rates. In Amazonia, the largest tropical forest on Earth, a sixth of the remaining natural forests is formally dedicated to timber extraction through selective logging. Reconciling timber extraction with the provision of other ecosystem services (ES) remains a major challenge for forest managers and policy-makers. This study applies a spatial optimisation of logging in Amazonian production forests to analyse potential trade-offs between timber extraction and recovery, carbon storage, and biodiversity conservation. Current logging regulations with unique cutting cycles result in sub-optimal ES-use efficiency. Long-term timber provision would require the adoption of a land-sharing strategy that involves extensive low-intensity logging, although high transport and road-building costs might make this approach economically unattractive. By contrast, retention of carbon and biodiversity would be enhanced by a land-sparing strategy restricting high-intensive logging to designated areas such as the outer fringes of the region. Depending on management goals and societal demands, either choice will substantially influence the future of Amazonian forests. Overall, our results highlight the need for revaluation of current logging regulations and regional cooperation among Amazonian countries to enhance coherent and trans-boundary forest management.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 910  
Permanent link to this record
 

 
Author Schmitt, Sylvain ; Tysklind, Niklas ; Hérault, Bruno ; Heuertz, Myriam doi  openurl
  Title Topography drives microgeographic adaptations of closely related species in two tropical tree species complexes Type Journal Article
  Year 2021 Publication Molecular Ecology Abbreviated Journal  
  Volume 30 Issue 20 Pages 5080-5093  
  Keywords  
  Abstract Closely related tree species that grow in sympatry are abundant in rainforests. However, little is known of the ecoevolutionary processes that govern their niches and local coexistence. We assessed genetic species delimitation in closely related sympatric species belonging to two Neotropical tree species complexes and investigated their genomic adaptation to a fine-scale topographic gradient with associated edaphic and hydrologic features. Combining LiDAR-derived topography, tree inventories, and single nucleotide polymorphisms (SNPs) from gene capture experiments, we explored genome-wide population genetic structure, covariation of environmental variables, and genotype-environment association to assess microgeographic adaptations to topography within the species complexes Symphonia (Clusiaceae), and Eschweilera (Lecythidaceae) with three species per complex and 385 and 257 individuals genotyped, respectively. Within species complexes, closely related tree species had different realized optima for topographic niches defined through the topographic wetness index or the relative elevation, and species displayed genetic signatures of adaptations to these niches. Symphonia species were genetically differentiated along water and nutrient distribution particularly in genes responding to water deprivation, whereas Eschweilera species were genetically differentiated according to soil chemistry. Our results suggest that varied topography represents a powerful driver of processes modulating tropical forest biodiversity with differential adaptations that stabilize local coexistence of closely related tree species.  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1045  
Permanent link to this record
 

 
Author Seibold, Sebastien ; Rammer, Werner ; Hothorn, Torsten ; Seidl, Rupert ; Ulyshen, Michael ; Lorz, Janina ; Cadotte, Marc ; Lindenmayer, David ; Adhikari, Yagya ; Aragón, Roxana ; Bae, Soyeon ; Baldrian, Petr ; Barimani Varandi, Hassan ; Barlow, Jos ; Bässler, Clauss ; Beauchêne, Jacques ; and all ................... doi  openurl
  Title The contribution of insects to global forest deadwood decomposition Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal  
  Volume 597 Issue 7874 Pages 77-81  
  Keywords  
  Abstract The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.  
  Address  
  Corporate Author Thesis  
  Publisher NATURE PUBLISHING GROUP Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 1046  
Permanent link to this record
 

 
Author Marcon, E. url  doi
openurl 
  Title Entropy as a common measure of biodiversity and the spatial structure of economic activity Type Journal Article
  Year 2019 Publication Revue Economique Abbreviated Journal Rev. Econ.  
  Volume 70 Issue 3 Pages 305-326  
  Keywords Diversity; Economic geography; Spatial concentration; Specialization  
  Abstract Measures of spatial concentration and specialization in economics are similar to those of biodiversity and ubiquity of species in ecology. Entropy is the fundamental tool that originated in statistical physics and information theory. The definition of number equivalents or effective numbers, that is the number of types in an ideal, simplified distribution, is introduced along with the partitioning of the joint diversity of a bi-dimensional distribution into absolute and relative concentration or specialization and replication. The whole framework is theoretically robust and allows measuring the spatial structure of a discrete space.  
  Address AgroParisTech, UMR Écologie des forêts de Guyane, CNRS, Cirad, INRA, Université des Antilles, Université de Guyane, Campus Agronomique, BP 701, Kourou, 97310, French Guiana  
  Corporate Author Thesis  
  Publisher Presses de Sciences Po Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00352764 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 912  
Permanent link to this record
 

 
Author Chave, J.; Piponiot, C.; Maréchaux, I.; de Foresta, H.; Larpin, D.; Fischer, F.J.; Derroire, G.; Vincent, G.; Hérault, B. url  doi
openurl 
  Title Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics Type Journal Article
  Year 2020 Publication Ecological Applications Abbreviated Journal Ecol. Appl.  
  Volume 30 Issue 1 Pages e02004  
  Keywords biomass; carbon; forest; French Guiana; regeneration; secondary forests; tropics; accumulation rate; Bayesian analysis; biomass; carbon sequestration; chronosequence; fertility; old-growth forest; pioneer species; regeneration; secondary forest; Costa Rica; French Guiana; Guyana Shield; Goupia glabra; Laetia procera; Xylopia  
  Abstract Secondary forests are a prominent component of tropical landscapes, and they constitute a major atmospheric carbon sink. Rates of carbon accumulation are usually inferred from chronosequence studies, but direct estimates of carbon accumulation based on long-term monitoring of stands are rarely reported. Recent compilations on secondary forest carbon accumulation in the Neotropics are heavily biased geographically as they do not include estimates from the Guiana Shield. We analysed the temporal trajectory of aboveground carbon accumulation and floristic composition at one 25-ha secondary forest site in French Guiana. The site was clear-cut in 1976, abandoned thereafter, and one large plot (6.25 ha) has been monitored continuously since. We used Bayesian modeling to assimilate inventory data and simulate the long-term carbon accumulation trajectory. Canopy change was monitored using two aerial lidar surveys conducted in 2009 and 2017. We compared the dynamics of this site with that of a surrounding old-growth forest. Finally, we compared our results with that from secondary forests in Costa Rica, which is one of the rare long-term monitoring programs reaching a duration comparable to our study. Twenty years after abandonment, aboveground carbon stock was 64.2 (95% credibility interval 46.4, 89.0) Mg C/ha, and this stock increased to 101.3 (78.7, 128.5) Mg C/ha 20 yr later. The time to accumulate one-half of the mean aboveground carbon stored in the nearby old-growth forest (185.6 [155.9, 200.2] Mg C/ha) was estimated at 35.0 [20.9, 55.9] yr. During the first 40 yr, the contribution of the long-lived pioneer species Xylopia nitida, Goupia glabra, and Laetia procera to the aboveground carbon stock increased continuously. Secondary forest mean-canopy height measured by lidar increased by 1.14 m in 8 yr, a canopy-height increase consistent with an aboveground carbon accumulation of 7.1 Mg C/ha (or 0.89 Mg C·ha−1·yr−1) during this period. Long-term AGC accumulation rate in Costa Rica was almost twice as fast as at our site in French Guiana. This may reflect higher fertility of Central American forest communities or a better adaptation of the forest tree community to intense and frequent disturbances. This finding may have important consequences for scaling-up carbon uptake estimates to continental scales.  
  Address INPHB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19395582 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 914  
Permanent link to this record
 

 
Author Do, N.A.; Dias, D.; Zhang, Z.; Huang, X.; Nguyen, T.T.; Pham, V.V.; Nait-Rabah, O. url  doi
openurl 
  Title Study on the behavior of squared and sub-rectangular tunnels using the Hyperstatic Reaction Method Type Journal Article
  Year 2020 Publication Transportation Geotechnics Abbreviated Journal Transp. Geotech.  
  Volume 22 Issue 100321 Pages  
  Keywords Finite element method; Lining; Squared shape; Sub-rectangular shape; Tunnel; efficiency measurement; finite element method; numerical model; transportation development; transportation planning; tunnel design; tunnel lining  
  Abstract  
  Address Saint-Petersburg Mining University, Russian Federation  
  Corporate Author Thesis  
  Publisher Elsevier Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 22143912 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 915  
Permanent link to this record
 

 
Author Soong, J.L.; Janssens, I.A.; Grau, O.; Margalef, O.; Stahl, C.; Van Langenhove, L.; Urbina, I.; Chave, J.; Dourdain, A.; Ferry, B.; Freycon, V.; Herault, B.; Sardans, J.; Peñuelas, J.; Verbruggen, E. url  doi
openurl 
  Title Soil properties explain tree growth and mortality, but not biomass, across phosphorus-depleted tropical forests Type Journal Article
  Year 2020 Publication Scientific reports Abbreviated Journal Sci Rep  
  Volume 10 Issue 2302 Pages  
  Keywords  
  Abstract We observed strong positive relationships between soil properties and forest dynamics of growth and mortality across twelve primary lowland tropical forests in a phosphorus-poor region of the Guiana Shield. Average tree growth (diameter at breast height) increased from 0.81 to 2.1 mm yr-1 along a soil texture gradient from 0 to 67% clay, and increasing metal-oxide content. Soil organic carbon stocks in the top 30 cm ranged from 30 to 118 tons C ha-1, phosphorus content ranged from 7 to 600 mg kg-1 soil, and the relative abundance of arbuscular mycorrhizal fungi ranged from 0 to 50%, all positively correlating with soil clay, and iron and aluminum oxide and hydroxide content. In contrast, already low extractable phosphorus (Bray P) content decreased from 4.4 to <0.02 mg kg-1 in soil with increasing clay content. A greater prevalence of arbuscular mycorrhizal fungi in more clayey forests that had higher tree growth and mortality, but not biomass, indicates that despite the greater investment in nutrient uptake required, soils with higher clay content may actually serve to sustain high tree growth in tropical forests by avoiding phosphorus losses from the ecosystem. Our study demonstrates how variation in soil properties that retain carbon and nutrients can help to explain variation in tropical forest growth and mortality, but not biomass, by requiring niche specialization and contributing to biogeochemical diversification across this region.  
  Address Institut National Polytechnique Félix Houphouët-Boigny, Ivory CoastYamoussoukro, Cote d'Ivoire  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes (up) Approved no  
  Call Number EcoFoG @ webmaster @ Serial 916  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: