|   | 
Details
   web
Records
Author Shepard, W.D.; Clavier, S.; Cerdan, A.
Title A generic key to the known larval elmidae (Insecta: Coleoptera) of French Guiana Type Journal Article
Year 2020 Publication Papeis Avulsos de Zoologia Abbreviated Journal Pap. Avulsos Zool.
Volume 60 Issue Special Pages e202060
Keywords Biodiversity; Identification; Immatures; Neotropical; Survey
Abstract An identification key is provided for 21 larval types of Elmidae (riffle beetles) known to occur in French Guiana. Not all elmid genera known to occur in French Guiana are known in the larval stage. Nor are all the known larval types assigned to known elmid genera. © 2020, Universidade de Sao Paulo. All rights reserved.
Address CNRS, UMR EcoFog (AgroParisTech, CIRAD, INRA, Université des Antilles, Université de Guyane), Kourou Cedex, France
Corporate Author Thesis
Publisher Universidade de Sao Paulo Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 00311049 (Issn) ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 980
Permanent link to this record
 

 
Author Sommeria-Klein, G.; Zinger, L.; Coissac, E.; Iribar, A.; Schimann, H.; Taberlet, P.; Chave, J.
Title Latent Dirichlet Allocation reveals spatial and taxonomic structure in a DNA-based census of soil biodiversity from a tropical forest Type Journal Article
Year 2020 Publication Molecular Ecology Resources Abbreviated Journal Mol. Ecol. Resour.
Volume 20 Issue 2 Pages 371-386
Keywords community ecology; environmental DNA; metabarcoding; OTU presence–absence; soil microbiome; topic modelling; bacterium; biodiversity; biology; classification; eukaryote; fungus; genetics; high throughput sequencing; isolation and purification; microbiology; parasitology; procedures; soil; Bacteria; Biodiversity; Computational Biology; Eukaryota; Fungi; High-Throughput Nucleotide Sequencing; Soil; Soil Microbiology
Abstract High-throughput sequencing of amplicons from environmental DNA samples permits rapid, standardized and comprehensive biodiversity assessments. However, retrieving and interpreting the structure of such data sets requires efficient methods for dimensionality reduction. Latent Dirichlet Allocation (LDA) can be used to decompose environmental DNA samples into overlapping assemblages of co-occurring taxa. It is a flexible model-based method adapted to uneven sample sizes and to large and sparse data sets. Here, we compare LDA performance on abundance and occurrence data, and we quantify the robustness of the LDA decomposition by measuring its stability with respect to the algorithm's initialization. We then apply LDA to a survey of 1,131 soil DNA samples that were collected in a 12-ha plot of primary tropical forest and amplified using standard primers for bacteria, protists, fungi and metazoans. The analysis reveals that bacteria, protists and fungi exhibit a strong spatial structure, which matches the topographical features of the plot, while metazoans do not, confirming that microbial diversity is primarily controlled by environmental variation at the studied scale. We conclude that LDA is a sensitive, robust and computationally efficient method to detect and interpret the structure of large DNA-based biodiversity data sets. We finally discuss the possible future applications of this approach for the study of biodiversity. © 2019 John Wiley & Sons Ltd
Address Laboratoire d’Ecologie des Forêts de Guyane (EcoFoG, UMR 745), INRA, AgroParisTech, CIRAD, CNRS, University of the French West Indies, University of French Guiana, Kourou, France
Corporate Author Thesis
Publisher Blackwell Publishing Ltd Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755098x (Issn) ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 981
Permanent link to this record
 

 
Author Urbina, I.; Grau, O.; Sardans, J.; Ninot, J.M.; Peñuelas, J.
Title Encroachment of shrubs into subalpine grasslands in the Pyrenees changes the plant-soil stoichiometry spectrum Type Journal Article
Year 2020 Publication Plant and Soil Abbreviated Journal Plant Soil
Volume 448 Issue 1-2 Pages 37-53
Keywords Nutrient stocks; Plant strategy; Plant-soil stoichiometry; Shrub encroachment; Subalpine grassland succession; aboveground biomass; biogeochemical cycle; carbon sequestration; ectomycorrhiza; fungus; grass; nitrogen; nutrient uptake; shrub; soil-vegetation interaction; stoichiometry; subalpine environment; succession; Europe; Pyrenees; Fungi
Abstract Aims: Shrub encroachment has been reported over a large proportion of the subalpine grasslands across Europe and is expected to have an important impact on the biogeochemical cycle of these ecosystems. We investigated the stoichiometric changes in the plant-soil system along the succession (e.g. increase in encroachment from unencroached grassland to mature shrubland) at two contrasting sites in the Pyrenees. Methods: We analyzed the chemical composition (C, N,15N, P, K, Ca, Mg and Fe) in the soil and in the aboveground plant compartments (leaves, leaf-litter and stems) of the main herbaceous species and shrubs at three contrasting stages of the succession: unencroached grassland, young shrubland and mature shrubland. Results: The plant-soil stoichiometry spectrum differed between the successional stages. Shrub encroachment generally increased the concentration of C and Ca and the C:N ratio and often reduced to concentrations of N, P and K in the leaves and leaf-litter, while several soil nutrient concentrations (N, P, K Ca and Mg) decreased. The stocks of C, N, P, Ca, and Mg in the total aboveground biomass increased with encroachment. Conclusions: Shrub encroachment favored the dominance of long-lived species with low concentrations of N and P in the plant-soil compartments, high C:nutrient ratios in the aboveground biomass and increase the uptake of N through ericoid or ectomycorrhizal fungi. We highlight the role of shrubs in the sequestration of C and nutrients through the allocation to the aboveground biomass. The changes in plant-soil elemental composition and stocks suggest a slowdown of the biogeochemical cycles in the subalpine mountain areas where shrub encroachment occurred. © 2020, Springer Nature Switzerland AG.
Address Biodiversity Research Institute (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Catalonia, Spain
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032079x (Issn) ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 983
Permanent link to this record
 

 
Author Guzman, Laura Melissa ; Trzcinski, M. Kurtis ; Barberis, Ignacio M. ; Cereghino, Régis ; Srivastava, Diane S. ; Gilbert Benjamin ; Pillar, Valerio D. ; de Omena, Paula M. ; MacDonald, A. Andrew M. ; Corbara, Bruno ; Leroy, Celine ; Bautista, Fabiola Ospina ; Romero, Gustavo Q. ; Kratina, Pavel ; Debastiani, Vanderlei J. ; Gonialves, Ana Z. ; Marino, Nicholas A.C. ; Farjalla, Vinicius F. ; Richardson, Barbara A. ; Richardson, Michael J. ; Dézerald, Olivier ; Piccoli, Gustavo, C. O. ; Jocqué, Merlijn ; Montero, Guillermo
Title Climate influences the response of community functional traits to local conditions in bromeliad invertebrate communities Type Journal Article
Year 2021 Publication Ecography Abbreviated Journal
Volume 44 Issue 3 Pages 440-452
Keywords
Abstract Functional traits determine an organism's performance in a given environment and as such determine which organisms will be found where. Species respond to local conditions, but also to larger scale gradients, such as climate. Trait ecology links these responses of species to community composition and species distributions. Yet, we often do not know which environmental gradients are most important in determining community trait composition at either local or biogeographical scales, or their interaction. Here we quantify the relative contribution of local and climatic conditions to the structure and composition of functional traits found within bromeliad invertebrate communities. We conclude that climate explains more variation in invertebrate trait composition within bromeliads than does local conditions. Importantly, climate mediated the response of traits to local conditions; for example, invertebrates with benthic life-history traits increased with bromeliad water volume only under certain precipitation regimes. Our ability to detect this and other patterns hinged on the compilation of multiple fine-grained datasets, allowing us to contrast the effect of climate versus local conditions. We suggest that, in addition to sampling communities at local scales, we need to aggregate studies that span large ranges in climate variation in order to fully understand trait filtering at local, regional and global scales.
Address
Corporate Author Thesis
Publisher Nordic Society OIKOS Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 1013
Permanent link to this record
 

 
Author Agrawal, Anurag A. ; Boroczky, Katalin ; Haribal, Meena ; Hastings, Amy P. ; White, Ronald, A. ; Jiang, Ren-Wang ; Duplais, Christophe
Title Cardenolides, toxicity, and the costs of sequestration in the coevolutionary interaction between monarchs and milkweeds Type Journal Article
Year 2021 Publication PNAS Abbreviated Journal
Volume 118 Issue 16 Pages e2024463118
Keywords
Abstract For highly specialized insect herbivores, plant chemical defenses are often co-opted as cues for oviposition and sequestration. In such interactions, can plants evolve novel defenses, pushing herbivores to trade off benefits of specialization with costs of coping with toxins? We tested how variation in milkweed toxins (cardenolides) impacted monarch butterfly ( Danaus plexippus ) growth, sequestration, and oviposition when consuming tropical milkweed ( Asclepias curassavica ), one of two critical host plants worldwide. The most abundant leaf toxin, highly apolar and thiazolidine ring–containing voruscharin, accounted for 40% of leaf cardenolides, negatively predicted caterpillar growth, and was not sequestered. Using whole plants and purified voruscharin, we show that monarch caterpillars convert voruscharin to calotropin and calactin in vivo, imposing a burden on growth. As shown by in vitro experiments, this conversion is facilitated by temperature and alkaline pH. We next employed toxin-target site experiments with isolated cardenolides and the monarch’s neural Na + /K + -ATPase, revealing that voruscharin is highly inhibitory compared with several standards and sequestered cardenolides. The monarch’s typical >50-fold enhanced resistance to cardenolides compared with sensitive animals was absent for voruscharin, suggesting highly specific plant defense. Finally, oviposition was greatest on intermediate cardenolide plants, supporting the notion of a trade-off between benefits and costs of sequestration for this highly specialized herbivore. There is apparently ample opportunity for continued coevolution between monarchs and milkweeds, although the diffuse nature of the interaction, due to migration and interaction with multiple milkweeds, may limit the ability of monarchs to counteradapt.
Address
Corporate Author Thesis
Publisher National Academy of Sciences Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 1014
Permanent link to this record
 

 
Author Coutant, Opale ; Richard-Hansen, Cecile ; de Thoisy, Benoit ; Decotte, Jean-Baptiste ; Valentini, Alice ; Dejean, Tony ; Vigouroux, Régis ; Murienne, Jérôme ; Brosse, Sébastien
Title Amazonian mammal monitoring using aquatic environmental DNA Type Journal Article
Year 2021 Publication Molecular Ecology Resources Abbreviated Journal
Volume 21 Issue 6 Pages 1875-1888
Keywords
Abstract Environmental DNA (eDNA) metabarcoding has emerged as one of the most efficient methods to assess aquatic species presence. While the method can in theory be used to investigate nonaquatic fauna, its development for inventorying semi-aquatic and terrestrial fauna is still at an early stage. Here we investigated the potential of aquatic eDNA metabarcoding for inventorying mammals in Neotropical environments, be they aquatic, semi-aquatic or terrestrial. We collected aquatic eDNA in 96 sites distributed along three Guianese watersheds and compared our inventories to expected species distributions and field observations derived from line transects located throughout French Guiana. Species occurrences and emblematic mammalian fauna richness patterns were consistent with the expected distribution of fauna and our results revealed that aquatic eDNA metabarcoding brings additional data to line transect samples for diurnal nonaquatic (terrestrial and arboreal) species. Aquatic eDNA also provided data on species not detectable in line transect surveys such as semi-aquatic, aquatic and nocturnal terrestrial and arboreal species. Although the application of eDNA to inventory mammals still needs some developments to optimize sampling efficiency, it can now be used as a complement to traditional surveys.
Address
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 1015
Permanent link to this record
 

 
Author Hiltner, Ulrike ; Huth, Andreas ; Hérault, Bruno ; Holtmann, Anne ; Brauning, Achim ; Fischer, Rico
Title Climate change alters the ability of neotropical forests to provide timber and sequester carbon Type Journal Article
Year 2021 Publication Forest Ecology and Management Abbreviated Journal
Volume 492 Issue Pages 119166
Keywords Exploitation forestière ; Changement climatique ; séquestration du carbone ; Production du bois ; Atténuation des effets du changement climatique ; gestion forestière durable ; forêt tropicale ; Région néotropicale ; Biomasse ; biomasse aérienne des arbres ; gestion de la santé des forêts ; modèle de croissance forestière ; biodiversité forestière
Abstract Logging is widespread in tropical regions, with approximately 50% of all humid tropical forests (1.73 × 109 ha) regarded as production forests. To maintain the ecosystem functions of carbon sequestration and timber supply in tropical production forests over a long term, forest management must be sustainable under changing climate conditions. Individual-based forest models are useful tools to enhance our understanding about the long-term effects of harvest and climate change on forest dynamics because they link empirical field data with simulations of ecological processes. The objective of this study is to analyze the combined effects of selective logging and climate change on biomass stocks and timber harvest in a tropical forest in French Guiana. By applying a forest model, we simulated natural forest dynamics under the baseline scenario of current climate conditions and compared the results with scenarios of selective logging under climate change. The analyses revealed how substantially forest dynamics are altered
under different scenarios of climate change. (1) Repeated logging within recovery times decreased biomass and timber harvest, irrespective of the intensity of climate change. (2) With moderate climate change as envisaged by the 5th IPCC Assessment Report (representative concentration pathway 2.6), the average biomass remained the same as in the baseline scenario (−1%), but with intensive climate change (RCP 8.5), the average biomass decreased by 12%. (3) The combination of selective logging and climate change increased the likelihood of changes in forest dynamics, driven mainly by rising temperatures. Under RCP 8.5, the average timber harvest was almost halved, regardless of the logging cycle applied. An application-oriented use of forest models will help to identify opportunities to reduce the effects of unwanted ecosystem changes in a changing environment. To ensure that ecosystem functions in production forests are maintained under climate change conditions, appropriate management strategies will help to maintain biomass and harvest in production forests.
Address
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 1016
Permanent link to this record
 

 
Author Sellan, G. ; Brearley, FQ. ; Nilus, R. ; Ttin, J. ; Majalap-Lee, N.
Title Differences in soil properties among contrasting soil types in Northern Borneo Type Journal Article
Year 2021 Publication Journal of Tropical Forest Science Abbreviated Journal
Volume 33 Issue 2 Pages 191-202
Keywords
Abstract Soil in the tropics is high in diversity, and despite the diversity of Borneo’s forest–soil associations, there is a paucity of data on its soil properties. We investigated the differences between three soil types in the Kabili–Sepilok Forest Reserve, Sabah, Malaysia, encompassing the contrasting alluvial, sandstone and heath forest typologies. We examined the distribution of nutrients between soil types and through soil depths, and assessed the extent of spatial autocorrelation in the three soil types. We confirmed the fertility gradient from alluvial to heath forest soil found by others. Soil elemental concentrations declined in deeper horizons with the exception of exchangeable sodium and aluminium that remained constant through alluvial and sandstone soil profiles. Spatial autocorrelation was present in all three soil types and strongest in the sandstone soil. Overall, we show how bedrock, erosion, leaching and topography influence soil properties across this mosaic of soil types and note their importance in influencing tree communities and their ecological functioning.
Address
Corporate Author Thesis
Publisher FOREST RESEARCH INST MALAYSIA Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0128-1283 ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 1017
Permanent link to this record
 

 
Author Schmitt, Sylvain ; Derroire, Géraldine ; Tysklind, Niklas ; Heuertz, Myriam ; Hérault, Bruno
Title Topography shapes the local coexistence of tree species within species complexes of Neotropical forests Type Journal Article
Year 2021 Publication Oecologia Abbreviated Journal
Volume 196 Issue Pages 389-398
Keywords
Abstract Forest inventories in Amazonia include around 5000 described tree species belonging to more than 800 genera. Numerous species-rich genera share genetic variation among species because of recent speciation and/or recurrent hybridisation, forming species complexes. Despite the key role that tree species complexes play in understanding Neotropical diversification, and their need to exploit a diversity of niches, little is known about the mechanisms that allow local coexistence of tree species complexes and their species in sympatry. In this study, we explored the fine-scale distribution of five tree species complexes and 22 species within these complexes. Combining forest inventories, botanical determination, and LiDAR-derived topographic data over 120 ha of permanent plots in French Guiana, we used a Bayesian modelling framework to test the role of fine-scale topographic wetness and tree neighbourhood on the occurrence of species complexes and the relative distribution of species within complexes. Species complexes of Neotropical trees were widely spread across the topographic wetness gradient at the local scale. Species within complexes showed pervasive niche differentiation along with topographic wetness and competition gradients. Similar patterns of species-specific habitat preferences were observed within several species complexes: species more tolerant to competition for resources grow in drier and less fertile plateaus and slopes. If supported by partial reproductive isolation of species and adaptive introgression at the species complex level, our results suggest that both species-specific habitat specialisation within species complexes and the broad ecological distribution of species complexes might explain the success of these species complexes at the regional scale.
Address
Corporate Author Thesis
Publisher Springer Link Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 1018
Permanent link to this record
 

 
Author Derroire, Géraldine ; Piponiot, Camille ; Descroix, Laurent ; Bedeau, Caroline ; Traissac, Stéphane ; Brunaux, Olivier ; Hérault, Bruno
Title Prospective carbon balance of the wood sector in a tropical forest territory using a temporally-explicit model Type Journal Article
Year 2021 Publication Forest Ecology and Management Abbreviated Journal
Volume 497 Issue Pages
Keywords Exploitation forestière, Production du bois, Modélisation environnementale, planification de la gestion forestière, forêt tropicale, Aménagement forestier, Plantations, Évaluation de l'impac
Abstract Selective logging in tropical forests is often perceived as a source of forest degradation and carbon emissions. Improved practices, such as reduced-impact logging (RIL), and alternative timber production strategies (e.g. plantations) can drastically change the overall carbon impact of the wood production sector. Assessing the carbon balance of timber production is crucial but highly dependent on methodological approaches, especially regarding system boundaries and temporality. We developed a temporally-explicit and territory scale model of carbon balance calibrated with long-term local data using Bayesian inference. The model accounts for carbon fluxes from selective logging in natural forest, timber plantation, first transformation and avoided emissions through energy substitution. We used it to compare prospective scenarios of development for the wood sector in French Guiana. Results show that intensification of practices, through increased logging intensity conducted with RIL and establishment of timber plantations, are promising development strategies to reduce the carbon emissions of the French-Guianese wood sector, as well as the area needed for wood production and hence the pressure on natural forests. By reducing logging damage by nearly 50%, RIL allows increasing logging intensity in natural forest from 20 m3 ha−1 to 30 m3 ha−1 without affecting the carbon balance. The use of logging byproducts as fuelwood also improved the carbon balance of selective logging, when substituted to fossil fuel. Allocating less than 30 000 ha to plantation would allow producing 200 000 m3 of timber annually, while the same production in natural forest would imply logging more than 400 000 ha over 60 years. Timber plantation should be preferentially established on non-forested lands, as converting natural forests to plantation leads to high carbon emission peak over the first three decades. We recommend a mixed-strategy combining selective logging in natural forests and plantations as a way to improve long-term carbon balance while reducing short-term emissions. This strategy can reduce the pressure on natural forests while mitigating the risks of changing practices and allowing a diversified source of timber for a diversity of uses. It requires adaptation of the wood sector and development of technical guidelines. Research and monitoring efforts are also needed to assess the impacts of changing practices on other ecosystem services, especially biodiversity conservation.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) Approved no
Call Number EcoFoG @ webmaster @ Serial 1019
Permanent link to this record