toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Malé, P.-J.G.; Ferdy, J.-B.; Leroy, C.; Roux, O.; Lauth, J.; Avilez, A.; Dejean, A.; Quilichini, A.; Orivel, J. url  openurl
  Title Retaliation in Response to Castration Promotes a Low Level of Virulence in an Ant-Plant Mutualism Type Journal Article
  Year 2014 Publication Evolutionary Biology Abbreviated Journal Evol. Biol.  
  Volume 41 Issue 1 Pages 22-28  
  Keywords (up) Allomerus decemarticulatus; Cheater; Evolutionary conflict; Hirtella physophora; Mutualism breakdown; Overexploitation  
  Abstract The diversion of a host's energy by a symbiont for its own benefit is a major source of instability in horizontally-transmitted mutualisms. This instability can be counter-balanced by the host's retaliation against exploiters. Such responses are crucial to the maintenance of the relationship. We focus on this issue in an obligate ant-plant mutualism in which the ants are known to partially castrate their host plant. We studied plant responses to various levels of castration in terms of (1) global vegetative investment and (2) investment in myrmecophytic traits. Castration led to a higher plant growth rate, signalling a novel case of gigantism induced by parasitic castration. On the other hand, completely castrated plants produced smaller nesting and food resources (i.e. leaf pouches and extra floral nectaries). Since the number of worker larvae is correlated to the volume of the leaf pouches, such a decrease in the investment in myrmecophytic traits demonstrates for the first time the existence of inducible retaliation mechanisms against too virulent castrating ants. Over time, this mechanism promotes an intermediate level of castration and enhances the stability of the mutualistic relationship by providing the ants with more living space while allowing the plant to reproduce. © 2013 Springer Science+Business Media New York.  
  Address Laboratoire Evolution and Diversité Biologique, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00713260 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 10 March 2014; Source: Scopus; Language of Original Document: English; Correspondence Address: Malé, P.-J. G.; Laboratoire Evolution and Diversité Biologique, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France; email: pjg.male@gmail.com Approved no  
  Call Number EcoFoG @ webmaster @ Serial 533  
Permanent link to this record
 

 
Author Grangier, J.; Dejean, A.; Male, P.J.G.; Solano, P.J.; Orivel, J. openurl 
  Title Mechanisms driving the specificity of a myrmecophyte-ant association Type Journal Article
  Year 2009 Publication Biological Journal of the Linnean Society Abbreviated Journal Biol. J. Linnean Soc.  
  Volume 97 Issue 1 Pages 90-97  
  Keywords (up) Allomerus decemarticulatus; exclusion filters; Hirtella physophora; horizontal transmission; host recognition; mutualism  
  Abstract In the understory of pristine Guianese forests, the myrmecophyte Hirtella physophora almost exclusively shelters colonies of the plant-ant Allomerus decemarticulatus in its leaf pouches. We experimentally tested three non-mutually exclusive hypotheses concerning phenomena that can determine the species specificity of this association throughout the foundation stage of the colonies: (1) interspecific competition results in the overwhelming presence of A. decemarticulatus queens or incipient colonies; (2) exclusion filters prevent other ant species from entering the leaf pouches; and (3) host-recognition influences the choice of founding queens, especially A. decemarticulatus. Neither interspecific competition, nor the purported exclusion filters that we examined play a major role in maintaining the specificity of this association. Unexpectedly, the plant trichomes lining the domatia appear to serve as construction material during claustral foundation rather than as a filter. Finally, A. decemarticulatus queens are able to identify their host plant from a distance through chemical and/or visual cues, which is rarely demonstrated in studies on obligatory ant-plant associations. We discuss the possibility that this specific host-recognition ability could participate in shaping a compartmentalized plant-ant community where direct competition between ant symbionts is limited. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 90-97.  
  Address [Grangier, Julien; Male, Pierre-Jean G.; Orivel, Jerome] Univ Toulouse 3, Lab Evolut & Divers Biol, CNRS, UMR 5174, F-31062 Toulouse 9, France, Email: grangier@cict.fr  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0024-4066 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000265406800008 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 114  
Permanent link to this record
 

 
Author Ruiz-Gonzalez, M.X.; Corbara, B.; Leroy, C.; Dejean, A.; Orivel, J. openurl 
  Title The Weaver Wasp: Spinning Fungus into a Nest Type Journal Article
  Year 2010 Publication Biotropica Abbreviated Journal Biotropica  
  Volume 42 Issue 4 Pages 402-404  
  Keywords (up) Allomerus decemarticulatus; French Guiana; Hirtella physophora; nest architecture; Nitela constructor; wasp biology  
  Abstract Wasp nests range from simple to complex structures made of paper or mud. Here, we show that a Neotropical wasp of the genus Nitela builds its nest entirely by weaving endophytic fungal hyphae and spider silk harvested from the leaves growing in the understory of the rain forest in French Guiana.  
  Address [Ruiz-Gonzalez, Mario X.; Orivel, Jerome] Univ Toulouse, UPS, EDB, Lab Evolut & Divers Biol, F-31062 Toulouse, France, Email: orivel@cict.fr  
  Corporate Author Thesis  
  Publisher WILEY-BLACKWELL PUBLISHING, INC Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3606 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000279438900002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 54  
Permanent link to this record
 

 
Author Grangier, J.; Dejean, A.; Male, P.J.G.; Orivel, J. openurl 
  Title Indirect defense in a highly specific ant-plant mutualism Type Journal Article
  Year 2008 Publication Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 95 Issue 10 Pages 909-916  
  Keywords (up) Allomerus decemarticulatus; Hirtella physophora; indirect defense; myrmecophytes; optimal defense theory  
  Abstract Although associations between myrmecophytes and their plant ants are recognized as a particularly effective form of protective mutualism, their functioning remains incompletely understood. This field study examined the ant-plant Hirtella physophora and its obligate ant associate Allomerus decemarticulatus. We formulated two hypotheses on the highly specific nature of this association: (1) Ant presence should be correlated with a marked reduction in the amount of herbivory on the plant foliage; (2) ant activity should be consistent with the “optimal defense” theory predicting that the most vulnerable and valuable parts of the plant are the best defended. We validated the first hypothesis by demonstrating that for ant-excluded plants, expanding leaves, but also newly matured ones in the long term, suffered significantly more herbivore damage than ant-inhabited plants. We showed that A. decemarticulatus workers represent both constitutive and inducible defenses for their host, by patrolling its foliage and rapidly recruiting nestmates to foliar wounds. On examining how these activities change according to the leaves' developmental stage, we found that the number of patrolling ants dramatically decreased as the leaves matured, while leaf wounds induced ant recruitment regardless of the leaf's age. The resulting level of these indirect defenses was roughly proportional to leaf vulnerability and value during its development, thus validating our second hypothesis predicting optimal protection. This led us to discuss the factors influencing ant activity on the plant's surface. Our study emphasizes the importance of studying both the constitutive and inducible components of indirect defense when evaluating its efficacy and optimality.  
  Address [Grangier, Julien; Dejean, Alain; Male, Pierre-Jean G.; Orivel, Jerome] Univ Toulouse 3, Lab Evolut & Diversite Biol, CNRS, UMR 5174, F-31062 Toulouse 9, France, Email: grangier@cict.fr  
  Corporate Author Thesis  
  Publisher SPRINGER Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000259737600002 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 207  
Permanent link to this record
 

 
Author Orivel, J.; Lambs, L.; Male, P.J.G.; Leroy, C.; Grangier, J.; Otto, T.; Quilichini, A.; Dejean, A. openurl 
  Title Dynamics of the association between a long-lived understory myrmecophyte and its specific associated ants Type Journal Article
  Year 2011 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 165 Issue 2 Pages 369-376  
  Keywords (up) Allomerus decemarticulatus; Hirtella physophora; Lifespan; Mutualism; Myrmecophyte  
  Abstract Myrmecophytic symbioses are widespread in tropical ecosystems and their diversity makes them useful tools for understanding the origin and evolution of mutualisms. Obligate ant-plants, or myrmecophytes, provide a nesting place, and, often, food to a limited number of plant-ant species. In exchange, plant-ants protect their host plants from herbivores, competitors and pathogens, and can provide them with nutrients. Although most studies to date have highlighted a similar global pattern of interactions in these systems, little is known about the temporal structuring and dynamics of most of these associations. In this study we focused on the association between the understory myrmecophyte Hirtella physophora (Chrysobalanaceae) and its obligate ant partner Allomerus decemarticulatus (Myrmicinae). An examination of the life histories and growth rates of both partners demonstrated that this plant species has a much longer lifespan (up to about 350 years) than its associated ant colonies (up to about 21 years). The size of the ant colonies and their reproductive success were strongly limited by the available nesting space provided by the host plants. Moreover, the resident ants positively affected the vegetative growth of their host plant, but had a negative effect on its reproduction by reducing the number of flowers and fruits by more than 50%. Altogether our results are important to understanding the evolutionary dynamics of ant-plant symbioses. The highly specialized interaction between long-lived plants and ants with a shorter lifespan produces an asymmetry in the evolutionary rates of the interaction which, in return, can affect the degree to which the interests of the two partners converge.  
  Address [Orivel, Jerome; Leroy, Celine; Quilichini, Angelique; Dejean, Alain] CNRS, UMR Ecol Forets Guyane, F-97379 Kourou, France, Email: jerome.orivel@ecofog.gf  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286224900012 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 295  
Permanent link to this record
 

 
Author Falster, D.S.; Duursma, R.A.; Ishihara, M.I.; Barneche, D.R.; FitzJohn, R.G.; Vårhammar, A.; Aiba, M.; Ando, M.; Anten, N.; Aspinwall, M.J.; Baltzer, J.L.; Baraloto, C.; Battaglia, M.; Battles, J.J.; Lamberty, B.B.; Van Breugel, M.; Camac, J.; Claveau, Y.; Coll, L.; Dannoura, M.; Delagrange, S.; Domec, J.C.; Fatemi, F.; Feng, W.; Gargaglione, V.; Goto, Y.; Hagihara, A.; Hall, J.S.; Hamilton, S.; Harja, D.; Hiura, T.; Holdaway, R.; Hutley, L.B.; Ichie, T.; Jokela, E.J.; Kantola, A.; Kelly, J.W.G.; Kenzo, T.; King, D.; Kloeppel, B.D.; Kohyama, T.; Komiyama, A.; Laclau, J.P.; Lusk, C.H.; Maguire, D.A.; Le Maire, G.; Mäkelä, A.; Markesteijn, L.; Marshall, J.; McCulloh, K.; Miyata, I.; Mokany, K.; Mori, S.; Myster, R.W.; Nagano, M.; Naidu, S.L.; Nouvellon, Y.; O'Grady, A.P.; O'Hara, K.L.; Ohtsuka, T.; Osada, N.; Osunkoya, O.O.; Peri, P.L.; Petritan, A.M.; Poorter, L.; Portsmuth, A.; Potvin, C.; Ransijn, J.; Reid, D.; Ribeiro, S.C.; Roberts, S.D.; Rodríguez, R.; Acosta, A.S.; Santa-Regina, I.; Sasa, K.; Selaya, N.G.; Sillett, S.C.; Sterck, F.; Takagi, K.; Tange, T.; Tanouchi, H.; Tissue, D.; Umehara, T.; Utsugi, H.; Vadeboncoeur, M.A.; Valladares, F.; Vanninen, P.; Wang, J.R.; Wenk, E.; Williams, R.; De Aquino Ximenes, F.; Yamaba, A.; Yamada, T.; Yamakura, T.; Yanai, R.D.; York, R.A. url  doi
openurl 
  Title BAAD: a Biomass And Allometry Database for woody plants Type Journal Article
  Year 2015 Publication Ecology Abbreviated Journal Ecology  
  Volume 96 Issue 5 Pages 1445  
  Keywords (up) Allometric equations; Biomass allocation; Biomass partitioning; Global carbon cycle; Plant allometry; Plant traits  
  Abstract Understanding how plants are constructed; i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals; is essential for modeling plant growth, estimating carbon stocks, and mapping energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass and allometry database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at time of publication. Thus the BAAD contains individual level data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) inclusion of plants from 0.01-100 m in height; and (iii) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed subsampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem crosssection including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the world's vegetation.  
  Address Department of Disturbance Ecology, University of Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 September 2016 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 686  
Permanent link to this record
 

 
Author Levionnois, S.; Coste, S.; Nicolini, E.; Stahl, C.; Morel, H.; Heuret, P. url  doi
openurl 
  Title Scaling of petiole anatomies, mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae) Type Journal Article
  Year 2020 Publication Tree physiology Abbreviated Journal Tree Physiol.  
  Volume 40 Issue 2 Pages 245-258  
  Keywords (up) allometry; leaf size; petiole anatomy; scaling; theoretical hydraulic conductivity; vessel widening; xylem  
  Abstract Although the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling. We examined 1,271 leaves for morphological traits, and 124 leaves for anatomical and hydraulic traits, from 38 trees of Cecropia obtusa Trécul (Urticaceae) in French Guiana. Cecropia is a Neotropical genus of pioneer trees that can exhibit large laminas (0.4 m2 for C. obtusa), with leaf size ranging by two orders of magnitude. We measured (i) tissue fractions within petioles and their second moment of area, (ii) theoretical xylem hydraulic efficiency of petioles and (iii) the extent of leaf vessel widening within the hydraulic path. We found that different scaling of morphological trait variability allows for optimisation of lamina display among larger leaves, especially the positive allometric relationship between lamina area and petiole cross-sectional area. Increasing the fraction of pith is a key factor that increases the geometrical effect of supportive tissues on mechanical rigidity and thereby increases carbon-use efficiency. We found that increasing xylem hydraulic efficiency with vessel size results in lower leaf lamina area: xylem ratios, which also results in potential carbon savings for large leaves. We found that the vessel widening is consistent with hydraulic optimisation models. Leaf size variability modifies scaling of leaf traits in this large-leaved species. © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permission@oup.com.  
  Address UMR AMAP, CIRAD, CNRS, IRD, Université de Montpellier, Montpellier, 34398, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17584469 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 16 March 2020 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 921  
Permanent link to this record
 

 
Author Fortunel, C.; Violle, C.; Rourmet, C.; Buatois, B.; Navas, M.L.; Garnier, E. openurl 
  Title Allocation strategies and seed traits are hardly affected by nitrogen supply in 18 species differing in successional status Type Journal Article
  Year 2009 Publication Perspectives in Plant Ecology Evolution and Systematics Abbreviated Journal Perspect. Plant Ecol. Evol. Syst.  
  Volume 11 Issue 4 Pages 267-283  
  Keywords (up) Allometry; Reproductive output; Seed mass; Nitrogen concentration of organs; Succession; Nitrogen supply  
  Abstract Species performance depends on ecological strategies, revealed by suites of traits, conferring different relative ecological advantages in different environments. Although current knowledge on plant strategies along successional gradients is derived from studies conducted in situ, actually quantifying these strategies requires disentangling the effects of environmental factors from intrinsic differences between species. Here we tested whether allocation strategies and seed traits differ among successional stages and nitrogen levels. To this aim, we assessed biomass and nitrogen allocations and seed traits variations for 18 species, differing in life history and belonging to three stages of a Mediterranean old-field succession. These species were grown as monocultures in an experimental garden under limiting and non-limiting nitrogen supply. Early successional species allocated allometrically more nitrogen and proportionally more biomass to reproduction, and set more seeds than later successional species. Seed mass increased with successional status and was negatively related to seed number. Early successional species thus produced more but less-provisioned seeds, suggesting better colonization abilities. These patterns were not the sole consequence of the replacement of annuals by perennials along the successional gradient, since comparable trends were also observed within each life history. Allocation patterns were generally not altered by nitrogen supply and the higher nitrogen content in vegetative organs of plants grown under high nitrogen supply was not retranslocated from leaves to seeds during seed development. We therefore conclude that differences in plant ecological strategies in species characteristics from contrasting successional stages appear to be intrinsic properties of the studied species, and independent from environmental conditions. (c) 2009 Rubel Foundation, ETH Zurich. Published by Elsevier GmbH. All rights reserved.  
  Address [Fortunel, Claire; Violle, Cyrille; Rourmet, Catherine; Buatois, Bruno; Garnier, Eric] Ctr Ecol Fonct & Evolut, CNRS, UMR 5175, F-34293 Montpellier 5, France, Email: claire.fortunel@ecofog.gf  
  Corporate Author Thesis  
  Publisher ELSEVIER GMBH, URBAN & FISCHER VERLAG Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-8319 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000271799900003 Approved no  
  Call Number EcoFoG @ eric.marcon @ Serial 93  
Permanent link to this record
 

 
Author Binelli, G.; Montaigne, W.; Sabatier, D.; Scotti-Saintagne, C.; Scotti, I. doi  openurl
  Title Discrepancies between genetic and ecological divergence patterns suggest a complex biogeographic history in a Neotropical genus Type Journal Article
  Year 2020 Publication Ecology and Evolution Abbreviated Journal Ecology and Evolution  
  Volume 10 Issue 11 Pages 4726-4738  
  Keywords (up) allopatric divergence; Amazon; Guiana Shield; interspecific gene flow; Myristicaceae; secondary contact; Virola  
  Abstract Phylogenetic patterns and the underlying speciation processes can be deduced from morphological, functional, and ecological patterns of species similarity and divergence. In some cases, though, species retain multiple similarities and remain almost indistinguishable; in other cases, evolutionary convergence can make such patterns misleading; very often in such cases, the “true” picture only emerges from carefully built molecular phylogenies, which may come with major surprises. In addition, closely related species may experience gene flow after divergence, thus potentially blurring species delimitation. By means of advanced inferential methods, we studied molecular divergence between species of the Virola genus (Myristicaceae): widespread Virola michelii and recently described, endemic V. kwatae, using widespread V. surinamensis as a more distantly related outgroup with different ecology and morphology—although with overlapping range. Contrary to expectations, we found that the latter, and not V. michelii, was sister to V. kwatae. Therefore, V. kwatae probably diverged from V. surinamensis through a recent morphological and ecological shift, which brought it close to distantly related V. michelii. Through the modeling of the divergence process, we inferred that gene flow between V. surinamensis and V. kwatae stopped soon after their divergence and resumed later, in a classical secondary contact event which did not erase their ecological and morphological differences. While we cannot exclude that initial divergence occurred in allopatry, current species distribution and the absence of geographical barriers make complete isolation during speciation unlikely. We tentatively conclude that (a) it is possible that divergence occurred in allopatry/parapatry and (b) secondary contact did not suppress divergence. © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.  
  Address INRAE, URFM, Avignon, France  
  Corporate Author Thesis  
  Publisher John Wiley and Sons Ltd Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20457758 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 963  
Permanent link to this record
 

 
Author Sharma, K.; Degen, B.; Von Wuehlisch, G.; Singh, N.B. url  openurl
  Title Allozyme variation in eight natural populations of Pinus roxburghii Sarg. in India Type Journal Article
  Year 2002 Publication Silvae Genetica Abbreviated Journal Silvae Genet.  
  Volume 51 Issue 5-6 Pages 246-253  
  Keywords (up) Allozymes; Differentiation; Genetic distance; Multilocus diversity; Pinus roxburghii; Variation; Enzymes; Forestry; Genes; Allozyme variations; Genetic engineering; Enzymes; Genes; Genetic Engineering; Pinus Roxburghii; Embryophyta; Pinus roxburghii  
  Abstract Seeds collected from eight populations of Chir pine (Pinus roxburghii SARG.) from the natural distribution range of the species in Himachal Himalayas in India were analysed isozymatically at 11 enzyme systems. For the enzyme systems studied, 25 gene loci were identified out of which 18 were polymorphic. The observed mean values for genetic variation were slightly lower than mean values reported for Pinus species (number of alleles: 1.65 compared to 2.36; effective number of alleles: 1.13 compared to 1.26; observed heterozygosity: 0.153 compared to 0.179). A small differentiation among populations and large variation within populations were reflected by small value of GST (0.04): Considering the different genetic parameters three populations seem favourable for gene conservation measures.  
  Address Silviculture Division, Forest Research Institute, Dehra Dun – 248 006, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 00375349 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Cited By (since 1996): 4; Export Date: 22 October 2011; Source: Scopus; Coden: Sigea; Language of Original Document: English; Correspondence Address: Sharma, K.; Dr. Y. S. Parmar Univ. Hort./Forest., Reg. Horticultural Research Station, Jachh (Nurpur)-176 201 (HP), India Approved no  
  Call Number EcoFoG @ webmaster @ Serial 360  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: