toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Deurwaerder, H.; Hervé-Fernández, P.; Stahl, C.; Burban, B.; Petronelli, P.; Hoffman, B.; Bonal, D.; Boeckx, P.; Verbeeck, H. doi  openurl
  Title Liana and tree below-ground water competition – evidence for water resource partitioning during the dry season Type Journal Article
  Year 2018 Publication Tree Physiology Abbreviated Journal  
  Volume 38 Issue 7 Pages 1071-1083  
  Keywords (up)  
  Abstract To date, reasons for the increase in liana abundance and biomass in the Neotropics are still unclear. One proposed hypothesis suggests that lianas, in comparison with trees, are more adaptable to drought conditions. Moreover, previous studies have assumed that lianas have a deeper root system, which provides access to deeper soil layers, thereby making them less susceptible to drought stress. The dual stable water isotope approach (δ18O and δ2H) enables below-ground vegetation competition for water to be studied. Based on the occurrence of a natural gradient in soil water isotopic signatures, with enriched signatures in shallow soil relative to deep soil, the origin of vegetation water sources can be derived. Our study was performed on canopy trees and lianas reaching canopy level in tropical forests of French Guiana. Our results show liana xylem water isotopic signatures to be enriched in heavy isotopes in comparison with those from trees, indicating differences in water source depths and a more superficial root activity for lianas during the dry season. This enables them to efficiently capture dry season precipitation. Our study does not support the liana deep root water extraction hypothesis. Additionally, we provide new insights into water competition between tropical canopy lianas and trees. Results suggest that this competition is mitigated during the dry season due to water resource partitioning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0829-318x ISBN Medium  
  Area Expedition Conference  
  Notes 10.1093/treephys/tpy002 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 848  
Permanent link to this record
 

 
Author Rodríguez Pérez, H.; Borrel, G.; Leroy, C.; Carrias, J.-F.; Corbara, B.; Srivastava, D.S.; Céréghino, R. url  doi
openurl 
  Title Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition Type Journal Article
  Year 2018 Publication Oecologia Abbreviated Journal  
  Volume 187 Issue 1 Pages 267-279  
  Keywords (up)  
  Abstract Future climate scenarios forecast a 10–50% decline in rainfall in Eastern Amazonia. Altered precipitation patterns may change important ecosystem functions like decomposition through either changes in physical and chemical processes or shifts in the activity and/or composition of species. We experimentally manipulated hydroperiods (length of wet:dry cycles) in a tank bromeliad ecosystem to examine impacts on leaf litter decomposition. Gross loss of litter mass over 112 days was greatest in continuously submersed litter, lowest in continuously dry litter, and intermediate over a range of hydroperiods ranging from eight cycles of 7 wet:7 dry days to one cycle of 56 wet:56 dry days. The resilience of litter mass loss to hydroperiod length is due to a shift from biologically assisted decomposition (mostly microbial) at short wet:dry hydroperiods to physicochemical release of dissolved organic matter at longer wet:dry hydroperiods. Biologically assisted decomposition was maximized at wet:dry hydroperiods falling within the range of ambient conditions (12–22 consecutive dry days) but then declined under prolonged wet:dry hydroperiods (28 and 56 dry days. Fungal:bacterial ratios showed a similar pattern as biologically assisted decomposition to hydroperiod length. Our results suggest that microbial communities confer functional resilience to altered hydroperiod in tank bromeliad ecosystems. We predict a substantial decrease in biological activity relevant to decomposition under climate scenarios that increase consecutive dry days by 1.6- to 3.2-fold in our study area, whereas decreased frequency of dry periods will tend to increase the physicochemical component of decomposition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1939 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Rodríguez Pérez2018 Serial 850  
Permanent link to this record
 

 
Author Bossu, J.; Lehnebach, R.; Corn, S.; Regazzi, A.; Beauchene, J.; Clair, B. url  doi
openurl 
  Title Interlocked grain and density patterns in Bagassa guianensis: changes with ontogeny and mechanical consequences for trees Type Journal Article
  Year 2018 Publication Trees Abbreviated Journal  
  Volume 32 Issue 6 Pages 1643-1655  
  Keywords (up)  
  Abstract Interlocked grain and basic density increase from pith to bark in Bagassa guianensis and greatly improve trunk torsional stiffness and wood tenacity in the radial plane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-2285 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Bossu2018 Serial 852  
Permanent link to this record
 

 
Author Perrot, T.; Schwartz, M.; Saiag, F.; Salzet, G.; Dumarçay, S.; Favier, F.; Gérardin, P.; Girardet, J.-M.; Sormani, R.; Morel-Rouhier, M.; Amusant, N.; Didierjean, C.; Gelhaye, E. pdf  url
doi  openurl
  Title Fungal Glutathione Transferases as Tools to Explore the Chemical Diversity of Amazonian Wood Extractives Type Journal Article
  Year 2018 Publication ACS Sustainable Chem. Eng. Abbreviated Journal ACS Sustainable Chemistry & Engineering  
  Volume 6 Issue 10 Pages 13078-13085  
  Keywords (up)  
  Abstract The natural durability of wood is linked to its chemical composition and in particular the presence of metabolites called extractives that often possess chemical reactivity. For dealing with these compounds, wood degraders have developed detoxification systems usually involving enzyme families. Among these enzymes, glutathione transferases (GSTs) are involved in the decrease of the reactivity of toxic compounds. In this study, the hypothesis that the detoxification systems of wood decaying fungi could be indicators of the chemical reactivity of wood extracts has been tested. This approach has been evaluated using 32 wood extracts coming from French Guiana species, testing their antimicrobial ability, antioxidative properties, and reactivity against six GSTs from the white rot Trametes versicolor. From the obtained data, a significant correlation between the antimicrobial and antioxidative properties of the tested wood extracts and GST interactions was established. In addition, the chemical analysis performed on one of the most reactive extracts (an acetonic extract of Bagassa guianensis) has demonstrated oxyresveratrol as a major constituent. We were able to cocrystallize one GST with this commercially interesting compound. Taken together, the presented data support the hypothesis that detoxifying enzymes could be used to identify the presence of molecules of industrial interest in wood extracts.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1021/acssuschemeng.8b02636 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 854  
Permanent link to this record
 

 
Author Zaremski, A.; Malandain, C.; Sibourg, O.; Andary, C.; Michaloud, G.; Ducousso, M.; Amusant, N.; Zaremski, A. pdf  openurl
  Title NGS Identification of Fungi Potentially Implicated in the Production of Agarwood From Aquilaria Spp. Tree Type Journal Article
  Year 2018 Publication Pro Ligno Abbreviated Journal  
  Volume 14 Issue 3 Pages 9-18  
  Keywords (up)  
  Abstract Aquilaria is a tree species belonging to the Thymeleaceae family. When Aquilaria sp. is injured, it can produce agarwood. Agarwood is characterized by a darker wood colour than the healthy one and by a strong perfume that is much esteemed by perfumers and some oriental religious communities. The production of agarwood is presumed to depend on environmental factors, among them fungi. The aim of this work is to obtain an overview of fungi present in Aquilaria sp. from different countries. Aquilaria sp. is endemic to South East Asia including notably Cambodia, Laos and Thailand, where it is cultivated to produce agarwood. In French Guiana, farmers would like to locally produce agarwood in their field. That's why we wonder if fungal communities naturally present in French Guiana present characteristics making it compatible with the induction of agarwood. In this study, NGS was used to characterize fungal communities associated with agarwood: 693,961 sequences that cover ITS2 estimated about 250bp have been obtained. These sequences have been grouped into 535 OTUs, displaying 100% identity. In this study, 87% were Ascomycetes and 10.5% were Basidiomycetes. These results show also differences in fungal communities between aboveground and belowground parts of the tree. Likewise, differences between countries within fungal communities were also observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 855  
Permanent link to this record
 

 
Author Ciminera, M.; Auger-Rozenberg, M.-A.; Caron, H.; Herrera, M.; Scotti-Saintagne, C.; Scotti, I.; Tysklind, N.; Roques, A. url  doi
openurl 
  Title Genetic Variation and Differentiation of Hylesia metabus (Lepidoptera: Saturniidae): Moths of Public Health Importance in French Guiana and in Venezuela Type Journal Article
  Year 2019 Publication Journal of medical entomology Abbreviated Journal J. Med. Entomol.  
  Volume 56 Issue 1 Pages 137-148  
  Keywords (up)  
  Abstract Hylesia moths impact human health in South America, inducing epidemic outbreaks of lepidopterism, a puriginous dermatitis caused by the urticating properties of females' abdominal setae. The classification of the Hylesia genus is complex, owing to its high diversity in Amazonia, high intraspecific morphological variance, and lack of interspecific diagnostic traits which may hide cryptic species. Outbreaks of Hylesia metabus have been considered responsible for the intense outbreaks of lepidopterism in Venezuela and French Guiana since the C20, however, little is known about genetic variability throughout the species range, which is instrumental for establishing control strategies on H. metabus. Seven microsatellites and mitochondrial gene markers were analyzed from Hylesia moths collected from two major lepidopterism outbreak South American regions. The mitochondrial gene sequences contained significant genetic variation, revealing a single, widespread, polymorphic species with distinct clusters, possibly corresponding to populations evolving in isolation. The microsatellite markers validated the mitochondrial results, and suggest the presence of three populations: one in Venezuela, and two in French Guiana. All moths sampled during outbreak events in French Guiana were assigned to a single coastal population. The causes and implications of this finding require further research.  
  Address INRA, Unité de Recherche Ecologie des forêts méditerranéennes, Avignon, UR629, France  
  Corporate Author Thesis  
  Publisher NLM (Medline) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 19382928 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 1 February 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 857  
Permanent link to this record
 

 
Author Courtois, E. A.; Stahl, C.; Burban, B.; Van Den Berge, J.; Berveiller, D.; Bréchet, L.; Larned Soong, J.; Arriga, N.; Peñuelas, J.; August Janssens, I. pdf  url
doi  openurl
  Title Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest Type Journal Article
  Year 2019 Publication Biogeosciences Abbreviated Journal Biogeosciences  
  Volume 16 Issue 3 Pages 785-796  
  Keywords (up)  
  Abstract Measuring in situ soil fluxes of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) continuously at high frequency requires appropriate technology. We tested the combination of a commercial automated soil CO 2 flux chamber system (LI-8100A) with a CH 4 and N 2 O analyzer (Picarro G2308) in a tropical rainforest for 4 months. A chamber closure time of 2 min was sufficient for a reliable estimation of CO 2 and CH 4 fluxes (100% and 98.5% of fluxes were above minimum detectable flux – MDF, respectively). This closure time was generally not suitable for a reliable estimation of the low N 2 O fluxes in this ecosystem but was sufficient for detecting rare major peak events. A closure time of 25 min was more appropriate for reliable estimation of most N 2 O fluxes (85.6% of measured fluxes are above MDF±0.002 nmolm -2 s -1 ). Our study highlights the importance of adjusted closure time for each gas. © Author(s) 2019.  
  Address CREAF, Cerdanyola Del Vallès, Catalonia, 08193, Spain  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 17264170 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 25 February 2019; Correspondence Address: Alice Courtois, E.; Department of Biology University of Antwerp, Centers of Excellence Global Change Ecology and PLECO (Plants and Ecosystems), Universiteitsplein 1, Belgium; email: courtoiselodie@gmail.com; Funding details: Centre de Coopération Internationale en Recherche Agronomique pour le Développement, CIRAD; Funding details: European Research Council, ERC, ERC-2013-SyG 610028-IMBALANCE-P; Funding details: ANR-10-LABX-25-01, ANR-11-INBS-0001; Funding details: U.S. Department of Energy, DOE, DE-AC02-05CH11231; Funding details: Agence Nationale de la Recherche, ANR; Funding details: Institut National de la Recherche Agronomique, INRA; Funding details: Fonds Wetenschappelijk Onderzoek, FWO; Funding text 1: Acknowledgements. This research was supported by the European Research Council Synergy grant ERC-2013-SyG 610028-IMBALANCE-P. We thank Jan Segers for help in the initial setting of the system and Renato Winkler from Picarro and Rod Madsen and Jason Hupp from LI-COR for their help in combining the systems. We thank the staff of Paracou station, managed by UMR Ecofog (CIRAD, INRA; Kourou), which received support from “Investissement d’Avenir” grants managed by Agence Nationale de la Recherche (CEBA: ANR-10-LABX-25-01, ANAEE-France: ANR-11-INBS-0001). This study was conducted in collaboration with the Guyaflux program belonging to SOERE F-ORE-T, which is supported annually by Ecofor, Allenvi, and the French national research infrastructure, ANAEE-F. This program also received support from an “investissement d’avenir” grant from the Agence Nationale de la Recherche (CEBA, ref ANR-10-LABX-25-01). Ivan August Janssens acknowledges support from Antwerp University (Methusalem funding), Nicola Arriga from ICOS-Belgium and Fonds Wetenschappelijk Onderzoek (FWO), and Jennifer Larned Soong from the U.S. Department of Energy under contract DE-AC02-05CH11231.; References: Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., What drives long-Term variations in carbon flux and balance in a tropical rainforest in French Guiana? (2018) Agr. Forest Meteorol, 253, pp. 114-123; Ambus, P., Skiba, U., Drewer, J., Jones, S., Carter, M.S., Albert, K.R., Sutton, M., Development of an accumulation-based system for cost-effective chamber measurements of inert trace gas fluxes (2010) Eur. J. Soil Sci, 61, pp. 785-792; Arias-Navarro, C., Díaz-Pinés, E., Klatt, S., Brandt, P., Rufino, M.C., Butterbach-Bahl, K., Verchot, L., Spatial variability of soil N2O and CO2 fluxes in different topographic positions in a tropical montane forest in Kenya (2017) J. Geophys. Res.-Biogeo, 122, pp. 514-527; Bonal, D., Bosc, A., Ponton, S., Goret, J.Y., Burban, B., Gross, P., Bonnefond, J., Epron, D., Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana (2008) Glob. Change Biol, 14, pp. 1917-1933; Bréchet, L., Ponton, S., Roy, J., Freycon, V., Coteaux, M.-M., Bonal, D., Epron, D., Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots (2009) Plant Soil, 319, pp. 235-246; Breuer, L., Papen, H., Butterbach-Bahl, K., N2O emission from tropical forest soils of Australia (2000) J. Geophys. Res.-Atmos, 105, pp. 26353-26367; Christiansen, J.R., Outhwaite, J., Smukler, S.M., Comparison of CO2, CH4 and N2O soil-Atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography (2015) Agr. Forest Meteorol, 211, pp. 48-57; Courtois, E.A., Stahl, C., Dataset from Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest (2019) Biogeosciences, 2019. , https://doi.org/10.5281/zenodo.2555299; Courtois, E.A., Stahl, C., Van Den Berge, J., Bréchet, L., Van Langenhove, L., Richter, A., Urbina, I., Janssens, I.A., Spatial variation of soil CO2, CH4 and N2O fluxes across topographical positions in tropical forests of the Guiana Shield (2018) Ecosystems, 21, pp. 1445-1458; Davidson, E., Savage, K., Verchot, L., Navarro, R., Minimizing artifacts and biases in chamber-based measurements of soil respiration (2002) Agr. Forest Meteorol, 113, pp. 21-37; Davidson, E.A., Nepstad, D.C., Ishida, F.Y., Brando, P.M., Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest (2008) Glob. Change Biol, 14, pp. 2582-2590; De Klein, C., Harvey, M., (2012) Nitrous Oxide Chamber Methodology Guidelines, , Ministry for Primary Industries, Wellington, New Zealand; Denmead, O., Chamber systems for measuring nitrous oxide emission from soils in the field (1979) Soil Sci. Soc. Am. J, 43, pp. 89-95; Dutaur, L., Verchot, L.V., A global inventory of the soil CH4 sink (2007) Glob. Biogeochem. Cy, p. 21. , https://doi.org/10.1029/2006GB002734; Epron, D., Bosc, A., Bonal, D., Freycon, V., Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana (2006) J. Trop. Ecol, 22, pp. 565-574; (1998) World Reference Base for Soil Resources, , FAO/ ISRIC/ISSS.FAO, ISRIC, ISSS, World Soil Resources Reports 84, Rome; Görres, C.-M., Kammann, C., Ceulemans, R., Automation of soil flux chamber measurements, potentials and pitfalls (2016) Biogeosciences, 13, pp. 1949-1966. , https://doi.org/10.5194/bg-13-1949-2016; Hupp, J.R., Garcia, R.L., Madsen, R., McDermitt, D.K., Measurement of CO2 evolution in a multiplexed flask system (2009) Amer. Soc. Horticultural Science, Alexandria USA, 44, pp. 1143-1143; Janssens, I.A., Kowalski, A.S., Longdoz, B., Ceulemans, R., Assessing forest soil CO2 efflux, an in-situ comparison of four techniques (2000) Tree Physiol, 20, pp. 23-32; Koskinen, M., Minkkinen, K., Ojanen, P., Kämäräinen, M., Laurila, T., Lohila, A., Measurements of CO2 exchange with an automated chamber system throughout the year, challenges in measuring night-Time respiration on porous peat soil (2014) Biogeosciences, 11, pp. 347-363. , https://doi.org/10.5194/bg-11-347-2014; Kostyanovsky, K., Huggins, D., Stockle, C., Waldo, S., Lamb, B., Developing a flow through chamber system for automated measurements of soil N2O and CO2 emissions (2018) Measurement, 113, pp. 172-180; Merbold, L., Wohlfahrt, G., Butterbach-Bahl, K., Pilegaard, K., DelSontro, T., Stoy, P., Zona, D., Preface, Towards a full greenhouse gas balance of the biosphere (2015) Biogeosciences, 12, pp. 453-456. , https://doi.org/10.5194/bg-12-453-2015; Nickerson, N., (2016) Evaluating Gas Emission Measurements Using Minimum Detectable Flux (MDF), , Eosense Inc., Dartmouth, Nova Scotia, Canada; Nicolini, G., Castaldi, S., Fratini, G., Valentini, R., A literature overview of micrometeorological CH4 and N2O flux measurements in terrestrial ecosystems (2013) Atmos. Environ, 81, pp. 311-319; O'Connell, C.S., Ruan, L., Silver, W.L., Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions (2018) Nat. Commun, 9, p. 1348. , https://doi.org/10.1038/s41467-018-03352; Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., Greenhouse gas emissions from soils-A review (2016) Chem. Erde-Geochem, 76, pp. 327-352; Petitjean, C., Hénault, C., Perrin, A.-S., Pontet, C., Metay, A., Bernoux, M., Jehanno, T., Roggy, J.-C., Soil N2O emissions in French Guiana after the conversion of tropical forest to agriculture with the chop-And-mulch method (2015) Agr. Ecosyst. Environ, 208, pp. 64-74; Petrakis, S., Seyfferth, A., Kan, J., Inamdar, S., Vargas, R., Influence of experimental extreme water pulses on greenhouse gas emissions from soils (2017) Biogeochemistry, 133, pp. 147-164; Petrakis, S., Barba, J., Bond-Lamberty, B., Vargas, R., Using greenhouse gas fluxes to define soil functional types (2017) Plant Soil, pp. 1-10; Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila, A., Pihlatie, M., Comparison of different chamber techniques for measuring soil CO2 efflux (2004) Agr. Forest Meteorol, 123, pp. 159-176; Rowland, L., Hill, T.C., Stahl, C., Siebicke, L., Burban, B., Zaragoza-Castells, J., Ponton, S., Williams, M., Evidence for strong seasonality in the carbon storage and carbon use efficiency of an Amazonian forest (2014) Glob. Change Biol, 20, pp. 979-991; Rubio, V.E., Detto, M., Spatiotemporal variability of soil respiration in a seasonal tropical forest (2017) Ecol. Evol, 7, pp. 7104-7116; Savage, K., Phillips, R., Davidson, E., High temporal frequency measurements of greenhouse gas emissions from soils (2014) Biogeosciences, 11, pp. 2709-2720. , https://doi.org/10.5194/bg-11-2709-2014; Silver, W.L., Lugo, A., Keller, M., Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils (1999) Biogeochemistry, 44, pp. 301-328; Teh, Y.A., Diem, T., Jones, S., Huaraca Quispe, L.P., Baggs, E., Morley, N., Richards, M., Meir, P., Methane and nitrous oxide fluxes across an elevation gradient in the tropical Peruvian Andes (2014) Biogeosciences, 11, pp. 2325-2339. , https://doi.org/10.5194/bg-11-2325-2014; Verchot, L.V., Davidson, E.A., Cattânio, H., Ackerman, I.L., Erickson, H.E., Keller, M., Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia (1999) Global Biogeochem. Cy, 13, pp. 31-46; Verchot, L.V., Davidson, E.A., Cattânio, J.H., Ackerman, I.L., Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia (2000) Ecosystems, 3, pp. 41-56; Wagner, F., Hérault, B., Stahl, C., Bonal, D., Rossi, V., Modeling water availability for trees in tropical forests (2011) Agr. Forest Meteorol, 151, pp. 1202-1213 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 860  
Permanent link to this record
 

 
Author Piponiot, C.; Rödig, E.; Putz, F.E.; Rutishauser, E.; Sist, P.; Ascarrunz, N.; Blanc, L.; Derroire, G.; Descroix, L.; Guedes, M.C.; Coronado, E.H.; Huth, A.; Kanashiro, M.; Licona, J.C.; Mazzei, L.; d’Oliveira, M.V.N.; Peña-Claros, M.; Rodney, K.; Shenkin, A.; de Souza, C.R.; Vidal, E.; West, T.A.P.; Wortel, V.; Herault, B. pdf  doi
openurl 
  Title Can timber provision from Amazonian production forests be sustainable? Type Journal Article
  Year 2019 Publication Environmental Research Letters Abbreviated Journal Environmental Research Letters  
  Volume 14 Issue 6 Pages 064014  
  Keywords (up)  
  Abstract Around 30 Mm3 of sawlogs are extracted annually by selective logging of natural production forests in Amazonia, Earth’s most extensive tropical forest. Decisions concerning the management of these production forests will be of major importance for Amazonian forests’ fate. To date, no regional assessment of selective logging sustainability supports decision-making. Based on data from 3500 ha of forest inventory plots, our modelling results show that the average periodic harvests of 20 m3 ha−1 will not recover by the end of a standard 30 year cutting cycle. Timber recovery within a cutting cycle is enhanced by commercial acceptance of more species and with the adoption of longer cutting cycles and lower logging intensities. Recovery rates are faster in Western Amazonia than on the Guiana Shield. Our simulations suggest that regardless of cutting cycle duration and logging intensities, selectively logged forests are unlikely to meet timber demands over the long term as timber stocks are predicted to steadily decline. There is thus an urgent need to develop an integrated forest resource management policy that combines active management of production forests with the restoration of degraded and secondary forests for timber production. Without better management, reduced timber harvests and continued timber production declines are unavoidable.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 875  
Permanent link to this record
 

 
Author Rodrigues, A.M.S.; Eparvier, V.; Odonne, G.; Amusant, N.; Stien, D.; Houël, E. pdf  url
doi  openurl
  Title The antifungal potential of (Z)-ligustilide and the protective effect of eugenol demonstrated by a chemometric approach Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci. Rep.  
  Volume 9 Issue Pages 8729  
  Keywords (up)  
  Abstract Mankind is on the verge of a postantibiotic era. New concepts are needed in our battle to attenuate infectious diseases around the world and broad spectrum plant-inspired synergistic pharmaceutical preparations should find their place in the global fight against pathogenic microorganisms. To progress towards the discovery of potent antifungal agents against human pathologies, we embarked upon developing chemometric approach coupled with statistical design to unravel the origin of the anticandidal potential of a set of 66 essential oils (EOs). EOs were analyzed by GC-MS and tested against Candida albicans and C. parapsilosis (Minimal Inhibitory Concentration, MIC). An Orthogonal Partial Least Square (OPLS) analysis allowed us to identify six molecules presumably responsible for the anticandidal activity of the oils: (Z)-ligustilide, eugenol, eugenyl acetate, citral, thymol, and β-citronellol. These compounds were combined following a full factorial experimental design approach in order to optimize the anticandidal activity and selectivity index (SI = IC50(MRC5 cells)/MIC) through reconstituted mixtures. (Z)-Ligustilide and citral were the most active compounds, while (Z)-ligustilide and eugenol were the two main factors that most contributed to the increase of the SI. These two terpenes can, therefore, be used to construct bioinspired synergistic anticandidal mixtures. © 2019, The Author(s).  
  Address CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Cayenne, 97300, France  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 20452322 (Issn) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number EcoFoG @ webmaster @ Serial 876  
Permanent link to this record
 

 
Author Schepaschenko, D.; Chave, J.; Phillips, O.L.; Lewis, S.L.; Davies, S.J.; Réjou-Méchain, M.; Sist, P.; Scipal, K.; Perger, C.; Herault, B.; Labrière, N.; Hofhansl, F.; Affum-Baffoe, K.; Aleinikov, A.; Alonso, A.; Amani, C.; Araujo-Murakami, A.; Armston, J.; Arroyo, L.; Ascarrunz, N.; Azevedo, C.; Baker, T.; Bałazy, R.; Bedeau, C.; Berry, N.; Bilous, A.M.; Bilous, S.Y.; Bissiengou, P.; Blanc, L.; Bobkova, K.S.; Braslavskaya, T.; Brienen, R.; Burslem, D.F.R.P.; Condit, R.; Cuni-Sanchez, A.; Danilina, D.; Del Castillo Torres, D.; Derroire, G.; Descroix, L.; Sotta, E.D.; d'Oliveira, M.V.N.; Dresel, C.; Erwin, T.; Evdokimenko, M.D.; Falck, J.; Feldpausch, T.R.; Foli, E.G.; Foster, R.; Fritz, S.; Garcia-Abril, A.D.; Gornov, A.; Gornova, M.; Gothard-Bassébé, E.; Gourlet-Fleury, S.; Guedes, M.; Hamer, K.C.; Susanty, F.H.; Higuchi, N.; Coronado, E.N.H.; Hubau, W.; Hubbell, S.; Ilstedt, U.; Ivanov, V.V.; Kanashiro, M.; Karlsson, A.; Karminov, V.N.; Killeen, T.; Koffi, J.-C.K.; Konovalova, M.; Kraxner, F.; Krejza, J.; Krisnawati, H.; Krivobokov, L.V.; Kuznetsov, M.A.; Lakyda, I.; Lakyda, P.I.; Licona, J.C.; Lucas, R.M.; Lukina, N.; Lussetti, D.; Malhi, Y.; Manzanera, J.A.; Marimon, B.; Junior, B.H.M.; Martinez, R.V.; Martynenko, O.V.; Matsala, M.; Matyashuk, R.K.; Mazzei, L.; Memiaghe, H.; Mendoza, C.; Mendoza, A.M.; Moroziuk, O.V.; Mukhortova, L.; Musa, S.; Nazimova, D.I.; Okuda, T.; Oliveira, L.C.; Ontikov, P.V.; Osipov, A.F.; Pietsch, S.; Playfair, M.; Poulsen, J.; Radchenko, V.G.; Rodney, K.; Rozak, A.H.; Ruschel, A.; Rutishauser, E.; See, L.; Shchepashchenko, M.; Shevchenko, N.; Shvidenko, A.; Silveira, M.; Singh, J.; Sonké, B.; Souza, C.; Stereńczak, K.; Stonozhenko, L.; Sullivan, M.J.P.; Szatniewska, J.; Taedoumg, H.; Ter Steege, H.; Tikhonova, E.; Toledo, M.; Trefilova, O.V.; Valbuena, R.; Gamarra, L.V.; Vasiliev, S.; Vedrova, E.F.; Verhovets, S.V.; Vidal, E.; Vladimirova, N.A.; Vleminckx, J.; Vos, V.A.; Vozmitel, F.K.; Wanek, W.; West, T.A.P.; Woell, H.; Woods, J.T.; Wortel, V.; Yamada, T.; Nur Hajar, Z.S.; Zo-Bi, I.C. pdf  url
doi  openurl
  Title The Forest Observation System, building a global reference dataset for remote sensing of forest biomass Type Journal Article
  Year 2019 Publication Scientific data Abbreviated Journal  
  Volume 6 Issue 198 Pages  
  Keywords (up)  
  Abstract Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.  
  Address FRIM Forest Research Institute of Malaysia, 52109 Kepong, Selangor, Kuala Lumpur, Malaysia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Export Date: 21 October 2019 Approved no  
  Call Number EcoFoG @ webmaster @ Serial 889  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: